Wireless Rotating Disk Electrode (wRDE) for assessing Heterogeneous Water Oxidation Catalysts (WOCs)

Supplementary Information

S1: The formal redox potential of Ce(IV)/Ce(III) couple

The formal redox potential of the Ce(IV)/Ce(III), E'_{Ce}, couple depends upon the nature and degree of anion complexation of the Ce ions and as a consequence the value of E'_{Ce} is 1.44, 1.61 and 1.70 in 1 N H$_2$SO$_4$, HNO$_3$ and HClO$_4$ acid, respectively\(^1\); as is demonstrated later in the paper, this feature proves very useful when testing a wRDE with a low activity, and high overpotential (at 20 mA/cm2), η, such as PtO$_2$.

S2: Preparation of a wRDE

A schematic illustration of the general method of preparation of the wRDE of this WOC is illustrated in figure S2a.

Figure S2a Schematic illustration of the preparation of a RuO$_2$(Adams) wRDE.

Thus, briefly, the RuO$_2$(Adams) was rendered in disc form (5 mm diameter, 1 mm thick) by mixing with Nafion powder (Ion Power, 40-60 mesh) in a 95:5 mass ratio, then pressing 50 mg of the RuO$_2$(Adams)/Nafion powder into a 5 mm diameter (1 mm thick) using a 5 mm IR pellet press (Specac Ltd.) with 1.5 tonne pressure for 1 min. The magnetic PTFE base of the wRDE was prepared separately using an 8 mm IR press (Apollo Scientific) into which were added 250 mg of PTFE powder (Aldrich Chemicals, 1 μm), compacted by hand using the IR press's steel plunger, to which was stuck (magnetically) a 6 mm long, 3 mm diameter...
neodymium magnetic bar (First4magnets). Upon removal of the plunger, the magnetic bar was held firmly in place in the hand-compacted PTFE in the pellet press. A further 250 mg of PTFE were then added and, once again, compacted by hand using the plunger. At this point, the 5 mm RuO$_2$(Adams)/Nafion disc, prepared earlier, was then placed centrally on the compacted PTFE in the 8 mm IR press and the combination subjected to 4 tonnes pressure for 1 min to yield the final WrDE illustrated in figure S2b (a).

RuO$_2$(Adams) is known to be an excellent WOC for reaction (1)2,3, where Ox is Ce(IV) or H$_2$O$_2$, and evidence of its activity is provided by the photographs in figure S2b (b) and S2b(c) respectively, which show O$_2$ bubble formation on the black RuO$_2$(Adams), electroactive part of the WrDE when exposed to a solution containing 0.1 M Ce(IV) sulfate in 0.1 N H$_2$SO$_4$ (Aldrich Chemicals), and 0.1 M H$_2$O$_2$ in water, respectively.

Figure S2b (a) Photograph of the 8 mm PTFE stirrer bar containing a 5 mm disk of Ru-Adams catalyst. (b) Oxygen bubbles produced on the surface of the Ru-Adams catalyst after 10 min in 0.1 M Ce(SO$_4$)$_2$ in H$_2$SO$_4$ (0.1 N). (c) Oxygen bubbles produced instantly upon addition of 0.1 M H$_2$O$_2$.

S3: Preparation: Calculation of the Ce:Ru ratio

In this system the value of the molar Ce:Ru ratio, \(q \), for just one injection of Ce(IV) is 70, which, at first glance, suggests the RuO\(_2\)(Adams) is not being used in catalytic quantities. However, as this method uses the WOC in a wRDE, it follows that only the exposed surface Ru sites will be engaged in mediating reaction (1). Given the average surface area of such a site is estimated\(^4\) to be ca. 0.34 nm\(^2\), and the surface area of the wRDE is 0.196 cm\(^2\), a value for \(q = 9.6 \times 10^{-5} \), can be calculated for RuO\(_2\)(Adams) wRDE, which suggests that it is operating under catalytic conditions.

S4: Working with CAN

Many researchers working on WOCs favour using cerium ammonium nitrate (CAN) as the oxidant and 1 M HNO\(_3\) as the acid and, in support of the electrochemical model presented here and the catalytic nature of the RuO\(_2\)(Adams), the same 1st order kinetics of Ce(IV) decay, were observed for a RuO\(_2\)(Adams) wRDE, using either 3.6x10\(^{-3}\) or 0.1 M CAN, in 1 M HNO\(_3\), as illustrated by the decay profiles and photographs below (figure S4).

Figure S4 (top) Photographs (recorded every 15 min) showing the change in colour and (bottom) change in UV/Vis spectra (the latter recorded at 6 min intervals) of a 1.5 mL 0.1 M CAN solution in 1 N HNO\(_3\) in a 1cm cuvette, when exposed to a RuO\(_2\)(Adams) wRDE spun at 1000 rpm and T = 30°C. The broken red line indicates the absorbance monitoring wavelength (470 nm) used to create the black trace in the insert diagram. The inset plot shows the measured change in concentration of CAN for an initial injection of 0.1 M (black trace), and 3.6 mM (red trace). These decay traces are first order and yield similar 1\(^{st}\) order rate constants, \(k \), of 0.026 min\(^{-1}\), and 0.027 min\(^{-1}\) respectively.
S5: Tafel plots for different WOCs

Other wRDE's were prepared, using commercial forms of IrO$_2$·2H$_2$O (Alfa Aesar) and PtO$_2$ (Sigma Aldrich), and tested using the Ce(IV) decay system yielding Tafel plots that are illustrated below (figure S5) from which the values of b and η for these materials, listed in Table S5 below, were derived.

![Figure S5 Tafel plots](image-url)

Figure S5 Tafel plots of (●) RuO$_2$ (Adams), (●) IrO$_2$, and (●) PtO$_2$, giving slopes, b, of 54, 58, and 125 mV per decade respectively. The units of $r(t)$ here are M/min. With the exception of PtO$_2$, which was run in 1 N HNO$_3$ at 30°C, all other wRDE's were run in 1.5 mL of 1 N H$_2$SO$_4$ at 5°C. Injection volume = 54 μL of 0.1 M Ce(SO$_4$)$_2$. Rotation speed = 1000 rpm.

Table S5 List of Tafel slopes, b, the rate at a potential of 1.23 V, r_w, and the overpotential, η, based on the data in figure S2.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>b/ mV per decade</th>
<th>η/mV</th>
<th>r_w (109) M min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RuO$_2$ (Adams)</td>
<td>54</td>
<td>226</td>
<td>10.4</td>
</tr>
<tr>
<td>IrO$_2$</td>
<td>58</td>
<td>280</td>
<td>2.34</td>
</tr>
<tr>
<td>PtO$_2$†</td>
<td>125</td>
<td>478</td>
<td>23.7</td>
</tr>
</tbody>
</table>

† Run in 1 N HNO$_3$ at 30°C, all other wRDE's were run in 1.5 mL of 1 N H$_2$SO$_4$ at 5°C.