Supporting Information

Catalytic Asymmetric Total Synthesis of (+)-Artalbic Acid

Toyoharu Kobayashi, Ryuta Shioi, Ai Ushie, Hideki Abe, and Hisanaka Ito*

School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
itohis@toyaku.ac.jp

Table of contents

Experimental procedures S2
1H and 13C NMR spectra of new compounds S11
Chiral HPLC analysis of compound 12 S21
Comparison of the chemical shift of 1H and 13C NMR spectra of natural product with those of synthetic sample 1. S22
General

All reactions involving air- and moisture-sensitive reagents were carried out using standard syringe-septum cap techniques. Unless otherwise noted, all solvents and reagents were obtained from commercial suppliers and used without further purification. Routine monitoring of reactions were carried out Merck silica gel 60 F254 TLC plates. Column chromatography was performed on Kanto Chemical Silica gel 60N (spherical, neutral 60-230 µm) with the solvents indicated. 1H and 13C NMR spectra were measured with a Jeol ECZ-400s (400 MHz) or a Burker AV-600 (600 MHz) spectrometer. Chemical shifts were expressed in ppm using CHCl$_3$ (7.26 ppm for 1H NMR, 77.0 ppm for 13C NMR) in CDCl$_3$ as internal standard. Infrared spectral measurements were carried out with a JASCO FT/IR-4700 FT-IR and only noteworthy absorptions were listed. HRMS spectra measured on a Micromass LCT spectrometer.

Isopropyl 2-methyl-3-oxobutanoate (8).

```
                  O
                 /\                  C
                 //\                 O
                //  \                O
               iPr //   \Me
```

To a mixture of isopropyl acetoacetate (9) (5.0 g, 34.7 mmol) and methyl iodide (4.9 g, 2.1 mL, 34.7 mmol) was added K$_2$CO$_3$ (9.5 g, 69.4 mmol) at 0 °C, and the mixture was stirred for 3 h at 40 °C. The reaction mixture was filtered under vacuo and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 20:1) to afford 8 (5.5 g, 99%) as colorless oil. The spectral data of 8 was identified with those of the previous report.1

(S,E)-Isopropyl 2-acetyl-2-methyl-5-phenylpent-4-enoate (−)-(12).

```
                 O
                 /\                  C
                 //\                 O
                //  \                O
               Ph //   \Ar
```

(S,S)-10 : Ar = 3,5-bistrifluoromethylphenyl
To a stirred solution of 8 (20.0 mg, 0.126 mmol), (S,S)-10 (1.4 mg, 1.26 µmol) and 11 (40.0 mg, 0.16 mmol) in 10% toluene in xylene (3 mL) was added CsOH (75.5 mg, 0.50 mmol) at −40 °C, and the mixture was stirred for 72 h at same temperature. The reaction was quenched with 1 M HCl aqueous solution, and the mixture was extracted with AcOEt. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 30:1) to afford (−)-12 (33.3 mg, 96%, 85% ee) as yellow oil.

\[[\alpha]_{D}^{25} = -31.3 \ (c \ 1.26, \ \text{CHCl}_3); \ \text{IR} \ (\text{neat}) \ 2981, 1712, 1450, 1375, 1238, 1101 \ \text{cm}^{-1}; \ \text{^1H NMR} \ (400 \ \text{MHz, CDCl}_3) \ \delta \ 1.23 (3H, d, J = 6.4 \ Hz), 1.24 (3H, d, J = 6.4 \ Hz), 1.37 (3H, s), 2.18 (3H, s), 2.64 (1H, ddd, J = 14.5, 7.8, 1.4 Hz), 2.78 (1H, dd, J = 14.2, 7.3 Hz), 5.07 (1H,qq, J = 6.4, 6.4 Hz), 6.05 (1H, ddd, J = 15.6, 7.3, 7.3 Hz), 6.43 (1H, d, J = 16.0 Hz), 7.18-7.23 (1H, m), 7.28-7.33 (4H, m); \ \text{^13C NMR} \ (100 \ \text{MHz, CDCl}_3) \ \delta \ 19.1, 21.5, 21.6, 26.2, 38.5, 59.7, 68.9, 124.3, 126.1, 127.3, 128.5, 133.8, 137.0, 171.9, 205.2; \ \text{HRESIMS} \ \text{calcd for C}_{17}H_{22}O_{3}Na \ [M+Na]^+ \ 297.1467, \ \text{found} \ 297.1470. \]

(S)-Isoprppyl 2-acetyl-2-methyl-4-oxobutanoate (−)-(6).

The compound (−)-12 (1.65 g, 6.02 mmol) was dissolved in CH₂Cl₂ (60 mL) and cooled to −78 °C. Ozone gas was bubbled for 3 h at −78 °C. Tripheylphoshine (4.0 g, 15.05 mmol) was added and the reaction mixture warmed to room temperature. After the reaction mixture was stirred for 12 h, the solvent was removed in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 5:1) to afford (−)-6 (1.07 g, 89%) as colorless oil.

\[[\alpha]_{D}^{25} = -41.4 \ (c \ 1.22, \ \text{CHCl}_3); \ \text{IR} \ (\text{neat}) \ 2983, 1713, 1456, 1377, 1281, 1240, 1200, 1101 \ \text{cm}^{-1}; \ \text{^1H NMR} \ (400 \ \text{MHz, CDCl}_3) \ \delta \ 1.22 (3H, d, J = 6.4 \ Hz), 1.24 (3H, d, J = 6.4 \ Hz) 1.48 (3H, s), 2.24 (3H, s), 2.86 (1H, dd, J = 17.4, 1.9 Hz), 2.97 (1H, dd, J = 17.3, 1.9 Hz), 5.06 (1H, qq, J = 6.4, 6.4 Hz), 9.70 (1H, m); \ \text{^13C NMR} \ (100 \ \text{MHz, CDCl}_3) \ \delta \ 20.4, 21.41, 21.44, 26.0, 48.5, 57.1, 69.6, 171.1, 199.0, 204.6; \ \text{HRESIMS} \ \text{calcd for C}_{10}H_{16}O_{4}Na \ [M+Na]^+ \ 223.0946, \ \text{found} \ 223.0946. \]
To a stirred solution of (−)-6 (400 mg, 2.00 mmol) in DMSO (75 mL) was added dropwise 1,8-diazabicyclo[5.4.0]undec-7-ene (0.30 mL, 305 mg, 2.00 mmol) at room temperature. After the reaction mixture was stirred for 30 min at 100 °C, the reaction was quenched by adding with 1 M HCl aqueous solution, and extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄. After the solvent was removed in vacuo, the resulting residue was purified by column chromatography (hexane-AcOEt, 10:1) to afford (−)-5 (268 mg, 74%) as colorless oil.

[α]D²⁵ = −19.9 (c 0.98, CHCl₃); IR (neat) 2981, 1738, 1709, 1375, 1272, 1190, 1104 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (3H, d, J = 6.0 Hz), 1.19 (3H, d, J = 5.9 Hz) 1.37 (3H, s), 2.52 (1H, dt, J = 19.2, 2.3 Hz), 3.21 (1H, dd, J = 19.2, 2.3 Hz), 4.90 (1H, qq, J = 6.0, 6.0 Hz), 6.16 (1H, dt, J = 5.9, 2.7 Hz), 7.73 (1H, dt, J = 5.9, 2.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 21.43, 21.51, 42.7, 53.4, 68.8, 131.7, 163.0, 171.0, 206.8; HRESIMS calcd for C₁₀H₁₄O₃Na [M+Na]⁺ 205.0841, found 205.0843.

(1S,4S)-Isopropyl 1-methyl-2-oxo-4-(prop-1-en-2-yl)cyclopentanecarboxylate (−)-(13).
(65 mL) was added isopropenylmagnesium bromide (0.5 M in THF, 16.4 mL, 8.22 mmol) at –78 °C under Ar. After the reaction mixture was stirred for 30 min at same temperature, the reaction was quenched by adding with sat. NH₄Cl aqueous solution, and extracted with AcOEt. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was dissolved in MeOH and KF was added. After the mixture was stirred for 15 min at same temperature, H₂O was added and extracted with AcOEt. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 30:1) to afford (−)-13 (580 mg, 75%) as colorless oil.

![Image](image-url)

(1S, 2S, 4S)-Isopropyl 2-hydroxy-1-methyl-4-(prop-1-en-2-yl)cyclopentanecarboxylate (+)-(14).

To a stirred solution of (−)-13 (363 mg, 1.46 mmol) in isopropyl alcohol (15 mL) was added sodium borohydride (66 mg, 1.75 mmol) at –10 °C under Ar, and the mixture was stirred for 5 h at same temperature. The reaction was quenched by adding with sat. NH₄Cl aqueous solution, and extracted with AcOEt. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 15:1) to afford (+)-14 (265 mg, 85%) as colorless oil and its C2-epimer (32 mg, 10%) as colorless oil.

[α]D²⁵ = +14.4 (c 1.10, CHCl₃); IR (neat) 3465, 2979, 1720, 1456, 1375, 1270, 1108 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (3H, s), 1.23 (6H, d, J = 6.4 Hz), 1.51 (1H, dd, J = 13.3, 9.6 Hz), 1.62 (1H, ddd, J = 12.3, 11.0, 9.1 Hz), 1.71 (3H, s), 2.10-2.16 (2H, m), 2.33 (1H, dd, J =
To a stirred solution of (+)-14 (50 mg, 0.22 mmol) in DMF (2.2 mL) was added NaH (6.4 mg, 0.27 mmol) at 0°C under Ar, and the mixture was stirred for 30 min at same temperature. To a mixture was added 4-methoxybenzyl chloride (0.41 mL, 48 mg, 0.31 mmol) and tetrabutylammonium iodide (114 mg, 0.31 mmol) at 0°C, the reaction mixture was stirred for 24 h at room temperature. The reaction was quenched by adding with sat. NaHCO₃ aqueous solution and extracted with Et₂O. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 30:1) to afford (+)-4 (59 mg, 77%) as colorless oil.

[α]D²⁵ = +14.1 (c 1.18, CHCl₃); IR (neat) 2976, 1721, 1514, 1457, 1374, 1247, 1109 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.23 (3H, d, J = 6.4 Hz), 1.24 (3H, d, J = 6.4 Hz), 1.28 (3H, s), 1.50 (1H, dd, J = 12.8, 11.0 Hz), 1.61-1.69 (1H, m), 1.70 (3H, s), 2.09-2.17 (1H, m), 2.26-2.31 (1H, m), 2.44-2.53 (1H, m), 3.80 (3H, s), 4.25 (1H, dd, J = 8.7, 5.9 Hz), 4.42 and 4.47 (2H, ABq, J = 11.4 Hz), 4.69 (1H, br s), 4.70 (1H, br s), 5.02 (1H, qq, J = 6.4, 6.4 Hz), 6.87 (2H, d, J = 8.6 Hz), 7.26 (2H, d, J = 8.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 20.8, 21.8, 36.7, 41.5, 42.5, 51.4, 55.2, 67.7, 71.5, 83.3, 108.9, 113.7, 129.0, 130.8, 147.2, 159.0, 177.4; HRESIMS calcd for C₂₁H₃₀O₄Na [M+Na]⁺ 369.2042, found 369.2044.
[(1R, 2S, 4S)-2-{{(4-methoxybenzyl)oxy}-1-methyl-4-(prop-1-en-2-yl)cyclopentyl}methanol (+)-16.

\[
\text{PMBO} \quad \text{O} \quad \text{LiAlH}_4 \quad \text{THF} \quad \text{rt, 3 h (89\%)}
\]

\[
(+)\text{-}4 \quad \text{PMBO} \quad \text{OH} \quad (+)\text{-}16
\]

To a stirred solution of (+)-4 (130 mg, 0.37 mmol) in THF (4 mL) was added lithium aliminium hydride (14 mg, 0.37 mmol) at 0 °C, and the mixture was stirred for 3 h at room temperature. The reaction was quenched by adding with sat. potassium sodium tartrate aqueous solution and extracted with AcOEt. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 5:1) to afford (+)-16 (97 mg, 89%) as colorless oil.

\([\alpha]_{D}^{25} = +53.1 \text{ (c 1.03, CHCl}_3\text{); IR (neat) 3425, 2935, 1613, 1514, 1248, 1098 cm}^{-1}; \text{ }^1\text{H NMR} (400 MHz, CDCl}_3\delta 1.05 (3H, s), 1.35 (1H, d, \text{ }J = 13.3, 9.6 \text{ Hz}), 1.60-1.68 (2H, m), 1.72 (3H, s), 1.76 (1H, dd, \text{ }J = 13.3, 8.7 \text{ Hz}), 2.16 (1H, ddd, \text{ }J = 11.9, 5.9, 5.9 \text{ Hz}), 2.35-2.44 (1H, m), 3.42 (2H, s), 3.70 (1H, dd, \text{ }J = 9.6, 5.9 \text{ Hz}), 3.80 (3H, s), 4.42 and 4.55 (2H, ABq, \text{ }J = 11.4 \text{ Hz}), 4.69 (1H, br s), 4.71 (1H, br s), 6.88 (2H, d, \text{ }J = 8.7 \text{ Hz}), 7.26 (2H, d, \text{ }J = 8.7 \text{ Hz}); \text{ }^{13}\text{C NMR} (100 MHz, CDCl}_3\delta 19.5, 20.8, 35.5, 39.6, 40.7, 45.5, 55.2, 71.0, 71.4, 83.0, 108.5, 113.7, 128.9, 130.9, 147.8, 159.0; \text{ HRESIMS calcd for C}_{18}H_{26}O_3Na [M+Na]^+ 313.1780, found 313.1777.}

(1S, 2S, 4S)-2-{{(4-methoxybenzyl)oxy}-1-methyl-4-(prop-1-en-2-yl)cyclopentanecarbaldehyde (+)-17.

\[
\text{PMBO} \quad \text{O} \quad (\text{COCl)}_2, \text{DMSO, Et}_3\text{N} \quad \text{CH}_2\text{Cl}_2 \quad \text{–78 °C, 1 h (91\%)}
\]

\[
(+)-16 \quad \text{PMBO} \quad \text{OH} \quad (+)-17
\]

To a stirred solution of oxalyl chloride (0.06 mL, 87.3 mg, 0.688 mmol) in CH₂Cl₂ (0.6 mL) was added dropwise a solution of dimethylsulfoxide (0.1 mL, 108 mg, 1.38 mmol) in CH₂Cl₂ (0.6 mL) at –78 °C under Ar. After stirred for 20 min at –78 °C, a solution of (+)-16 (100 mg, 0.344 mmol) in CH₂Cl₂ (0.5 mL) was added dropwise to this reaction
mixture at –78 °C, and the mixture was continuously stirred for 1 h at –78 °C. To this mixture was added dropwise triethylamine (0.3 mL, 209 mg, 2.06 mmol) at –78 °C, and the mixture was stirred for 30 min at room temperature. The reaction was quenched by adding with H2O, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 20:1) to afford (+)-17 (90.0 mg, 91%) as colorless oil.

[α]D25 = +34.4 (c 1.06, CHCl3); IR (neat) 2935, 1722, 1613, 1513, 1248, 1104 cm−1; 1H NMR (400 MHz, CDCl3) δ 1.22 (3H, s), 1.46 (1H, dd, J = 13.3, 10.5 Hz), 1.68-1.76 (1H, m), 1.71 (3H, s), 2.15-2.21 (2H, m), 2.32-2.41 (1H, m), 3.80 (3H, s), 4.11 (1H, dd, J = 8.7, 6.4 Hz), 4.38 and 4.42 (2H, ABq, J = 11.4 Hz), 4.72 (2H, br s), 5.02 (1H, qq, J = 6.4, 6.4 Hz), 6.87 (2H, d, J = 8.7 Hz), 7.24 (2H, d, J = 6.4 Hz), 9.53 (1H, s); 13C NMR (100 MHz, CDCl3) δ 16.5, 20.7, 36.4, 38.7, 41.2, 55.2, 56.2, 71.5, 80.1, 109.3, 113.8, 129.0, 130.3, 146.6, 159.2, 204.4; HRESIMS calcd for C18H24O3Na [M+Na]+ 311.1623, found 311.1628.

PMB protected artalbic acid (+)-(18).

To a stirred solution of {(4-bromopent-4-en-1-yl)oxy}(tert-butyl)dimethylsilane (410 mg, 1.47 mmol) in THF (3 mL) was added dropwise 1.65 M solution of tert-butyllithium in pentane (1.78 mL, 2.94 mmol) at –78 °C under Ar, and the mixture was stirred for 30 min at same temperature. Then to this mixture a solution of (+)-17 (170 mg, 0.589 mmol) in THF (3 mL) was added dropwise at –78 °C, and the reaction mixture was stirred for 1 h at same temperature. The reaction was quenched by adding with 1 M HCl aqueous solution, and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO4, and concentrated in vacuo. The resulting
residue was purified by column chromatography (hexane-AcOEt, 30:1) to afford the desired adduct (270 mg, 94%) as a 1:1 diastereomeric mixture. The mixture was used for next step without further separation.

To a stirred solution of the diastereomeric mixture obtained above (12.9 mg, 0.026 mmol) in acetone (1 mL) was added dropwise 2.67 N Jones reagent at 0 °C. After the reaction mixture was stirred for 1 h at room temperature, brine was added, and the resulting mixture was extracted with AcOEt. The organic layers were combined, washed with 10% NaHSO₃ solution and brine, dried over MgSO₄, and concentrated in vacuo. The resulting residue was purified by column chromatography (hexane-AcOEt, 3:1) to afford (+)-18 (6.3 mg, 62%) as colorless oil.

\[[\alpha]_{D}^{25} = +32.2 \text{ (c 0.34, CHCl}_3) \]; IR (neat) 3647, 2925, 1714, 1663, 1613, 1248, 1034 cm⁻¹; \n\n\[^{1}H \text{ NMR (400 MHz, CDCl}_3) \delta 1.36 (3H, s), 1.50 (1H, dd, } J = 12.8, 11.4 \text{ Hz), 1.56-1.66 (1H, m), 1.71 (3H, s), 2.12-2.18 (1H, m), 2.25-2.34 (1H, m), 2.47-2.62 (5H, m), 3.80 (3H, s), 4.32 (1H, dd, } J = 15.1, 9.1 \text{ Hz), 4.38 and 4.51 (2H, ABq, } J = 11.0 \text{ Hz), 4.71 (2H, br s), 5.73 (1H, s), 5.95 (1H, s), 6.87 (2H, d, } J = 8.7 \text{ Hz), 7.26 (2H, d, } J = 8.7 \text{ Hz); } ^{13}C \text{ NMR (100 MHz, CDCl}_3) \delta 20.8, 22.4, 28.5, 32.7, 36.1, 41.3, 42.8, 55.3, 56.5, 71.4, 82.0, 109.0, 113.7, 123.7, 129.1, 130.7, 143.9, 147.0, 159.1, 177.3, 206.7; \text{ HRESIMS calcd for } C_{23}H_{30}O_5Na [M+Na]^+ 409.1991, \text{ found } 409.1995.

Artalbic acid (+)-(1).

To a stirred solution of (+)-18 (10 mg, 0.026 mmol) in CH₂Cl₂ (0.1 mL) and phosphate buffer (ph 7.0) (10 µL) was added 2,3-dichloro-5,6-dicyano-p-benzoquinone (5.8 mg, 0.026 mmol) at 0 °C, and the mixture was stirred for 30 min at same temperature. The reaction was quenched by adding with sat. NaHCO₃ aqueous solution and then 1 M HCl was added until ph 3. The mixture was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The resulting residue was purified by column
chromatography (hexane-AcOEt, 2:1) to afford (+)-1 (6 mg, 86%) as colorless oil.

$[\alpha]_D^{25} = +11.2$ (c 0.10, CHCl$_3$); IR (neat) 3269, 2923, 1712, 1644, 1596, 1414, 1261, 1119 cm$^{-1}$;
1H NMR (400 MHz, CDCl$_3$) δ 1.32 (3H, s), 1.66-1.75 (2H, m), 1.74 (3H, s), 2.01-2.07 (1H, m), 2.37-2.52 (4H, m), 2.58-2.62 (2H, m), 4.44 (1H, dd, $J = 10.9, 5.9$ Hz), 4.73 (1H, br s), 4.75 (1H, br s), 5.88 (1H, br s), 5.97 (1H, br s); 13C NMR (100 MHz, benzene-d$_6$) δ 20.8, 21.9, 28.4, 33.2, 36.5, 40.4, 41.4, 55.8, 76.3, 109.2, 124.5, 144.4, 147.4, 178.3, 207.7; HRESIMS calcd for C$_{15}$H$_{22}$O$_4$Na [M+Na]$^+$ 289.1416, found 289.1416.
Ph

(-)-12

X : parts per Million : Carbon13

S11
X : parts per Million : Carbon13

190.0
40.0
170.0
30.0
150.0
10.0

X : parts per Million : Proton

190.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0

S16
HO

O

OH

(+)-1

X : parts per Million : Proton

X : parts per Million : Carbon13

S20
Chiralcel AD-H column, hexane : iPrOH = 300 : 1, 1.0 mL/min;

(+)-12 (minor) ; $t_R = 13.3$ min, (-)-12 (major) ; $t_R = 16.9$ min

optically active form
85% ee
Table S1. Comparison of the chemical shift of 1H and 13C NMR spectra of natural product with those of synthetic sample 1.

![Artalbic Acid Structure](image)

<table>
<thead>
<tr>
<th>C/H no.</th>
<th>δ_H (J in Hz) a</th>
<th>δ_Cb</th>
<th>C/H no.</th>
<th>δ_H (J in Hz) a</th>
<th>δ_Cb, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>178.9</td>
<td>1</td>
<td>–</td>
<td>178.3</td>
</tr>
<tr>
<td>2</td>
<td>2.48, br t (7.2)</td>
<td>33.9</td>
<td>2</td>
<td>2.37-2.52, mc</td>
<td>33.2</td>
</tr>
<tr>
<td>3</td>
<td>2.61, br t (7.2)</td>
<td>29.2</td>
<td>3</td>
<td>2.58-2.62, m</td>
<td>28.4</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>145.2</td>
<td>4</td>
<td>–</td>
<td>144.4</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>208.5</td>
<td>5</td>
<td>–</td>
<td>207.7</td>
</tr>
<tr>
<td>6</td>
<td>2.36c</td>
<td>42.2</td>
<td>6</td>
<td>2.37-2.52, mc</td>
<td>41.4</td>
</tr>
<tr>
<td></td>
<td>1.69c</td>
<td></td>
<td></td>
<td>1.66-1.75, mc</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.39c</td>
<td>41.2</td>
<td>7</td>
<td>2.37-2.52, mc</td>
<td>40.4</td>
</tr>
<tr>
<td>8</td>
<td>2.05c</td>
<td>37.3</td>
<td>8</td>
<td>2.01-2.07, m</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>1.69c</td>
<td></td>
<td></td>
<td>1.66-1.75, mc</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.45, dd (10.8, 6.0)</td>
<td>77.0</td>
<td>9</td>
<td>4.44, dd (10.9, 5.9)</td>
<td>76.3</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>56.6</td>
<td>10</td>
<td>–</td>
<td>55.8</td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>148.1</td>
<td>11</td>
<td>–</td>
<td>147.4</td>
</tr>
<tr>
<td>12</td>
<td>4.75, br s</td>
<td>109.9</td>
<td>12</td>
<td>4.75, br s</td>
<td>109.2</td>
</tr>
<tr>
<td></td>
<td>4.73, br s</td>
<td></td>
<td></td>
<td>4.73, br s</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.72, br s</td>
<td>21.5</td>
<td>13</td>
<td>1.74, s</td>
<td>20.8</td>
</tr>
<tr>
<td>14</td>
<td>1.32, s</td>
<td>22.6</td>
<td>14</td>
<td>1.32, s</td>
<td>21.9</td>
</tr>
<tr>
<td>15</td>
<td>5.96, br s</td>
<td>125.2</td>
<td>15</td>
<td>5.97, br s</td>
<td>124.5</td>
</tr>
<tr>
<td></td>
<td>5.87, br s</td>
<td></td>
<td></td>
<td>5.88, br s</td>
<td></td>
</tr>
</tbody>
</table>

a CDCl$_3$, b Benzene-d$_6$, c Overlapped signal, d Chemical shifts were expressed using benzene-d$_6$ (128.0 ppm) as internal standard.