Electronic Supplementary Information

Tomoki Ogoshi*, Yuko Tamura, Daiki Yamafuji, Takamichi Aoki and Tada-aki Yamagishi

Table of Contents

Experimental section S2-S3
Figs. S1-S3 1H and 13C NMR spectra of axle 1 and [2]rotaxanes (3 and 5) S4-S6
Fig. S4 van’t Hoff plots S7
Fig. S5 1H NMR spectra of [2]rotaxane 5 by heating 100 °C S8
References S9
Experimental Section

Materials. All solvents and reagents were used as supplied. Pillar[5]arene-based CHL 1 and (R)-2-azido-3-methylbutanoic acid and stopper 4 were synthesized according to the previous papers. S1-S3

Measurements. The 1H NMR spectra were recorded at 500 MHz and 13C NMR spectra were recorded at 125 MHz with a JEOL-ECA500 spectrometer.

Axle 2. (R)-2-azido-3-methylbutanoic acid (450 mg, 3.10 mmol) was dissolved in THF (5 mL). N-methylmethylmorpholine (0.40 mL, 3.70 mmol) and isobutylchloroformate (0.50 mL, 3.70 mmol) was added at 0 °C and the reaction mixture was stirred at 0 °C for 1 h. Then, 1,12-diaminododecane (240 mg, 1.2 mmol) in THF (5 mL) was added to the mixture, and the reaction mixture was stirred at 25 °C for 24 h. The residue obtained after evaporation of solvents was dissolved in ethyl acetate and washed twice with water. Solution in organic solvent was dried over anhydrous Na$_2$SO$_4$ and evaporated to dryness. The residue was washed with n-hexane. (Axle 2, 272 mg, 0.604 mmol, yield 50%). 1H NMR (CDCl$_3$, 500 MHz, ppm): δ 6.32 (s, 2H), 3.83 (d, 2H), 3.27 (m, 4H), 1.51 (m, 4H), 1.21-1.36 (m, 18H), 1.08 (d, 6H), 0.90 (d, 6H). 13C NMR (CDCl$_3$, 125 MHz, ppm): δ 168.8, 71.0, 39.4, 31.9, 29.5, 29.2, 26.9, 19.7, 16.6. HRESIMS: m/z Calcd for C$_{22}$H$_{42}$N$_8$NaO$_2$ [M+Na]$^+$: 473.3328, found 473.3325.

[2]Rotaxane 3. Axle 2 (22.5 mg, 0.0500 mmol) was dissolved in CHL 1 (103 mg, 0.500 mmol). The reaction mixture was heated at 100 °C for 1 h. Column chromatography (silica gel; ethyl acetate : methanol = 10 : 1) afforded a transparent slight yellow liquid. ([2]rotaxane 3, 35 mg, 0.0139 mmol, yield 28%). 1H NMR (CDCl$_3$, 500 MHz, ppm): δ 6.87 (s, 10H), 6.09 (s, 2H), 4.01 (m, 20H), 3.84 (m, 20H), 3.71-3.79 (m, 30H), 3.68 (m, 20H), 3.64 (m, 20H), 3.52 (m, 20H), 3.35 (s, 30H), 2.51 (m, 4H), 2.31 (m, 2H), 1.07, 0.98 (m, 12H), 0.53 (m, 4H), 0.32 (m, 4H), 0.24 (m, 4H), -0.06 (m, 4H), -0.31 (m, 4H). 13C NMR (CDCl$_3$, 125 MHz, ppm): δ 168.5, 149.7, 129.0, 115.0, 71.9, 70.8, 70.7, 70.5, 70.3, 70.2, 69.9, 69.7, 68.2, 68.1, 59.0, 39.6, 31.4, 31.3, 30.7, 30.2, 29.3, 29.0, 28.8, 28.7, 26.0, 19.7, 17.7, 17.6. HRESIMS: m/z Calcd for C$_{127}$H$_{212}$N$_8$NaO$_{42}$ [M+Na]$^+$: 2544.4597, found 2544.4592.

[2]Rotaxane 5. Axle 2 (22.5 mg, 0.0500 mmol), stopper 4 (13.0 mg, 0.0600 mmol) and
tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 3.4 mg, 6.5 µmol) were dissolved CHL 1 (103 mg, 0.500 mmol). The mixture was heated at 100 °C for 24 h. To the mixture, Cu(CH$_3$CN)$_4$PF$_6$ (18.5 mg, 0.0500 mmol) was added, and the mixture was heated at 100 °C for 24 h. Column chromatography (silica gel; ethyl acetate : methanol = 10 : 1) afforded a transparent slight yellow liquid. ([2]rotaxane 5, 32 mg, 0.0108 mmol, yield 22%). 1H NMR (CDCl$_3$, 500 MHz, ppm): 8.15 (s, 2H), 7.12-7.14 (m 6H) 6.86 (s, 10H), 4.94 (m, 4H), 4.87 (m, 2H), 3.99 (m, 20H), 3.82 (m, 20H), 3.72-3.78 (m, 30H), 3.67 (m, 20H), 3.64 (m, 20H), 3.50 (m, 20H), 3.45 (m, 4H), 3.30 (s, 30H), 2.55-2.75 (m, 4H), 2.51 (m, 2H), 1.23-1.27 (m, 24H), 1.10 (m, 6H), 0.82 (m, 6H), 0.40-0.62 (m, 4H), 0.07-0.20 (m, 8H), -0.04 (m, 4H), -0.12 (m, 4H). 13C NMR (CDCl$_3$, 500 MHz, ppm): δ 167.5, 167.4, 153.0, 149.8, 144.4, 141.9, 129.0, 128.9, 125.0, 124.2, 122.6, 115.2, 115.0, 71.8, 70.7, 70.6, 70.5, 70.4, 70.2, 68.2, 68.1, 59.0, 40.1, 40.0, 32.6, 30.9, 30.3, 29.9, 29.3, 29.2, 29.1, 29.0, 28.8, 28.6, 28.6, 26.6, 26.3, 24.1, 19.4, 18.7. HRESIMS: m/z Calcd for C$_{157}$H$_{252}$N$_8$Na$_2$O$_{44}$ [M+2Na]$^{2+}$: 1500.3778, found 1500.3778.

Thermodynamic parameters by van’t Hoff plots. The thermodynamic parameters such as ΔH and ΔS were determined from the temperature dependence of K by the use of the linear van’t Hoff plots:

$$\ln K = -\Delta H / RT + \Delta S/R$$

where T is the temperature and R is the gas constant. The ΔH and ΔS for pseudorotaxanation were calculated from the slope and intercept by plotting ln K vs. 1/T.

S3
Fig. S1 1H and 13C NMR spectra of axle 2 in CDCl$_3$ at 25 °C.
Fig. S2 1H and 13C NMR spectra of [2]rotaxane 3 in CDCl$_3$ at 25 °C.
Fig. S3 1H and 13C NMR spectra of [2]rotaxane 5 in CDCl$_3$ at 25 °C.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>2.3</td>
<td>1.9</td>
<td>1.6</td>
<td>1.15</td>
<td>1.1</td>
</tr>
<tr>
<td>$\Delta G \times 10^2$ (J/mol)</td>
<td>-24.2</td>
<td>-19.2</td>
<td>-14.2</td>
<td>-9.15</td>
<td>-4.14</td>
</tr>
</tbody>
</table>

Fig. S4 van’t Hoff plots for (a) formation of [2]rotaxane 3. From the van’t Hoff plots, ΔH and ΔS were calculated to be -21.9 kJmol$^{-1}$ and -56.1 JK$^{-1}$mol$^{-1}$, respectively.
Fig. S5 \(^1\)H NMR spectra (25 °C, CDCl\(_2\),CDCl\(_2\)) of [2]rotaxane 5 after heating 100 °C. No spectral change indicates no dissociation of [2]rotaxane 5 even after heating at 100 °C.
References