Electronic Supplementary Information for:

Total Synthesis of Dehaloperophoramidine using a highly diastereoselective Hosomi-Sakurai reaction

Ross. P. Wilkie, Andrew R. Neal, Craig A. Johnston, Nicholas Voute, Christopher S. Lancefield, Federico Medda, Edward F. Makiyi, Emma M. Turner, O. Stephen Ojo, Alexandra M.Z. Slawin, Tomas Lebl, Peter Mullen, David J. Harrison, Chris M. Ireland and Nicholas J. Westwood*

Page S2	General information
Pages S3-S4	General experimental procedures
Pages S5-S7	Experimental procedures for the synthesis of the tetracyclic core S1 from $\mathbf{8}$ and $\mathbf{9}$
Pages S7-S15	Synthesis of analogues of S1 and $\mathbf{6}$ with alternative N-protecting groups
Pages S15-S18	Experimental Procedures for the Synthesis of 6 from S1
Pages S18-S20	Experimental Procedures for the large scale preparation of 6
Pages S21-S24	Experimental procedures for the resolution of 6
Pages S24-S25	Experimental procedure for the reduction of imine 14 to 15
Page S25	Experimental procedure for the synthesis of 17
Page S26-S28	Assignment of the relative stereochemistry of $\mathbf{1 7}$
Page S29	Experimental procedures for the conversion of 17 to 5
Pages S29-S30	Rationalisation of the observed stereochemical outcome in the conversion of $\mathbf{1 7}$ to 5
Pages S30-S33	Oxidation of $\mathbf{5}$ to the corresponding aldehyde S22 and carboxylic acid S23
Pages S33-S38	Iodolactonisation protocol and evidence for structure of the major diastereomer 18
Pages S38-S40	Oxidative cleavage of 18/S24
Pages S40-S43	Reductive amination of 19/S25
Page S44-S50	Experimental procedure for the conversion of 20 to 4
Page S51-S57	Experimental procedures for the conversion of 5 to 4 via imine 25
Pages S58-S63	Experimental procedures for the synthesis of (\pm)-dehaloperophoramidine (2)
Pages S64-S69	Comparison of Synthetic (\pm)-2 to other reported spectra in the literature
Page S70	Bibliography

General Information

Chemicals were obtained from Sigma-Aldrich, Fischer Scientific, Alfa Aesar, Fluka or Fluorochem and were used as received unless otherwise stated. Air/moisture sensitive reactions were carried out in oven-dried ($140^{\circ} \mathrm{C}$) or flame-dried glassware and assembled while hot under a positive pressure of nitrogen. Reactions were carried out under an atmosphere of nitrogen unless otherwise stated.

Thin-layer chromatography (TLC) was performed using glass plates coated with silica gel (with fluorescent indicator UV_{254}). Developed plates were air-dried and analysed under a UV lamp (254/365 nm) unless otherwise stated. Flash chromatography was performed using silica gel (40-63 $\mu \mathrm{m}$). Melting points were recorded in open capillaries using an Electrothermal 9100 melting point apparatus. Values are quoted to the nearest $1{ }^{\circ} \mathrm{C}$ and are uncorrected. Infrared spectra were recorded on either a Perkin Elmer Paragon 1000 FT spectrometer or a Shimadzu IRAffinity-1S FT spectrometer equipped with an ATR attachment. Absorption maxima are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectrometry data were acquired through the University of St Andrews School of Chemistry mass spectrometry service or through the EPSRC national mass spectrometry service centre (Swansea, UK)

Nuclear magnetic resonance (NMR) spectra were recorded on a Brüker Advance $500\left({ }^{1} \mathrm{H}\right.$, 500 ; $\left.{ }^{13} \mathrm{C} 126 \mathrm{MHz}\right)$, a Brüker Advance $400\left({ }^{1} \mathrm{H}, 400 ;{ }^{13} \mathrm{C}, 100 \mathrm{MHz}\right)$ or a Brüker Advance 300 $\left({ }^{1} \mathrm{H} 300 ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}\right.$) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded using the PENDANT pulse sequence. All NMR spectra were acquired using deuterated solvents and the lock and the residual solvent as the internal standard. Chemical shifts are reported as δ values in units parts per million (ppm). Proton-proton coupling constants (J) are quoted in Hz to the nearest 0.1 Hz . Multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), multiplet (m), broad (br) or some combination of these i.e. doublet of triplets (dt). NM-R data was analysed using TopSpin or MestReNova NMR processor software.

Optical rotations were measured using a PerkinElmer Model 341 polarimeter using the sodium D line at $20^{\circ} \mathrm{C}$. Units for $[\alpha]$ are degcm $\mathrm{g}^{-1} \mathrm{dm}^{-1}$ and c is $\mathrm{g} \mathrm{cm}^{-3}$.

General experimental procedures

General Procedure A

To a stirred solution of methyl indole-3-carboxylate (1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added N chlorosuccinimide (1.1 eq.) and N, N^{\prime}-dimethylpiperazine (0.55 eq.). After 2 hours, a mixture of trichloroacetic acid (0.25 eq.) and the appropriate amine (2 eq .) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After a further 2 hours, the reaction mixture was warmed to room temperature and washed with 10% aq. NaHCO_{3} aq. $\mathrm{HCl}(1.0 \mathrm{M})$, water and brine. The organic layer was dried using MgSO_{4}, concentrated in vacuo and purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane.

General Procedure B

A stirred suspension of the appropriate indole-3-carboxylate in $\mathrm{Ph}_{2} \mathrm{O}$ was heated at reflux for 2.5 hours whilst removing the methanol that was formed during the reaction by distillation. After cooling, the resulting precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to afford the appropriate indoloquinoline.

General Procedure C

A stirred suspension of the appropriate indoloquinoline (1 eq.) in POCl_{3} (35 eq .) was refluxed for 2 hours. After cooling to room temperature, the reaction was concentrated in vacuo. The residue was added to an ice-water mixture and basified (to $\sim \mathrm{pH} 9$) by careful addition of sat. aq. NaHCO_{3} solution. The initially yellow residue turned orange and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried using MgSO_{4} and concentrated in vacuo to afford the appropriate crude chloro compound.

General procedure D

To a stirred suspension of sodium (3 eq.) in THF was added allyl alcohol (5.7 eq.) over the course of 0.5 hours. The mixture was left to stir for 3 hours before being added via cannula addition to a stirred suspension of the appropriate chloro compound (1 eq.) in THF. After 18
hours the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic extracts were washed with water, brine, dried using MgSO_{4} and concentrated in vacuo. Purification by recrystallisation of the resulting solid from EtOAc afforded allyl ether compound.

General Procedure E

A stirred solution of the appropriate allyl ether (1 eq.) in PhMe was refluxed for 1 hour. The reaction mixture was concentrated in vacuo and the resulting solid purified by recrystallisation from EtOAc to give the appropriate allyl ketone.

Experimental Procedures for the Synthesis of the tetracyclic core of S1 from 7 and 8

The route used to prepare $\mathbf{S 1}$ followed our previously reported synthesis of the $\mathrm{N}-\mathrm{Me}$ analogue of S1. ${ }^{1}$

Methyl 2-(benzyl(phenyl)amino)-1H-indole-3-carboxylate (9)

Following general procedure A. To a stirred solution of methyl indole-3-carboxylate (7) (15.0 g, 85.7 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added N-chlorosuccinimide ($12.6 \mathrm{~g}, 94.3 \mathrm{mmol}$, 1.1 eq.) and N, N '-dimethylpiperazine ($5.37 \mathrm{~g}, 6.4 \mathrm{~mL}, 47.1 \mathrm{mmol}, 0.55$ eq.). After 2 hours, a mixture of trichloroacetic acid ($3.42 \mathrm{~g}, 21.4 \mathrm{mmol} 0.25 \mathrm{eq}$.) and N -benzylaniline (8) (31.4 g , $29.7 \mathrm{~mL}, 171.4 \mathrm{mmol}, 2$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mathrm{~mL})$ was added. After a further 2 hours, the reaction mixture was warmed to room temperature and washed with 10% aq. $\mathrm{NaHCO}_{3}(1 \times$ $150 \mathrm{~mL})$, aq. $\mathrm{HCl}(1 \times 150 \mathrm{~mL}, 1.0 \mathrm{M})$, water ($1 \times 150 \mathrm{~mL}$) and brine ($1 \times 150 \mathrm{~mL}$). The organic layer was dried using MgSO_{4}, concentrated in vacuo and purified by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to afford $9(29.9 \mathrm{~g}, 84.0 \mathrm{mmol}, 98 \%)$ as an off-white solid.
m.p. $162-164{ }^{\circ} \mathrm{C}$; $\mathbf{I R}(\mathrm{KBr}) \mathrm{v}_{\text {max }}$: 3270, 1669, 1599, $1543 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} 379.1422[\mathrm{M}+\mathrm{Na}]^{+}$, found 379.1427 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H})$, 8.14 (d, J=7.1 Hz, 1H), 7.38 - 7.27 (m, 4H), 7.26 - 7.16 (m, 6H), 6.94-6.82 (m, 3H), 5.14 (s, 2H), 3.81 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,147.2,147.1,138.9,132.0,129.3$ (2C), 128.8 (2C), 127.3, 127.0 (2C), 126.8, 123.0, 122.1, 121.8, 120.9, 116.9 (2C), 110.7, 98.8, 56.7, 51.0.

5-Benzyl-5,6-dihydro-11H-indolo[2,3-b]quinolin-11-one (S1)

Following general procedure B. A stirred suspension of 9 ($25.0 \mathrm{~g}, 70.2 \mathrm{mmol}$) in $\mathrm{Ph}_{2} \mathrm{O}(140$ mL) was heated at reflux for 2.5 hours whilst removing the methanol that was formed during the reaction by distillation. After cooling, the resulting precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$ and dried in vacuo to afford $\mathbf{S 1}(18.0 \mathrm{~g}, 55.4$ mmol, 79\%) as a beige solid.
m.p. ca. $300{ }^{\circ} \mathrm{C}$ (dec.); IR (KBr) $v_{\text {max }}$: 3061, 1609, 1576, $1514 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+} 325.1341[\mathrm{M}+\mathrm{H}]^{+}$, found 325.1348; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) $\delta 12.50(\mathrm{~s}, 1 \mathrm{H})$, $8.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ $7.22(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 171.7, 147.0, $138.4,135.8,134.8,131.3,128.9$ (2C), 127.5, 126.0 (2C), 126.0, 124.9, 124.1, 122.9, 121.9, 121.3, 120.2, 115.6, 110.9, 102.3, 48.6.

Synthesis of Analogues of S1 and 6 with alternative N-protecting groups

Initial studies also focused on the attempted preparation of a derivative of $\mathbf{S 1}$ that was N protected by a p-methoxybenzyl (PMB) group rather a benzyl group. $N-(p-$ methoxybenzyl)aniline (S2) was synthesised in good yield by the sodium borohydride reduction of the corresponding, commercially available, imine $\mathbf{S 3}$ (Scheme S1A). ${ }^{2}$ Subsequent conversion of $\mathbf{S} \mathbf{2}$ to $\mathbf{S 4}$ was achieved in an analogous manner to the preparation of 9 in 85% yield (Scheme S1B). However, a clean transformation of S4 to S5 could not be achieved with mixtures of compounds resulting. The ${ }^{1} \mathrm{H}$ NMR spectrum associated with the crude reaction mixture showed features consistent with loss of the PMB group: two NH signals were present at 12.30 ppm and 11.65 ppm and only traces of the signals associated with the benzyl protons of the PMB group were present. It was therefore concluded that the PMB protecting group was incompatible with the high temperatures involved in this synthetic route.

An alternative route to $\mathbf{S} \mathbf{5}$ was therefore attempted using the approach shown in Scheme S1C. After preparation of S6 (see experimental below), alkylation of S6 led to the formation of S5 although purification was not carried out and the crude S5 was converted directly to the chloride S7 which was purified by flash column chromatography. Subsequent conversion of S7 to S8 (Scheme S1C), the precursor to the [3,3]-Claisen rearrangement in the PMB series was followed by conversion to the N-PMB protected analogue $\mathbf{S 9} 9$ of N-benzyl protected ketone 6 that was used here. This protocol was also applied to the preparation of N-3,4-dimethoxybenzyl protected ketone S13 (via the analogous S10, S11 and S12). Whilst ketones S9 and S13 were not used in the reported synthesis of (\pm)-dehaloperophoramidine (2), it seems likely that much of the chemistry in subsequent steps is applicable to these potentially easier to deprotect substrates.

A

B

C

$\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathbf{S 5}$
$\mathrm{Ar}=3,4-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2} \mathbf{S 1 0}$

$\mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathbf{S 7} \quad \mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathbf{S 8}$ (93\%) $\quad \mathrm{Ar}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe} \mathbf{S 9}$ (60\%)
(45%, 2 steps $) \quad \mathrm{Ar}=3,4-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2} \mathbf{S 1 2}$ (94\%) $\mathrm{Ar}=3,4-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2} \mathbf{S 1 3}$ (73\%)
$\mathrm{Ar}=3,4-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2} \mathbf{S 1 1}$
(59\%, 2 steps)

Scheme S1. A. Reduction of $N-(p$-methoxybenzylidine)aniline (S3) to $N-(p-$ methoxybenzyl)aniline (S2); B. Attempted conversion of $\mathbf{S 2}$ to $\mathbf{S 5}$. DMP $=N,{ }^{\prime} N-$ dimethylpiperazine, NCS = N-chlorosucinimide, TCA = trichloroacetic acid; C. Preparation of PMB and 3,4-DMB protected substrates $\mathbf{S 9}$ and $\mathbf{S 1 3}$. $\mathrm{PMBCI}=p$-methoxybenzyl chloride, 3,4-$\mathrm{DMBBr}=3$,4-dimethoxybenzyl bromide.

Preparation of \boldsymbol{N}-(\boldsymbol{p}-methoxybenzyl)aniline (S2) ${ }^{2}$

$\mathrm{NaBH}_{4}(3.78 \mathrm{~g}, 100 \mathrm{mmol})$ was added to a stirred solution of $(E)-\mathrm{N}-[(4-$ methoxyphenyl)methylene]benzenamine (S3) and MeOH (80 ml). After 12 hours, water (20 ml) was added and the MeOH was evaporated at reduced pressure. The aqueous residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo. The residue was crystallised from hexane to afford
the title compound $\mathbf{S 2}$ as colourless crystals ($5.00 \mathrm{~g}, 23.5 \mathrm{mmol}, 93 \%$). Spectroscopic data was in accordance with that published in the literature. ${ }^{2}$ m.p. $58-60{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{2} 61-62{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{tt}, \mathrm{J}=$ $7.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.

Preparation of 2-[(4-methoxybenzyl)phenylamino]-1H-indole-3-carboxylic acid methyl ester (S4)

Prepared from indole-3-carboxilic acid methyl ester (7) ($1.88 \mathrm{~g}, 10.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and N-(p-methoxybenzy) aniline (S2) ($4.59 \mathrm{~g}, 21.5 \mathrm{mmol}$) using general procedure \mathbf{A}.

The crude product was purified by flash chromatography (5% to $10 \% \mathrm{EtOAc} / \mathrm{hexane}$) to afford the title compound $\mathbf{S 4}$ as colourless crystalline solid ($3.54 \mathrm{~g}, 9.16 \mathrm{mmol}, 85 \%$). m.p. 158-159 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\mathbf{V}_{\text {max }}$: 3284, 2949, 1668, 1560, $1542 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 387.1709[\mathrm{M}+\mathrm{H}]^{+}$, found 387.1705 ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H})$, 8.11-8.15 (m, 1H), 7.15-7.25 (m, 7H), 6.77-6.90 (m, 5H), 5.04 (s, 2H), 3.78 (s, 3H), $3.73(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8,158.8,147.3,132.1,130.8,129.4$ (2C), 128.3 (2C), 126.8, 122.9, 122.1, 121.7, 120.9, 117.1 (2C), 114.2 (2C), 110.7, 98.7, 56.0, 55.4, 51.1.

Preparation of 5,6-dihydroindolo[2,3-b]quinolin-11-one (S6) ${ }^{3}$

2-phenylamino-1H-indole-3-carboxylic acid methyl ester (S14) was prepared from commercially available indole-3-carboxilic acid methyl ester ($25.9 \mathrm{~g}, 148 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (600 ml) and aniline ($26.9 \mathrm{ml}, 295 \mathrm{mmol}$) using general procedure \mathbf{A} (see above). The crude product was crystallised twice from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to afford the title compound $\mathbf{S 1 4}$ as pale yellow crystals ($19.8 \mathrm{~g}, 74.4 \mathrm{mmol}, 50 \%$). Spectroscopic data was in accordance with that published in the literature. ${ }^{3}$
m.p. $121-122{ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{3} 121-122^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H})$, 7.46-7.38 (m, 2H), 7.80 (d, J = 7.7, 1H), 7.30-7.24 (m, 2H), 7.22-7.10 (m, 3H), 7.08-7.03 (m, 1H), 3.93 (s, 3H).
$\mathbf{S} 6$ was then prepared from $\mathbf{S 1 4}(17.5 \mathrm{~g}, 65.7 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(90 \mathrm{ml})$ with a reaction time of 3.5 hours using general procedure \mathbf{B}.

The title compound $\mathbf{S 6}$ was obtained as a light brown solid ($14.6 \mathrm{~g}, 62.3 \mathrm{mmol}, 95 \%$). Spectroscopic data was in accordance with that published in the literature. ${ }^{3} \mathrm{~m} . \mathrm{p}>400^{\circ} \mathrm{C}$ (lit. ${ }^{3}>360^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (d, J = 7.9 Hz, 1H), 7.63-7.58 (m, 1H), 7.48-7.42 (m, 1H), 7.15-7.31 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d ${ }_{6}$) $\delta 172.7,145.7,138.7,135.4,131.1,125.7,124.2,123.9,123.0,121.8,121.2$, 120.4, 117.8, 111.3, 102.2.

Preparation of 11-chloro-5-(p-methoxybenzyl)-5H-indolo[2,3-b]quinoline (S7) - prepared from S6 via S5 (Scheme S1C)

Sodium hydride (80 mg of a 60% dispersion in oil, 2.00 mmol) was added to a stirred suspension of 5,6-dihydroindolo[2,3-b]quinolin-11-one (S6) (469 mg, 2.00 mmol) in THF (30 $\mathrm{ml})$, maintained under an argon atmosphere. When effervescence ceased, p-methoxybenzyl chloride ($0.4 \mathrm{ml}, 3.00 \mathrm{mmol}$) and tetrabutyl ammonium iodide ($222 \mathrm{mg}, 0.601 \mathrm{mmol}$) were added and the reaction mixture was stirred at room temperature for 4 days. $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}(20$ $\mathrm{ml})$ was added and the THF was evaporated at reduced pressure. The residue was collected by filtration and washed with water (50 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ to afford crude 5,6-dihydro-5-(p-methoxybenzyl)indolo[2,3-b]quinolin-11-one (S5) as a colourless solid (420 mg). A portion of crude $\mathbf{S 5}(150 \mathrm{mg})$ and $\mathrm{POCl}_{3}(4 \mathrm{ml})$ were heated at reflux for 1.5 hours, under an argon atmosphere according to general procedure \mathbf{C}. After cooling the reaction mixture to room temperature, the excess POCl_{3} was evaporated at reduced pressure and $\mathrm{NaHCO}_{3(\mathrm{aq})}$ (150 ml) was added to the residue. The aqueous suspension was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 70 \mathrm{ml}$). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated at reduced pressure. The residue was purified by flash chromatography (60\% to 100% EtOAc/hexane) to afford the title compound S7 as a bright orange solid (120 mg, $0.322 \mathrm{mmol}, 76 \%)$.
m.p. 207-208 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{V}_{\max }$: 2925, 1631, 1610, 1561, $1515 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}^{35} \mathrm{Cl}^{+} 373.1108[\mathrm{M}+\mathrm{H}]^{+}$, found 373.1108; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.14-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,155.9,155.5,136.5,131.2,129.9,128.2$ (2C), 127.7, 126.3, $125.3,124.3,124.1,122.4,120.5,119.6,118.1,115.4,114.5$ (2C), 55.4, 49.2.

Preparation of 11-allyloxy-5-(p-methoxybenzyl)-5H-indolo[2,3-b]quinoline (S8)

Prepared from 11-chloro-5-(p-methoxybenzyl)-5H-indolo[2,3-b]quinoline (S7) (110 mg, 0.300 mmol) in THF (5 ml), with the alkoxide generated from allyl alcohol ($0.70 \mathrm{ml}, 10.5$ mmol) and sodium ($35 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF (5 ml), using general procedure \mathbf{D}.

In this case, the crude product was purified by flash chromatograph $(60 \% \rightarrow 80 \%$ EtOAc/hexane) to afford the title compound $\mathbf{S 8}$ as a dark yellow solid ($110 \mathrm{~g}, 0.279 \mathrm{mmol}$, 93\%).
m.p. $133-134{ }^{\circ} \mathrm{C}$; IR (KBr) $\boldsymbol{v}_{\text {max }} 1643$, 1561, 1513; HRMS (CI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$ $395.1760^{+}[\mathrm{M}+\mathrm{H}]^{+}$, found $395.1761 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, \mathrm{~J}=8.4, \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (d, J = 7.9 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.50-7.62 (m, 3H), 7.13-7.39 (m, 4H), 6.74-6.78 (m, $2 \mathrm{H}), 6.26$ (ddt, $J=17.0,10.5,1.5,1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 5.56(\mathrm{dq}, J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, J$ $=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dt}, \mathrm{J}=5.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.1, 158.9, 156.9, 154.3, 137.7, 133.0, 130.9, 128.5, 128.2 (2C), 128.1, 124.5, 123.3, 122.9, $121.7,120.2,118.9,118.4,117.9,116.7,115.3,114.3$ (2C), 75.3, 55.3, 48.9.

Preparation of $5,10 \mathrm{~b}$-dihydro-10b-allyl-5-(p-methoxybenzyl)-10bH-indolo[2,3-b]quinolin-11-one (S9)

A mixture of 11-allyloxy-5-(p-methoxybenzyl)-5H-indolo[2,3-b]quinoline (S8) ($110 \mathrm{mg}, 0.279$ mmol) and THF (10 ml) was heated at reflux for 4 days, under an argon atmosphere, and was then cooled to room temperature. The THF was evaporated at reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexane}$) to afford the title compound S9 as a bright yellow crystalline solid ($66 \mathrm{mg}, 0.167 \mathrm{mmol}, 60 \%$)
m.p. $121-122{ }^{\circ} \mathrm{C}$; IR (KBr) $\mathrm{V}_{\text {max }}$: 2959, 1691; HRMS (CI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} 395.1760^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 395.1752 ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}$), 7.70-7.73 (m, 1H), 7.28-7.51 (m, 5H), 7.06-7.19 (m, 3H), 6.84-6.89 (m, 2H), $5.80(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.33-$ $5.47(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.99-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.88(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.90$ (dd, J = 13.1, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (dd, $J=13.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0$, 172.3, 159.2, 153.7, 144.8, 135.8, 133.4, 130.3, 129.0, 128.5, 128.3, 128.2 (2C), 124.8, 123.3, $122.6,120.5,119.3,118.9,115.6,114.5$ (2C), 66.2, 55.5, 49.2, 45.1.

prepared using

The required 3,4-dimethoxybenzyl bromide (S15) ${ }^{4}$ was prepared as follows: A solution of $\mathrm{PBr}_{3}(6.29 \mathrm{ml}, 66.6 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was slowly added to a stirred solution of commercially available 3,4-dimethoxybenzyl alcohol ($5.63 \mathrm{~g}, 33.5 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ at 0 ${ }^{\circ} \mathrm{C}$, maintained under an argon atmosphere. The reaction mixture was allowed to warm to room temperature and, after 12 hours, water (100 ml) was cautiously added. When the vigorous reaction had subsided, the $\mathrm{Et}_{2} \mathrm{O}$ was separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$. The $\mathrm{Et}_{2} \mathrm{O}$ extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{Et}_{2} \mathrm{O}$ was evaporated at reduced pressure. The residue was crystallised from $\mathrm{EtOAc} / \mathrm{hexane}$ to afford the title compound S15 as colourless crystals ($4.72 \mathrm{~g}, 20.4 \mathrm{mmol}, 61 \%$) Spectroscopic data was in accordance with that published in the literature. ${ }^{5}$
m.p. $47-49^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{5} 50-51{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (d, J = 2.0 Hz), $6.81(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.

Sodium hydride (205 mg of a 60% dispersion in oil, 5.12 mmol) was added to a stirred suspension of 5,6-dihydroindolo[2,3-b]quinolin-11-one (S6) (1.00 g, 4.27 mmol) in THF (30 ml), maintained under an argon atmosphere. When effervescence ceased, a solution of 3,4dimethoxybenzyl bromide (S15) ($1.48 \mathrm{~g}, 6.40 \mathrm{mmol}$) and THF (5 ml) was added and the reaction mixture was stirred at room temperature for 24 hours. $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq) }}(5 \mathrm{ml})$ was added and the THF was evaporated at reduced pressure. The residue was washed with water and was then, after decanting the water, pulverised under $\mathrm{Et}_{2} \mathrm{O}$ until a fine powder resulted. The product was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ to afford crude 5,6-dihydro-5-(3,4-dimethoxybenzyl)indolo[2,3-b]quinolin-11-one (S10) as a light brown solid (1.50 g). A portion of crude $\mathbf{S 1 0}(500 \mathrm{mg})$ and $\mathrm{POCl}_{3}(5 \mathrm{ml})$ were heated at reflux for 1.5 hours, under an argon atmosphere. After allowing the reaction mixture to cool to room temperature, the
excess POCl_{3} was evaporated at reduced pressure and $\mathrm{NaHCO}_{3(\mathrm{aq)}}(30 \mathrm{ml})$ was added to the residue. The aqueous suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated at reduced pressure. The residue was purified by flash chromatography (80% to $100 \% \mathrm{EtOAc}$) to afford the title compound S11 as a bright orange solid ($340 \mathrm{mg}, 0.844 \mathrm{mmol}, 59 \%$).
m.p. $217-218{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) \mathbf{V}_{\text {max }}$: 1637, $1608,1561,1519 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}^{+} 403.1213[\mathrm{M}+\mathrm{H}]^{+}$, found 403.1201; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}), 8.43(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=8.0,6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.9, 155.5, 149.6, 148.7, 136.6, 136.5, 131.2, 129.9, 128.2, 126.3, 125.3, 124.3, 124.1, $122.5,120.6,119.6,119.1,118.1,115.4,111.5,110.3,56.1,56.0,49.6$.

Preparation of 11-allyloxy-5-(3,4-dimethoxybenzyl)-5H-indolo[2,3-b]quinoline (S12)

Prepared from 11-chloro-5-(3,4-dimethoxybenzyl)-5H-indolo[2,3-b]quinoline (S11) (320 mg, 0.794 mmol) in THF (15 ml), with the alkoxide generated from allyl alcohol ($1.90 \mathrm{ml}, 27.9$ mmol) and sodium ($91 \mathrm{mg}, 3.79 \mathrm{mmol}$) in THF (5 ml), using general procedure \mathbf{D} as described above. The crude product was purified by flash chromatograph (60% to 80% EtOAc/hexane) to afford the title compound $\mathbf{S 1 2}$ as a dark yellow solid ($316 \mathrm{~g}, 0.744 \mathrm{mmol}$, 94\%).
m.p. $146-148{ }^{\circ}{ }^{\circ}$; IR (KBr) $\mathbf{V}_{\text {max }}$: 2935, 1639, 1613, $1565,1516 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 425.1865[\mathrm{M}+\mathrm{H}]^{+}$, found 425.1876 ; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{td}, \mathrm{J}=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (ddd, $J=8.2,6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.30 (td, $J=7.5,1.0,1 \mathrm{H}$), $6.90(\mathrm{~s}, 1 \mathrm{H}), 6.72-$ $6.74(\mathrm{~m}, 2 \mathrm{H}), 6.28$ (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), $6.11(\mathrm{~s}, 2 \mathrm{H}), 5.57(\mathrm{dq}, J=17.2,1.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40$ (dq, J = 10.5, 1.3, 1.3 Hz, 1H), $5.01(\mathrm{dt}, \mathrm{J}=5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,157.0,154.4,149.5,148.6,137.8,133.0,131.0,128.6$, 128.5, 124.6, 123.3, 123.0, 121.8, 120.2, 119.1, 119.0, 118.4, 118.0, 116.8, 115.4, 111.4, 110.4, 75.3, 56.1, 56.0, 49.3.

Preparation of 5,10b-dihydro-10b-allyl-5-(3,4-dimethoxybenzyl)-10bH-indolo[2,3-b]quinolin-11-one (S13)

Followed general procedure D. A solution of 11-allyloxy-5-(3,4-dimethoxybenzyl)-6H-indolo[2,3-b]quinoline (S12) ($290 \mathrm{mg}, 0.683 \mathrm{mmol}$) and $\mathrm{PhMe}(20 \mathrm{ml})$ was refluxed under an argon atmosphere for 5 hours. After cooling to room temperature, the PhMe was evaporated at reduced pressure and the residue was purified by flash chromatography (10% to 20% EtOAc/hexane) to afford the title compound $\mathbf{S 1 3}$ as a bright yellow crystalline solid ($211 \mathrm{mg}, 0.497 \mathrm{mmol}, 73 \%$).
m.p. $132-135^{\circ}{ }^{\circ} \mathrm{C}$; IR (KBr) $\mathbf{V}_{\text {max }}$: 2936, 1693, 1594, $1557,1516 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 425.1865[\mathrm{M}+\mathrm{H}]^{+}$, found 425.1862; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, \mathrm{J}=8.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.4,7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.35 (td, J = 7.5, 1.3 Hz, 1H), 7.07-7.20 (m, 3H), 6.89-6.96 (m, 2H), $6.82(\mathrm{~d}, \mathrm{~J}=8.2,1 \mathrm{H}), 5.83$ (d, J = 16.5, 1H), 5.36-5.51 (m, 1H), 5.07 (d, J = $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.88(\mathrm{~m}$, 1 H), 3.85 (s, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.91\left(\mathrm{dd}, J=13.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$), $2.53\left(\mathrm{dd}, \mathrm{J}=13.0,7.4,1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) δ 192.9, 172.2, 153.6, 149.6, 148.6, 144.8, 135.9, 133.3, 130.2, 129.0, 128.8, 128.5, 124.9, 123.4, 122.7, 120.5, 119.2, 119.0, 118.9, 115.6, 111.5, 110.2, 66.2, 56.1 (2C), 49.5, 45.0.

Experimental Procedures for the Synthesis of 6 from S1

5-Benzyl-11-chloro-5H-indolo[2,3-b]quinoline (10)

Following general procedure \mathbf{C}. A stirred suspension of $\mathbf{S 1}(15.0 \mathrm{~g}, 46.3 \mathrm{mmol})$ in POCl_{3} ($247.5 \mathrm{~g}, 150 \mathrm{~mL}, 1609 \mathrm{mmol}, 35 \mathrm{eq}$.) and was refluxed for 2 hours. After cooling to room temperature, the reaction was concentrated in vacuo. The residue was added to an ice-
water mixture and basified (to $\sim \mathrm{pH} 9$) by careful addition of sat. aq. NaHCO_{3} solution. The initially yellow residue turned orange and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \times 50 \mathrm{~mL}\right.$). The combined organic phases were dried using MgSO_{4} and concentrated in vacuo to afford crude $\mathbf{1 0}$ ($15.1 \mathrm{~g}, 44.0 \mathrm{mmol}, 95 \%$) as a red solid. Chloride $\mathbf{1 0}$ was used without further purification.
m.p. 220-222 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$ v $_{\text {max }}$: 2920, $1632,1611,1560,1523 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{35} \mathrm{Cl}^{+} 343.1002[\mathrm{M}+\mathrm{H}]^{+}$, found 343.0998 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52$ (ddd, $J=7.8,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.49-8.45(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.61$ (ddd, J=8.0, 7.3, 1.3 Hz, 1H), 7.49 (ddd, J=8.2, 5.2, 2.9 Hz, 1H), 7.33 (ddd, J=7.7, 1.0 Hz, 1H), 7.30 - 7.19 (m, 5H), $6.22(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,154.7,136.6,136.4$, $135.4,131.2,129.9,129.0(2 \mathrm{C}), 127.8,126.7$ (2C), 126.2, 124.9, 124.0, 124.0, 122.6, 120.6, 119.5, 117.9, 115.4, 49.8.

11-(Allyloxy)-5-benzyl-5H-indolo[2,3-b]quinoline (11)

Followed general procedure \mathbf{D}. To a stirred suspension of sodium ($2.6 \mathrm{~g}, 113 \mathrm{mmol}, 3 \mathrm{eq}$.) in THF (15 mL) was added allyl alcohol ($12.6 \mathrm{~g}, 14.8 \mathrm{~mL}, 217 \mathrm{mmol}, 5.7$ eq.) over the course of 0.5 hours. The mixture was left to stir for 3 hours before being added via cannula addition to a stirred suspension of 10 ($13.0 \mathrm{~g}, 38.0 \mathrm{mmol}, 1 \mathrm{eq}$.$) in THF (190 \mathrm{~mL}$). After 18 hours the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with water ($1 \times 50 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$), dried using MgSO_{4} and concentrated in vacuo. Purification by recrystallisation of the resulting solid from EtOAc afforded 11 as a yellow/orange solid (12.8 g, $35.2 \mathrm{mmol}, 93 \%)$.
m.p. $146-148{ }^{\circ} \mathrm{C}$; IR (FTIR-ATR) $\mathrm{V}_{\text {max }}$: $1642,1560,1520 \mathrm{~cm}^{-1}$; HRMS (CI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+} 365.1654[\mathrm{M}+\mathrm{H}]^{+}$, found 365.1650 ; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 1 H), 8.16 (d, J=7.5 Hz, 1H), 7.77 (d, J=8.0 Hz, 1H), $7.65-7.59$ ($\mathrm{m}, 2 \mathrm{H}$), 7.55 ($\mathrm{dd}, \mathrm{J}=7.7,1.3 \mathrm{~Hz}$, 1H), $7.46-7.34$ (m, 1H), $7.34-7.18$ (m, 6H), 6.29 (ddd, J=17.1, 10.5, 5.6 Hz, 1H), 6.18 (s, 2H), 5.59 (dd, J=17.1, 1.5 Hz, 1H), 5.41 (dd, J=10.4, 1.2 Hz, 1H), 5.02 (dd, J=5.6, 1.4 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9,157.0,154.2,137.7,136.0,132.9,131.0,129.0$ (2C), $128.5,127.6,126.7$ (2C), 124.6, 123.3, 122.9, 121.8, 120.3, 119.0, 118.5, 117.9, 116.7, 115.3, 77.2, 75.3, 49.5.

(\pm)-10b-Allyl-5-benzyl-5,10b-dihydro-11H-indolo[2,3-b]quinolin-11-one (6)

Followed general procedure \mathbf{E}. A stirred solution of $\mathbf{1 1}(12.4 \mathrm{~g}, 34.1 \mathrm{mmol})$ in $\mathrm{PhMe}(110 \mathrm{~mL})$ was refluxed for 1 hour. The reaction mixture was concentrated in vacuo and the resulting solid purified by recrystallisation from EtOAc to give $\mathbf{6}(10.9 \mathrm{~g}, 29.9 \mathrm{mmol}, 88 \%$) as a yellow crystalline solid.
m.p. $136-138{ }^{\circ} \mathrm{C}$; IR (FTIR-ATR) $v_{\text {max }}$: $3263,1657,1586,1539 \mathrm{~cm}^{-1}$; HRMS (EI) m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}^{+} 364.1576[\mathrm{M}+\mathrm{H}]^{+}$, found 364.1570 ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (dd, J=7.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.62 (ddd, J=7.3, 1.1, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40-7.33$ (m, 1H), $7.33-7.16$ (m, 7H), 7.06 (ddd, J=7.3, 1.3 Hz, 1H), $7.02-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.31 (dddd, J=16.9, 10.1, 7.7, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (d, J=16.5 Hz, 1H), $4.94-4.88$ (m, 1H), $4.80-$ $4.71(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, \mathrm{J}=13.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 192.9,172.2,153.6,144.8,136.3,135.8,133.3,130.3,129.1(2 \mathrm{C}), 128.9,128.5$, 127.7, 126.7 (2C), 124.8, 123.3, 122.6, 120.5, 119.2, 118.9, 115.6, 66.2, 49.7, 45.0 .

Experimental Procedures for the large scale preparation of 6

Methyl 2-(benzyl(phenyl)amino)-1H-indole-3-carboxylate (9)

To a stirred solution of methyl indole-3-carboxylate (7) (99.8 g, $570 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (950 mL) at $0{ }^{\circ} \mathrm{C}$ was added N -chlorosuccinimide ($\left.83.7 \mathrm{~g}, 627 \mathrm{mmol}, 1.1 \mathrm{eq}.\right)$ and $\mathrm{N}, \mathrm{N}^{\prime}$ dimethylpiperazine ($35.76 \mathrm{~g}, 42.4 \mathrm{~mL}, 313 \mathrm{mmol}, 0.55 \mathrm{eq}$.$) . After 2 \mathrm{hrs}, \mathrm{a}$ mixture of trichloroacetic acid ($24.51 \mathrm{~g}, 150 \mathrm{mmol} 0.25 \mathrm{eq}$.) and N-benzylaniline (8) ($191 \mathrm{~g}, 178.7 \mathrm{~mL}$, 1042 mmol, 2 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(950 \mathrm{~mL}$) was added. After 2 hrs , the reaction mixture was warmed to RT and sequentially washed with 10% aq. $\mathrm{NaHCO}_{3}(950 \mathrm{~mL})$, aq. $\mathrm{HCl}(950 \mathrm{~mL}, 1.0$ M), water (950 mL) and brine (950 mL). The organic layer was dried using MgSO_{4}, concentrated in vacuo and purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane to afford 9 (197 g, $553 \mathrm{mmol}, 97 \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 9 .

5-Benzyl-5,6-dihydro-11H-indolo[2,3-b]quinolin-11-one (S1)

A stirred suspension of $9(99.8 \mathrm{~g}, 280 \mathrm{mmol})$ in $\mathrm{Ph}_{2} \mathrm{O}(560 \mathrm{~mL})$ was heated at reflux for 3 hrs while removing the methanol that is formed during the reaction by distillation. The precipitate was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to afford $\mathbf{S 1}$ ($74 \mathrm{~g}, 228 \mathrm{mmol}, 81 \%$) as a beige solid. ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for $\mathbf{S 1}$.

5-Benzyl-11-chloro-5H-indolo[2,3-b]quinoline (10)

A stirred suspension of $\mathbf{S 1}\left(70.0 \mathrm{~g}, 216 \mathrm{mmol}, 1 \mathrm{eq}\right.$.) in $\mathrm{POCl}_{3}(329.6 \mathrm{~g}, 200 \mathrm{~mL}, 2150 \mathrm{mmol}$, 10 eq.) and toluene (230 mL) was refluxed for 2 hrs . After cooling to RT, the reaction was concentrated in vacuo. The residue was added to an ice-water mixture and basified ($\sim \mathrm{pH} 9$) by careful addition of sat. aq. NaHCO_{3} solution. The yellow residue turned orange and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 250 \mathrm{~mL})$. The combined organic phases were dried using MgSO_{4} and concentrated in vacuo to afford crude 10 ($69.5 \mathrm{~g}, 202 \mathrm{mmol}$, 94%) as an orange solid. Chloride 10 was used without further purification. ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 10.

11-(Allyloxy)-5-benzyl-5H-indolo[2,3-b]quinoline (11)

To a stirred suspension of sodium ($13.7 \mathrm{~g}, 597 \mathrm{mmol}, 3 \mathrm{eq}$.) in THF (50 mL) was added allyl alcohol ($65.8 \mathrm{~g}, 77 \mathrm{~mL}, 1133 \mathrm{mmol}, 5.7 \mathrm{eq}$.) over the course of 0.5 hrs . The mixture was left to stir for 3 hr before adding to stirred suspension of 10 ($68.5 \mathrm{~g}, 199 \mathrm{mmol}, 1 \mathrm{eq}$.) in THF (1000 mL) via cannula addition. After 24 hrs , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(200 \mathrm{~mL})$ and concentrated ($\sim 500 \mathrm{~mL}$) in vacuo. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}-$ $2(3 \times 300 \mathrm{~mL})$ and the combined organic extracts were washed with water (200 mL), brine (200 mL), dried using MgSO_{4} and concentrated in vacuo. Purification by recrystallisation from EtOAc afforded 11 as a yellow/orange solid ($71.1 \mathrm{~g}, 195 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 11.

(\pm)-10b-Allyl-5-benzyl-5,10b-dihydro-11H-indolo[2,3-b]quinolin-11-one (6)

A stirred solution of $11(71.1 \mathrm{~g}, 195.3 \mathrm{mmol})$ in $\mathrm{PhMe}(400 \mathrm{~mL})$ was refluxed for 1 hr . The reaction mixture was concentrated in vacuo. Purification by recrystallisation from EtOAc afforded 6 ($62.6 \mathrm{~g}, 171.9 \mathrm{mmol}, 88 \%$) as a yellow crystalline solid. ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 6.

Experimental procedures for the resolution of ketone 6

To a stirred solution of $6(3.50 \mathrm{~g}, 9.61 \mathrm{mmol}, 1 \mathrm{eq}$.$) and \mathrm{Ti}(\mathrm{OEt})_{4}(30.2 \mathrm{~mL}, 32.9 \mathrm{~g}, 144.2$ mmol, 15 eq.) in toluene (32 mL) was added (R)-tert-butanesulfinamide (12) ($11.7 \mathrm{~g}, 96.1$ $\mathrm{mmol}, 10 \mathrm{eq}$.$) . The mixture was heated to 85{ }^{\circ} \mathrm{C}$ for 9 hours before cooling to room temperature. The reaction mixture was diluted with EtOAc (200 mL) and quenched with brine (100 mL). The thick yellow/ orange gel was filtered through a Celite ${ }^{\circledR}$ pad and washed thoroughly with EtOAc until no yellow/orange colour remained on the filter cake. The filtrate was washed with brine ($3 \times 250 \mathrm{~mL}$) before extracting from the aqueous liquid with EtOAc ($3 \times 250 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford a crude mixture. Purification on silica (5 to 50\% EtOAc: Hexane) afforded 13 ($1.52 \mathrm{~g}, 3.27 \mathrm{mmol}, 34 \%$) and 14 ($1.81 \mathrm{~g}, 3.88 \mathrm{mmol}, 40 \%$) as yellow amorphous solids. Starting material 6 ($385 \mathrm{mg}, 1.06 \mathrm{mmol}, 11 \%$) was also recovered from the reaction.

(R)-N-((S,E)-10b-allyl-5-benzyl-5,10b-dihydro-11H-indolo[2,3-b]quinolin-11-ylidene)-2-methylpropane-2-sulfinamide (13)

$[\alpha]_{D}{ }^{20}+1359.4\left(c=0.806\right.$ in CHCl_{3}); r.f. 0.3 ($30: 70$ EtOAc: Hexane); IR (FTIR-ATR) $v_{\max } 3040$, 1560; HRMS (ESI) m / z clacd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{1} \mathrm{~N}_{3} \mathrm{~S}_{1}{ }^{+} 468.2104[\mathrm{M}+\mathrm{H}]^{+}$, found 468.2095; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73$ (dd, $\left.J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48$ (ddd, $\left.J=7.4,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42-$ 7.27 (m, 8H), $7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (dd, $J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.97 (dd, $J=16.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (dddd, $J=17.2,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.08-5.03(\mathrm{~m}, 1 \mathrm{H})$,
$4.89-4.79(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=13.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,170.9,154.6,143.2,136.7,134.4,133.5,131.5,131.0,129.0$, $128.8,127.6,126.4,126.3,122.3,121.8,120.1,118.5,117.6,115.8,64.0,59.3,50.2,42.6$, 22.6.

(R)-N-((S,E)-10b-allyl-5-benzyl-5,10b-dihydro-11H-indolo[2,3-b]quinolin-11-ylidene)-2-

 methylpropane-2-sulfinamide (14)$[\alpha]_{\mathrm{D}}{ }^{20}-1059.2\left(c=0.806\right.$ in CHCl_{3}); r.f. 0.6 ($30: 70 \mathrm{EtOAc}$: Hexane); IR (FTIR-ATR) $v_{\max }$ 2924, 1560; HRMS (ESI) m / z clacd. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{1} \mathrm{~N}_{3} \mathrm{~S}_{1}{ }^{+} 468.2104[\mathrm{M}+\mathrm{H}]^{+}$, found 468.2099; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (ddd, $J=7.4,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (ddd, J = 8.2, 7.4, 1.5 Hz, 1H), $7.39-7.26$ (m, 7H), $7.17-7.08$ (m, 2H), 7.05 (dd, J = 8.4, 1.0 $\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dddd}, J=16.8,10.1,7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}$, $2 \mathrm{H}), 4.85(\mathrm{dd}, \mathrm{J}=16.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{ddt}, J=13.5,7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.11 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.7, 170.7, 154.2, 142.5, 136.3, 134.2, 134.1, 132.6, 130.7, 129.0, 128.8, 127.7, 126.6, 126.5, 122.7, 122.7, 120.3, 118.5, 118.3, 115.9, 64.3, 49.8, 42.8, 22.1.

Experimental Procedures for the Hydrolysis of Imines 13 and 14

Experimental Procedure for the Hydrolysis of 13 to (R)-6

A stirred solution of $13(1.20 \mathrm{~g}, 2.56 \mathrm{mmol})$ in $\mathrm{MeOH}(128 \mathrm{~mL})$ was treated with $\mathrm{HCl}(12 \mathrm{M})$ dropwise until TLC analysis indicated no starting material remained. The reaction was diluted with water (130 mL) and treated with $\mathrm{NaHCO}_{3(\mathrm{aq})}$ until the solution was neutral by pH paper. The reaction mixture was extracted with EtOAc and washed with brine. The aqueous phase was re-extracted with EtOAc before combining the organic fragments and concentrating in vacuo. Purification on silica gel (5 to 15% EtOAc: hexane) afforded (R)-6 ($690 \mathrm{mg}, 1.89$ mmoles, $74 \%,>99 \%$ ee) after recrystallisation from EtOAc: Pet Ether (40:60). ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 6 .
$[\alpha]_{\mathrm{D}}{ }^{20}+130.6\left(c=1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; HPLC Retention time of 23.561 minutes - Chiracel OD-H column with 5\% 2-propanol in hexane as the eluent.

Experimental Procedure for the Hydrolysis of 14 to (S)-6

14

A stirred solution of $14(1.41 \mathrm{~g}, 3.02 \mathrm{mmol})$ in $\mathrm{MeOH}(150 \mathrm{~mL})$ was treated with $\mathrm{HCl}(12 \mathrm{M})$ dropwise until TLC analysis indicated no starting material remained. The reaction was diluted with water (150 mL) and treated with NaHCO_{3} (aq) until the solution was neutral by pH paper. The reaction mixture was extracted with EtOAc and washed with brine. The aqueous phase was re-extracted with EtOAc before combining the organic fragments and
concentrating in vacuo. Purification on silica gel (5 to 15\% EtOAc: hexane) afforded (S)-6 (835 mg 2.29 mmoles, $76 \%,>99 \%$ ee) after recrystallisation from EtOAc: Pet Ether (40:60). ${ }^{1} \mathrm{H}$ NMR spectroscopic data was consistent with previously reported data for 6 .
$[\alpha]_{D}{ }^{20}-134.1(c=1)$; HPLC Retention time of 12.217 minutes - Chiracel OD-H column with 5\% 2-propanol in hexane as the eluent.

Experimental procedure for the reduction of imine 14 to 15

(R)-N-((10bR,11S)-10b-allyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-yl)-2-methylpropane-2-sulfinamide

To a stirred solution of 14 (25 mg , $53.5 \mu \mathrm{~mol}, 1$ eq.) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added NaBH_{4} (5 $\mathrm{mg}, 132 \mu \mathrm{~mol}, 2.5 \mathrm{eq}$.$) and the mixture was left to stir at room temperature for 0.5 \mathrm{~h}$. The reaction was quenched with brine (1 mL) and diluted with EtOAc (5 mL). The organic layer was concentrated in vacuo to afford beige solid. Recrystallisation from CDCl_{3} :Pet. ether afforded long, needle like, crystals of 15 which were of sufficient quality for X-ray crystallographic analysis (CCDC 1486344) ${ }^{6}$ ($23 \mathrm{mg}, 49.0 \mu \mathrm{~mol}, 92 \%$).
$[\alpha]^{20}-45.6\left(c=0.86\right.$ in CHCl_{3}); m.p. $186-188^{\circ}{ }^{\circ} \mathrm{C}$; IR (FTIR-ATR) $\mathrm{v}_{\max } 3185,2955,1555 \mathrm{~cm}^{-1}$ HRMS (ESI) m / z clacd. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{1} \mathrm{~N}_{3} \mathrm{~S}_{1}{ }^{+} 470.2261(\mathrm{M}+\mathrm{H})^{+}$, found 470.2261; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.25-$ 7.19 (m, 2H), 7.10 (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, \mathrm{J}=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, \mathrm{J}=8.2,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-4.82$ (m, 3H), $4.12(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}$,

9H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,155.9,140.3,136.9,136.7,132.6,129.3,129.0$, 128.9, 127.9, 127.4, 126.7, 125.8, 124.0, 123.6, 122.3, 118.9, 117.9, 115.4, 60.6, 57.4, 56.4, 50.0, 35.0.

Experimental procedure for the synthesis of 16

(\pm)-10b-allyl-5-benzyl-5,10b-dihydrospiro[indolo[2,3-b]quinoline-11,2'-oxirane] (16)

To a stirred solution of $6(42.1 \mathrm{~g}, 115.6 \mathrm{mmol}, 1 \mathrm{eq}$.$) and chloroiodomethane (22.4 \mathrm{~g}, 9.3 \mathrm{~mL}$, $127.2 \mathrm{mmol}, 1.1$ eq.) in THF (570 mL) at $-78^{\circ} \mathrm{C}$ was added methyllithium lithium bromide complex solution ($78.8 \mathrm{~mL}, 173.4 \mathrm{mmol}, 2.2 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 1.5 \mathrm{eq}$.) dropwise. After 1 hr , the reaction was warmed to rt . After 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50$ mL). The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 300 mL) and the combined organic extracts were washed with water (300 mL), brine (300 mL), dried using MgSO_{4} and concentrated in vacuo to afford crude 16 as a yellow amorphous solid - as a single diastereoisomer. Epoxide 16 was used without further purification.

IR (FTIR-ATR) $v_{\text {max }}$: 2925, $1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+} 379.1805[\mathrm{M}+\mathrm{H}]^{+}$, found 379.1799; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-$ $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (dddd, J=16.7, 10.1, 7.9, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.83$ (m, 2H), 3.10 (d, J=5.6 Hz, 1H), 2.89 (dd, J=13.9, 6.4 Hz, 1H), 2.70 (dd, J=13.9, 7.9 Hz, 1H), 2.55 (d, J=5.6 Hz, 1H); ${ }^{13}$ C NMR 172.4, 155.5, 141.4, 136.9, 134.3, 132.0, 129.5, 129.0 (2C), $128.9,127.4,126.7$ (2C), 123.9, 123.3, 123.3, 122.9, 119.0, 118.1, 115.2, 60.3, 55.1, 53.7, 49.8, 38.4 .

Assignment of the relative stereochemistry of 16

Scheme S2: Diastereoselective synthesis of epoxide 16 from 6. The relative stereochemistry of $\mathbf{1 6}$ was inferred from that assigned to the related compound $\mathbf{S 1 6}$ whose structure was assigned by small molecule X-ray crystallographic analysis (representation of analysis of S16 is shown).

Epoxide 16 was synthesised via a modified Corey-Chaykovsky reaction ${ }^{7}$ and isolated as a single diastereoisomer. The relative stereochemistry of 16 was determined by comparison of the analytical data associated with 16 with that of a compound S16 previously synthesised from S17 ${ }^{1}$ in our laboratory (see Scheme S2 and experimental protocol below). The relative stereochemistry of S16 was confirmed by small molecule X-ray crystallographic analysis (CCDC 1478153). ${ }^{6}$ One explanation for the observed relative stereochemistry of S16 is that the lithiated species $\mathbf{S 1 8}$, formed in-situ via Li-halogen exchange, attacks the carbonyl group in $\mathbf{S 1 7}$ (or 6 in the case of the formation of 16) from the opposite face to the allyl group at C10b (more accessible face) to give intermediate S19 en route to S16. Figure S1 and Table S1 show a comparison of the key signals in the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{S 1 6}$ and 16.

Figure S1: ${ }^{1} \mathrm{H}$ NMR analysis of epoxides S16 and 16 emphasising the strong similarity between the spectra and hence presumably the structures.

Table S1: Comparison of the chemical shifts of the signals in the aliphatic regions of the ${ }^{1} \mathrm{H}$ NMR spectra of epoxides 16 and S16

S16 where $\mathrm{R}=\mathrm{H}$
16 where $\mathrm{R}=\mathrm{Ph}$

Assignment	\boldsymbol{N}-Methyl Protected (S16, R = H)	\boldsymbol{N}-Benzyl Protected (16, R=Ph)
$\mathbf{1}^{\prime}$	$2.81-2.71(\mathrm{~m})$ and $2.62-2.52(\mathrm{~m})$	$2.89(\mathrm{dd}, \mathrm{J}=13.9,6.4)$ and $2.70(\mathrm{dd}$,
$J=13.9,7.9)$		
$\mathbf{2}^{\prime}$	$5.25(\mathrm{dddd}, J=16.7,10.1,8.0,6.5)$	$5.31(\mathrm{dddd}, J=16.7,10.1,7.9,6.3)$
$\mathbf{3}^{\prime}$	$4.86-4.72(\mathrm{~m})$	$4.90-4.83(\mathrm{~m})$
$\mathbf{1 ' 口}^{\prime \prime}$	$3.05(\mathrm{~d}, J=5.6)$ and $2.51(\mathrm{~d}, J=5.6)$	$3.10(\mathrm{~d}, J=5.6)$ and $2.55(\mathrm{~d}, J=5.6)$
$\mathbf{5 i}$	$3.64(\mathrm{~s})$	$5.88(\mathrm{~d}, J=16.5)$ and $4.94(\mathrm{~d}, J=16.5)$

Preparation of (\pm)-(10bS,11S)-10b-allyl-5-methyl-5,11-dihydro-10bH-indolo[2,5-b]quinolin-

 11-spiro-2'-oxirane (S16)MeLi-LiBr (15.0 ml of a 1.5 M solution, 22.5 mmol) was slowly added, over a period of 20 minutes, to a mixture of 5,10b-dihydro-10b-allyl-5-methyl-10bH-indolo[2,3-b]quinolin-11one (S17) ${ }^{1}$ ($5.40 \mathrm{~g}, 18.7 \mathrm{mmol}$), chloroiodomethane ($1.70 \mathrm{ml}, 23.9 \mathrm{mmol}$) and THF (75 ml) at $-78^{\circ} \mathrm{C}$, maintained under an argon atmosphere. After 0.5 hours, the reaction mixture was allowed to warm the room temperature and stirring was continued for 12 hours. $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}$ was added and the solvent was evaporated at reduced pressure. Water (40 ml) and $\mathrm{Et}_{2} \mathrm{O}$ $(40 \mathrm{ml})$ were added to the residue. The $\mathrm{Et}_{2} \mathrm{O}$ was separated and the aqueous phase was further extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{ml})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered through a plug of silica. The $\mathrm{Et}_{2} \mathrm{O}$ solution of the crude product was then placed in an open flask and allowed to slowly evaporate at ambient temperature and pressure until nearly dry ($c a .10 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O}$ remaining). There was thus obtained the title compound $\mathbf{S 1 6}$ as large colourless crystals ($4.98 \mathrm{~g}, 16.5 \mathrm{mmol}, 88 \%$). Crystals from $\mathrm{Et}_{2} \mathrm{O}$ were suitable for X -ray analysis (CCDC 1478153). ${ }^{6}$
m.p. $119-120^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) \boldsymbol{V}_{\text {max }}$: $3062,2988,1558 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}^{+}$ $303.1497[\mathrm{M}+\mathrm{H}]^{+}$, found 303.1492; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.18-7.40 (m, 5H), 6.97-7.11 $(\mathrm{m}, 3 \mathrm{H}), 5.18-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.85(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}$ $=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,155.6,141.7,134.2,132.0,129.6,129.0,124.0,123.3,123.2,122.9$ (2C), $118.8,118.0,114.2,60.3,55.0,53.8,38.4,32.9$.

Experimental Procedures for the Conversion of 16 to 5

((\pm)-10b,11-diallyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinolin-11-yl)methanol (5)

To a stirred solution of crude 16 (115.6 mmol, 1 eq.) and allyltrimethylsilane ($32.9 \mathrm{~g}, 45.8$ $\mathrm{mL}, 289 \mathrm{mmol}, 2.5$ eq. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(570 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(87.8 \mathrm{~g}, 50.9 \mathrm{~mL}, 462.4$ mmol, 4 eq.) dropwise. After 0.5 h , the reaction was quenched with $\mathrm{MeOH}(100 \mathrm{~mL})$ before warming to rt . The reaction mixture was sequentially washed with brine (200 mL), sat. aq. $\mathrm{NaHCO}_{3}(2 \times 250 \mathrm{~mL})$, brine $(250 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by recrystallisation from EtOAc afforded 5 as a yellow solid ($38.1 \mathrm{~g}, 90.7 \mathrm{mmol}, 78 \%$, over 2 steps) as a single diastereoisomer. The crystals were suitable for X-ray crystallographic analysis (CCDC 1478152).
m.p. $171-173{ }^{\circ} \mathrm{C}$ IR (FTIR-ATR) $\mathrm{v}_{\max }$: 3206, $1550 \mathrm{~cm}^{-1}$; HRMS (ESI-ion trap) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+} 421.2274[\mathrm{M}+\mathrm{H}]^{+}$, found 421.2274; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}$, $2 H), 6.98(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.97(\mathrm{~m}, 2 \mathrm{H})$, $4.83(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.69(\mathrm{~m}, 3 \mathrm{H}), 4.52-4.37(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{dd}, \mathrm{J}=13.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=14.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 173.2,156.4,140.5,137.1,136.1,134.4,133.0,128.7$ (2C), 128.7, 128.2, 127.5, 127.3, 127.1 (2C), 126.9, 124.1, 123.0, 122.6, 118.3, 118.1, 117.6, 116.1, 64.8, 59.9, 50.1, 47.0, 38.1, 37.4 .

Rationalisation of the observed stereochemical outcome in the conversion of 16 to 5

Coordination of TiCl_{4} to the oxygen of the epoxide 16 likely gives rise to the iminium intermediate S20, which was susceptible to allylsilylation at C11. The approach of the electrophile was from the opposite face to the C10b allyl substituent as previously observed in the conversion of 6 to 16 (Scheme S2). The cationic intermediate S21 was stabilised by the β-silicon atom and gave rise to the desired alcohol 5 upon quenching the reaction with methanol.

Scheme S3: Proposed mechanism for the allylsilylation of epoxide 16 to alcohol 5. The stereochemistry at C11 was lost upon opening of the epoxide group to give S20. Allylsilylation of the intermediate S20 reinstated the C11 stereocentre in intermediate S21.

Oxidation of 5 to the corresponding aldehyde S22 and carboxylic acid S23

The required oxidation of $\mathbf{5}$ to $\mathbf{S 2 3}$ proved more challenging than expected. Whilst it was possible to convert 5 to the aldehyde S22 using either the Dess-Martin periodinane ${ }^{8}$ (yields of $\mathbf{S 2 2} \mathbf{> 8 0 \%}$ were obtained on $<0.1 \mathrm{mmol}$ scale) or catalytic TPAP ${ }^{9}$ (yield of $\mathbf{S 2 2} \mathbf{9 1 \%}$ was obtained on a 0.5 mmol scale) on a small scale, these reagents were less appropriate for use on larger scales (see below for protocols). Larger scale oxidations of $\mathbf{5}$ to $\mathbf{S 2 2}$ were achieved using PCC (up to $>25 \mathrm{mmol}$ scale), although attempts to carry out this reaction catalytically ${ }^{10}$ proved unsuccessful. Subsequent conversion of S22 to the corresponding acid S23 was achieved using either Jones ${ }^{11}$ or Pinnick ${ }^{12}$ oxidation conditions (see below for protocols). Attempted one pot oxidation of alcohol $\mathbf{5}$ delivered the required acid $\mathbf{S} 2 \mathbf{3}$ in an isolated yield of 39% along with an unidentified second product making this protocol unusable.
(\pm)-10b,11-diallyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinoline-11-carbaldehyde (S22)

To a stirred suspension of crude $5(28.30 \mathrm{mmol})$ and Celite ${ }^{\bullet}(6.71 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ was added pyridinium chlorochromate ($6.71 \mathrm{~g}, 31.13 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and the reaction was left to stir at rt. After 16 hrs, the reaction was filtered through a pad of Celite ${ }^{\circ}$ and concentrated in vacuo to afford crude S22 as a yellow/brown amorphous solid. Aldehyde S22 was used without further purification.

Alternatively a TPAP Oxidation was used: alcohol 5 ($200 \mathrm{mg}, 0.48 \mathrm{mmol}, 1$ eq.) was dissolved in DCM (5 mL) before NMO ($168 \mathrm{mg}, 1.43 \mathrm{mmol}, 3$ eq.) and TPAP ($10 \mathrm{mg}, 0.028$ mmol, 0.06 eq.) were added and the mixture was left to stir for 8 hours. Further NMO (112 $\mathrm{mg}, 0.95 \mathrm{mmol}, 2 \mathrm{eq}$.$) was added and the reaction was left to stir overnight. The reaction$ mixture was quenched with a saturated solution of aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$ before extracting with EtOAc (5 mL) and washing the organic layer with water (5 mL) and brine (5 mL) The organic layer was dried with MgSO_{4} and concentrated in vacuo to afford $\mathbf{S 2 2}$ ($181 \mathrm{mg}, 0.43 \mathrm{mmol}$, $91 \%)$ as a brown solid. No further purification was performed.

Alternatively a Dess-Martin oxidation was used: alcohol 5 ($20 \mathrm{mg}, 0.048 \mathrm{mmol}, 1$ eq.) was dissolved in DCM (0.6 mL) at room temperature before adding Dess-Martin periodinane (30 $\mathrm{mg}, 0.071 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction was left to stir for 1 hour before quenching with a saturated solution of aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The mixture was diluted with DCM $(5 \mathrm{~mL})$ and washed with water (2.5 mL), brine (2.5 mL). The organic layer was dried with MgSO_{4} and concentrated in vacuo to afford a brown oil. Purification by column chromatography on silica gel (5% to 10% EtOAc/hexane) afforded $\mathbf{S 2 2}$ as a brown oil ($16 \mathrm{mg}, 0.038 \mathrm{mmol}, 80 \%$).

IR (FTIR-ATR) $\mathrm{v}_{\text {max }}$: 2925, 1715, $1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+} 419.2118$ $[\mathrm{M}+\mathrm{H}]^{+}$, found $419.2113 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.10-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.84(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (ddd, J=17.3, 10.0, 7.4 Hz, 1H), 5.16 (d, J=16.3 Hz, 1H), 5.08 (ddd, J=13.9, 10.3, 7.2 Hz, 1H), $4.84-4.75(\mathrm{~m}, 3 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=13.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 2 \mathrm{H})$, 2.04 (dd, J=14.1, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.3,171.1,156.0,140.2,136.8$, 134.5, 132.6, 131.6, 130.2, 129.1, 129.1, 128.8 (2C), 127.5, 127.2 (2C), 123.0, 122.8, 122.8, $122.7,119.3,119.3,118.0,116.1,58.5,56.8,49.8,37.3,35.9$.
(\pm)-10b,11-diallyl-5-benzyl-10b,11-dihydro-5H-indolo[2,3-b]quinoline-11-carboxylic
acid (S23)

To a stirred solution of crude $\mathbf{S 2 2}$ (28.3 mmol , 1 eq.) in acetone (280 mL) at $0^{\circ} \mathrm{C}$ was added Jones reagent ($31.7 \mathrm{~mL}, 42.5 \mathrm{mmol}, 1.34 \mathrm{M}, 1.5 \mathrm{eq}$.) dropwise. After 1 h , the reaction was warmed to rt . After 16 h , the reaction was quenched with isopropyl alcohol (20 mL) before concentrating ($\sim 140 \mathrm{~mL}$) in vacuo. The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$ and the combined organic extracts were washed with water ($2 \times 100 \mathrm{~mL}$), brine (100 mL), dried using MgSO_{4} and concentrated in vacuo to afford crude S23 as a yellow/brown solid. Carboxylic acid $\mathbf{S 2 3}$ was used without additional purification.

Alternatively, A 10 mL round bottomed flask was charged with $\mathbf{S 2 2}$ ($151 \mathrm{mg}, 0.361 \mathrm{mmol}$) and 2-methyl-bute-2-ene ($0.4 \mathrm{~mL}, 265 \mathrm{mg}, 3.78 \mathrm{mmol}$) before dissolving in tetrahydrofuran (2 mL). A solution consisting of $\mathrm{NaH}_{2} \mathrm{PO}_{4}(248 \mathrm{mg}, 1.80 \mathrm{mmol}$) and sodium chlorite (80%, $203 \mathrm{mg}, 18.0 \mathrm{mmol}$) in water (2 mL) was prepared and added to the reaction flask and left to stir for 18 hours. The reaction mixture was extracted with ethyl acetate (5 mL) before transferring to a separating funnel and washing the organic layer with water ($2 \times 5 \mathrm{~mL}$) and brine ($2 \times 5 \mathrm{~mL}$). The aqueous layer was extracted with ethyl acetate (5 mL) and the combined organic fragments were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure to afford $\mathbf{S} 2 \mathbf{3}$ as a beige solid ($141 \mathrm{mg}, 0.325 \mathrm{mmol}, 90 \%$).

Finally, a one-pot procedure was also achieved from direct Jones oxidation of alcohol $\mathbf{5}$ to S23. To a stirred solution of $\mathbf{5}(20 \mathrm{mg}, 47.6 \mu \mathrm{~mol})$ in acetone (0.5 mL) at $0^{\circ} \mathrm{C}$ was added Jones reagent ($0.12 \mathrm{~mL}, 160.8 \mu \mathrm{~mol}, 1.34 \mathrm{M}$) dropwise. After 1 h , the reaction was warmed to rt . After 1 h , the reaction was quenched with isopropyl alcohol (0.5 mL). The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with water ($2 \times 10 \mathrm{~mL}$), brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel (1% to $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) S23 ($8 \mathrm{mg}, 18.4 \mu \mathrm{~mol}, 39 \%$).

IR (FTIR-ATR) $v_{\text {max }}$: 2955, 1717, 1697, 1684, 1558, 1541, 1456; HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 435.2067[\mathrm{M}+\mathrm{H}]^{+}$, found 435.2062 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, J=7.5 Hz, 2H), 7.35 (d, J=7.7 Hz, 1H), $7.32-7.21$ (m, 4H), $7.20-7.14$ (m, 2H), $7.05-6.92$ (m, 4H), 5.67 (d, J=16.6 Hz, 1H), 5.45 (ddd, J=14.6, 9.9, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.25 (d, J=16.6 Hz, 1H), 5.11-4.99 $(\mathrm{m}, 1 \mathrm{H}), 4.84-4.76(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.63$ ($\mathrm{m}, 2 \mathrm{H}$), 2.12 (dd, J=13.8, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.3, 172.0, 155.1, 139.1, 136.7, 134.3, 133.3, 132.2, 131.6, 129.0, 128.8 (2C), 128.6, 127.6, 127.2 (2C), 124.0, $123.4,123.1,122.5,119.2,119.0,117.3,115.8,58.2,56.8,50.5,38.5,38.1$.

Iodolactonisation protocol and evidence for structure of the major diastereomer 18

It was envisaged that four possible core structures could be formed when $\mathbf{S 2 3}$ was treated with an electrophilic source of iodine with variation resulting from the size of the lactone ring formed and which allyl group was involved in the reaction (Scheme S4). However only the five-membered ring in $\mathbf{1 8}$ (major isomer) and $\mathbf{S 2 4}$ (minor) were formed. The structure of 18 was assigned based on detailed NMR analysis of the mixture of diastereoisomers (Figures S2-S4).

Scheme S4 Four possible outcomes of an iodolactonisation reaction of S23. However, only $\mathbf{1 8}$ and its C2"epimer S24 were isolated as an inseparable 3:1 mixture. ${ }^{*}=$ inconsequential mixture of epimers.

The regioselectivity of the reaction was confirmed by HBMC analysis (Figure S2); a correlation between $\mathrm{H}-1^{\prime \prime}$ and $\mathrm{C} 3^{\prime \prime}$ was observed as well as a correlation between $\mathrm{H}-1^{\prime \prime}$ and C4'․ Furthermore, a correlation between $\mathrm{H}-1^{\prime}$ and $\mathrm{C} 3^{\prime}$ was observed as well as a correlation between $\mathrm{H}-\mathrm{1}^{\prime}$ and C5a which proved that the C10b allyl substituent was not involved in the iodolactonisation. Presumably, the formation of the intermediate iodonium ion was reversible, but because the 5-exo-tet cyclisation was kinetically favoured only 18/S24 were formed in the reaction.

Figure S2 The HMBC spectrum of iodolactones 18/S24. The key non-aromatic proton signals are highlighted.

Computational models of the epimers 18/S24 were calculated and their structures were minimised using the AM1 level of theory (Figure S3). The models were then examined to establish if any of the expected nOe enhancements would confirm the identity of the major epimer. It was proposed, if the relative stereochemistry was as drawn in 18, the distance between the protons $\mathrm{H}-1$ and $\mathrm{H}-2^{\prime \prime}$ would be ${ }^{\sim} 3.5 \AA$ and an enhancement should be observed. Conversely, if the stereocentre at C2" had the S configuration (as drawn in S24), the distance between the protons at $\mathrm{H}-10$ and $\mathrm{H}-2^{\prime \prime}$ would be $\sim 3.6 \AA$ and an enhancement should be observed. The signal associated with the $\mathrm{H}-\mathbf{2}^{\prime \prime}$ proton ($\mathbf{1 8}, \delta_{H} 4.34 \mathrm{ppm}$) was selectively irradiated and several enhancements were observed (Figure S4) An enhancement of the signals corresponding to the protons $\mathrm{H}-\mathbf{3}^{\prime \prime}\left(\mathbf{1 8}, \delta_{\mathrm{H}} 3.20,2.98 \mathrm{ppm}\right)$ and one of the protons of $\mathrm{H}-\mathbf{1}^{\prime \prime}\left(\mathbf{1 8}, \delta_{\mathrm{H}} 2.24 \mathrm{ppm}\right)$ was observed. This was expected as these protons are situated on the adjacent carbon atoms. An enhancement was observed in the multiplet at $\delta_{H} 7.12-7.01$ ppm which integrated to 4 protons and 2D-NMR analysis confirmed that the signal for the $\mathrm{H}-1$ proton resides within that multiplet (the protons $\mathrm{H}-2, \mathrm{H}-7$ and $\mathrm{H}-4$ are the other signals present in the multiplet). The multiplet at $\delta_{H} 7.37-7.24 \mathrm{ppm}$ integrated to 7
protons and the signal for the $\mathrm{H}-10$ proton was found within that multiplet. A nOe enhancement was not observed to the multiplet ($\delta_{\mathrm{H}} 7.37-7.24 \mathrm{ppm}$) and therefore the stereochemistry of the major epimer 18.

18

S24

Figure S3 Computational models of $\mathbf{1 8}$ and $\mathbf{S 2 4}$ were minimised (AM1 level of theory). The distance between the protons $\mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-1$ (in 18) and protons $\mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-10$ (in S24) are shown.

Figure $\mathrm{S4} \mathrm{~A}$ nOe experiment of iodolactone $14 / \mathrm{S} 24$. A selective pulse irradiated the $\mathrm{H}-\mathbf{2}^{\prime \prime}$ proton in $\mathbf{1 4}$ and an enhancement was observed to the $\mathrm{H}-1$ proton. The major epimer 14 was assigned as the R configuration (as drawn) at C2".
(\pm)-10b'-allyl-5'-benzyl-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (18) and (\pm)-C2"-epi-10b'-allyl-5'-benzyl-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (S24)

To a stirred suspension of crude $\mathbf{S} 23$ ($28.3 \mathrm{mmol}, 1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ was added N iodosuccinimide ($7.00 \mathrm{~g}, 31.1 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and NaHCO_{3} ($2.61 \mathrm{~g}, 31.1 \mathrm{mmol}, 1.1 \mathrm{eq}$.). After 16 hours, the reaction was quenched with sat. aq. sodium thiosulfate (100 mL) and stirred for 15 mins. The reaction mixture was washed with water (100 mL), brine (100 mL), dried (MgSO_{4}) and concentrated in vacuo. Purification by column chromatography on silica gel ($10 \% \rightarrow 30 \%$ EtOAc/hexane) afforded an inseparable mixture of 18 and its diastereomer S24 (18:S24~3:1, $7.25 \mathrm{~g}, 12.9 \mathrm{mmol}, 46 \%, 5$ steps from 6) as an orange/brown solid.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 1561.1033[\mathrm{M}+\mathrm{H}]^{+}$, found 561.1035.

Major Epimer 18

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 4 \mathrm{H})$, $5.60(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.35$ - $4.27(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dd, $J=14.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dd, $J=10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dd, $J=10.4$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21 (dd, $J=12.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 ($\mathrm{dd}, \mathrm{J}=12.8,10.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,171.8,156.5,139.3,136.7,134.4,132.3,129.7$, 129.6, 128.9 (2C), 127.7, 127.3 (2C), 126.0, 125.1, 123.6, 123.5, 122.7, 118.7, 117.9, 116.6, 75.5, 57.4, 54.0, 49.7, 39.7, 34.7, 4.8.

Minor Epimer S24

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 4 \mathrm{H})$, $5.66(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.73(\mathrm{~m}$,

2 H), 3.72 (ddd, $J=11.8,7.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=10.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.90 (dd, J=14.2, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, J=14.2, $7.4 \mathrm{~Hz}, 1$), 2.17 (dd, J=7.4, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.99 (dd, J=13.7, 8.3 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 175.4,171.0,156.5,139.5,136.7$, $133.8,131.8,129.9,129.3,128.9$ (2C), 127.6, 127.5, 127.0 (2C), 125.1, 124.0, 123.4, 122.1, $119.0,118.2,116.1,75.7,57.7,53.6,49.9,41.1,35.9,9.4$.

Oxidative cleavage of 18/S24

A two-step dihydroxylation, diol cleavage protocol using literature conditions ${ }^{13}$ for the dihydroxylation and subsequent lead tetracetate cleavage was achieved (see below for protocols). However, a one pot protocol involving dihydroxylation and then in situ cleavage of the diol with iodobenzene diacetate was preferred (Scheme S5). Use of 2,6-lutidine in the dihydroxylation step was carried out in line with literature precedent initially. ${ }^{14}$

Scheme S5 The two step, one-pot oxidative cleavage ${ }^{15} 18 / \mathrm{S} 24$ versus the two step protocol. ${ }^{13}$? $=$ inconsequential mixture of epimers; * = mixture of epimers 3:1.

One step protocol: (\pm)-2-(5'-benzyl-5-(iodomethyl)-2-oxo-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)acetaldehyde (19) and (\pm)-C2"-epi-2-(5'-benzyl-5-(iodomethyl)-2-oxo-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)yl)acetaldehyde (S25)

ratio 19: S25

3: 1
To a stirred suspension of $18 / \mathrm{S} 24$ ($8.57 \mathrm{~g}, 15.3 \mathrm{mmol}, 1 \mathrm{eq}$.) in acetone $/ \mathrm{H}_{2} \mathrm{O}(176 \mathrm{~mL}, 10: 1)$ was added N-methylmorpholine- N-oxide ($2.69 \mathrm{~g}, 23.0 \mathrm{mmol}, 1.5 \mathrm{eq}$.), 2,6-lutidine (3.27 g , $3.56 \mathrm{~mL}, 30.6 \mathrm{mmol}, 2$ eq.) and OsO_{4} (0.2 mL of a 2.5% by wt. solution in ${ }^{t} \mathrm{BuOH}, 0.13 \mathrm{~mol}$). After 18 hours, $\mathrm{Phl}(\mathrm{OAc})_{2}(7.39 \mathrm{~g}, 22.95 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the reaction stirred for a further 1.5 h . The reaction was then quenched with sat. aq. sodium sulfite (80 mL) and sat. aq. $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ and stirred vigorously for 0.5 h . The aqueous was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and combined organic extracts were washed with brine (50 mL), dried (MgSO_{4}) and concentrated in vacuo. Purification by column chromatography on silica gel $(20 \% \rightarrow 40 \%$ EtOAc/hexane) afforded $19 / \mathrm{S25}$ ($7.38 \mathrm{~g}, 13.1 \mathrm{mmol}, 86 \%$) - as an inseparable mixture of epimers at C2" (~3:1).

Major Epimer 19

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 563.0826[\mathrm{M}+\mathrm{H}]^{+}$, found $563.0818 ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.00(\mathrm{~m}, 4 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=16.1$ Hz, 1H), 5.12 (d, J=16.1 Hz, 1H), 4.30 (ddd, $J=10.4,7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (dd, J=16.2, 2.4 Hz, 1H), 3.19 (dd, J=10.5, 4.9 Hz, 1H), 2.99 (dd, J=10.5, 7.1 Hz, 1H), 2.76 (dd, J=16.2, 2.9 Hz, 1H), 2.20 (dd, $J=12.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71\left(\mathrm{dd}, \mathrm{J}=12.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.6, 174.9, 171.0, 156.1, 138.9, 136.3, 132.8, 130.6, 130.1, 129.1 (2C), 127.9, 127.0 (2C), 126.0, 124.3, 124.1, 124.0, 123.0, 118.7, 117.1, 75.5, 53.8, 53.8, 49.9, 42.7, 38.6, 4.7.

Two step protocol:

To a stirred suspension of $18 / \mathrm{S} 24(1.09 \mathrm{~g}, 1.95 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL}, 10: 1)$ was added N -methylmorpholine- N -oxide ($0.457 \mathrm{~g}, 3.90 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(0.5 \mathrm{~mL}$, of a 2.5% by wt. solution in ${ }^{t} \mathrm{BuOH}$). After 18 h , the reaction was quenched with sat. aq. sodium sulfite (20 mL) then stirred vigorously for 0.5 h . The aqueous was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$) and washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo to afford $\mathbf{S 2 6}(1.16 \mathrm{~g}, 1.95$ mmol, 100\%) - as an inconsequential mixture of diastereoisomers. Diols S26 were used in the next step without additional purification. LRMS (ESI) $m / z 595$ ($[\mathrm{M}+\mathrm{H}]^{+}, 100$), 617 ([M+Na] ${ }^{+}, 38$); HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}^{+} 595.1088[\mathrm{M}+\mathrm{H}]^{+}$, found 595.1092.

To a stirred solution of $\mathbf{S 2 6}(4.87 \mathrm{~g}, 8.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \mathrm{~mL})$ was added lead(IV) acetate ($4.36 \mathrm{~g}, 9.85 \mathrm{mmol}$). After 1 h , the reaction was filtered through a pad of Celite ${ }^{\circ}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then concentrated in vacuo. Purification by column chromatography on silica gel ($20 \% \rightarrow 40 \%$ EtOAc/hexane) afforded $19 / \mathrm{S} 25$ ($4.12 \mathrm{~g}, 7.33 \mathrm{mmol}, 89 \%$) as a light brown solid. NMR data was in agreement with the above one pot procedure.

Reductive Amination of 19/S25

Initial studies focused on the use of benzylamine or p-methoxybenzylamine (Scheme S6). The diastereomeric mixture of aldehydes $19 /$ S25 was converted to the corresponding mixtures of secondary amines S27/S28 or S29/S30 in variable yields. Attempts to use aqueous ammonia ${ }^{16}$ or various ammonia surrogates ${ }^{17}$ proved unsuccessful.

Scheme S6 The reductive amination of 19/S25 with aliphatic amines benzylamine and p-methoxybenzylamine. Reaction conditions: benzylamine or p-methoxybenzylamine, MeOH ; then NaBH_{4} (1.1 eq.); ${ }^{*}=$ mixture of epimers 3:1.

Subsequent conversion of S27/S28 to the corresponding amino acid S31 (Scheme S7) by opening of the lactone ring enabled the synthesis of the N-protected lactam S32 although it proved very difficult to remove all of the N, N-diisopropyl urea (S33) side product from the sample of S32 (see experimental protocols below and Figure S5). The ${ }^{1} \mathrm{H}$ NMR spectrum of S31 showed as series of broad peaks.

Scheme S7 The synthesis of pentacyclic lactams S32 and S34 via amino acids S31 and S35 respectively. The structure of the urea by-product (S33) that was found to contaminate S32 is shown. * = mixture of epimers 3:1.

Figure S5 The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 3 1}$ (top spectrum) and the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture on formation of S32.

The analogous conversion of aldehydes 19/S25 to S34 via S29/S30 and S35 was also achieved (Scheme S5) and in this case a pure sample of S34 was obtained (see below for analytical data). Finally, it was decided that the lactam N-protecting groups may prove very challenging to remove later in the synthesis and so another alternative was explored.

In an attempt to balance nucleophilicity with ease of protecting group removal it was decide to use a sulfinamide for the reductive amination. ${ }^{18,19}$ In this case (R / S)-tertbutanesulfinamide (12) was used. Reaction of the diastereomeric mixture $19 / \mathrm{S} 25$ with (R / S) $\mathbf{1 2}$ gave $\mathbf{S 3 6}$ as a mixture of diastereomers (3:1 at C2", not separated) via the corresponding imines S37 (Scheme S8).

19/S25
3:1 at C2"

S37
3:1 at C2"

S36
3:1 at C2"

Scheme S8 Reductive amination of 19/S25 with the (R / S)-sulfinamide (12). * = mixture of epimers (3:1 at C2" and 1:1 at $S 4^{\prime}$).

In addition alternative protocols for the retro-iodolactonisation were also considered resulting in the use of excess zinc in place of the ${ }^{n}$ BuLi (see below).

Experimental procedure for the conversion of 20 to 4

(\pm)-5'-benzyl-10b'-(2-(benzylamino)ethyl)-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-5'3-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (S26) and (土)-C2"-epi-5'-benzyl-10b'-(2-(benzylamino)ethyl)-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-5'3-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (S27)

To a stirred solution of the diastereomeric mix S26 (100 mg, $168 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added lead(IV) acetate ($89 \mathrm{mg}, 202 \mu \mathrm{~mol}$). After 0.5 hours, the reaction was filtered through a pad of Celite ${ }^{\ominus}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo to afford $19 / \mathrm{S} 25$ which was used in the next step without further purification.

To a stirred solution of 19/S25 in MeOH (2 mL) was added benzylamine. $\mathrm{HCl}(72 \mathrm{mg}, 504$ $\mu \mathrm{mol}$). After 3 hours, $\mathrm{NaBH}_{4}(26 \mathrm{mg}, 672 \mu \mathrm{~mol})$ was added. After 1 hour, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded S26/S27 ($53 \mathrm{mg}, 81 \mu \mathrm{~mol}, 48 \%, 2$ steps) as a colourless oil.

IR (FTIR) $\mathrm{v}_{\text {max }}$: 3431, 1775, $1555 \mathrm{~cm}^{-1}$; LRMS (ESI) $\mathrm{m} / \mathrm{z} 564$ ([M+H]+, 100);

Major Epimer S26

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.15(\mathrm{~m}), 7.12-6.96(\mathrm{~m}, 7 \mathrm{H}), 5.51(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (d, J=16.2 Hz, 1H), 4.27 (ddd, J=12.6, 10.6, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.40(\mathrm{~m}$, 1 H), 3.15 (dd, J=10.3, 5.1 Hz, 1H), 3.03-2.90 (m, 2H), $2.31-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.01$ (dd, J=10.0, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.66$ (dd, J=12.8, $10.1 \mathrm{~Hz}, 1 \mathrm{H}$).

(\pm)-14b-allyl-2,10-dibenzyl-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2-j][2,6]naphthyridin-1(2H)-one (S32) via S31

To a stirred solution of S26/S27 (19 mg, $29.1 \mu \mathrm{~mol})$ in THF (1 mL) at $-78^{\circ} \mathrm{C}$ was added n butyllithium ($30 \mu \mathrm{~L}, 64 \mu \mathrm{~mol}, 2.5 \mathrm{M}$ solution in hexanes). After 10 minutes, the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ before the reaction was warmed to RT. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and washed with brine (5 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel ($5 \% \rightarrow 15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{S 3 1}$ ($8 \mathrm{mg}, 15 \mu \mathrm{~mol}, 52 \%$). LRMS (ESI) $\mathrm{m} / \mathrm{z} 528\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; for ${ }^{1} \mathrm{H}$ NMR spectrum see Figure 55 .

In a NMR tube (6 mm), $\mathbf{S 3 1}$ was dissolved in $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$ and diisopropylcarbodiimide (8 $\mathrm{mg}, 10 \mu \mathrm{~L}, 63 \mu \mathrm{~mol}$) was added. The reaction was sonicated for 0.5 h then quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford $\mathbf{S 3 2}$ as a yellow oil.

HRMS (ESI) m/z calcd. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}^{+} 510.2540[\mathrm{M}+\mathrm{H}]^{+}$, found $510.2532 ;{ }^{1} \mathbf{H} \mathbf{N M R}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 12 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H})$, 6.91 (d, J=8.2 Hz, 1H), $6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.00$ (d, J=14.2 Hz, 1H), 4.85 (d, J=16.5 Hz, 1H), 4.61 (dd, J=12.3, 8.4 Hz, 2H), 4.35 (d, J=16.9 Hz, 1H), $3.59-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.27$ (dd, J=12.6, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dd, J=14.2, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (td, $J=12.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (dd, J=14.1, 8.1 Hz, 1H), 1.39 (dd, J=13.5, 5.5 Hz, 1H); ${ }^{13}$ C NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,169.9,155.6,138.9,137.0,136.8,135.0,133.7,129.1,129.0$ (2C), 128.9 (2C), 128.7, 128.7 (2C), 128.2, 127.9, 127.5, 126.5 (2C), 125.0, 123.5, 122.9, 122.1, 118.5, 118.1, 115.4, 53.9, 51.2, 50.3, 49.4, 43.9, 40.6, 27.7.
(\pm)-5'-benzyl-5-(iodomethyl)-10b'-(2-((4-methoxybenzyl)amino)ethyl)-4,5,5',10b'-tetrahydro-2H-5'3-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (S29) and C2"'-epi-(土)-5'-benzyl-5-(iodomethyl)-10b'-(2-((4-methoxybenzyl)amino)ethyl)-4,5,5',10b'-tetrahydro-2H-5'3-spiro[furan-3,11'-indolo[2,3-b]quinolin]-2-one (S30)

S29/S30
3:1 mixture
at C2"

To a stirred solution of p-methoxybenzylamine in $\mathrm{CHCl}_{3}(3.5 \mathrm{~mL}, 0.05 \mathrm{M}$) was added 19/S25 ($90 \mathrm{mg}, 0.168 \mathrm{mmol}$). After 1.5 h , a suspension of $\mathrm{NaBH}_{4}(7 \mathrm{mg}, 0.185 \mathrm{mmol})$ in $\mathrm{MeOH}(1$ $\mathrm{mL})$ was added. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo Purification by column chromatography on silica gel (1% $\rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{S 2 9} / \mathbf{S 3 0}$ ($102 \mathrm{mg}, 0.149 \mathrm{mmol}, 93 \%$) as a yellow oil as a mixture of epimers (3:1).

IR (FTIR-ATR) $v_{\text {max }}$: 2961, 2922, 1771, $1553 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{IN}_{3} \mathrm{O}_{3}{ }^{+}$ $684.1718[\mathrm{M}+\mathrm{H}]^{+}$, found 684.1710;

Major Epimer S29

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H})$, 7.09 - 6.96 (m, 5H), $6.78-6.72$ (m, 2H), 5.53 (d, J=16.2 Hz, 1H), 5.15 (d, J=16.1 Hz, 1H), 4.28 (dddd, J=10.7, 7.1, 5.4 Hz, 1H), 3.76 (s, 3H), 3.39 (dd, J=12.7 Hz, 2H), 3.16 (dd, J=10.4, 5.1 Hz, 1H), $3.02-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{dd}, \mathrm{J}=10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, \mathrm{J}=12.8$, $10.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.0, 172.2, $158.6,156.5,139.1,136.7,134.4$, 132.3, 129.7, 129.6, 129.3 (2C), 129.0 (2C), 127.7, 127.2 (2C), 126.0, 125.1, 123.7, 123.6, 122.7, 118.0, 116.7, 113.8 (2C), 75.4, 56.2, 55.4, 54.3, 53.3, 49.6, 45.0, 39.5, 29.9, 4.9.
(\pm)-14b-allyl-10-benzyl-2-(4-methoxybenzyl)-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2$j][2,6]$ naphthyridin-1(2H)-one (S34) via amino acid S35

To a stirred solution of S29/S30 (102 mg, $149 \mu \mathrm{~mol})$ in THF (2.5 mL) at $-78^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi ($0.13 \mathrm{~mL}, 313 \mu \mathrm{~mol}, 2.3 \mathrm{M}$ solution in hexanes) dropwise. After 0.5 h , the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ then warmed to RT . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine (5 mL), dried (MgSO_{4}) and concentrated in vacuo. Purification by column chromatography on silica gel (1 $\rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{S 3 5}(39 \mathrm{mg}, 70 \mu \mathrm{~mol}, 47 \%)$ and recovered starting material S29/ S30 ($41 \mathrm{mg}, 60 \mu \mathrm{~mol}, 40 \%$).

To a stirred solution of diisopropylcarbodiimide in $\mathrm{CHCl}_{3}(3 \mathrm{~mL}, 0.05 \mathrm{M})$ was added $\mathbf{S 3 5}$ (28 $\mathrm{mg}, 50 \mu \mathrm{~mol})$. The reaction was sonicated for 0.5 h then quenched by addition of sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL})$. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel ($15 \% \rightarrow 25 \%$ EtOAc/hexane) afforded S34 ($25 \mathrm{mg}, 46 \mu \mathrm{~mol}$, 92%) as a yellow oil.

IR (FTIR-ATR); $v_{\text {max }}$: 2967, 1616, $1558,1508 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$ $540.2646[\mathrm{M}+\mathrm{H}]^{+}$, found 540.2641 ; $^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (dd, J=7.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.29$ (m, 7H), $7.28-7.23$ (m, 2H), 7.16 (ddd, J=8.3, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (1H, ddd, J=7.7, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.36(\mathrm{~m}$, $1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (ddd, $J=12.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (dd, J=12.3, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (dd, J=14.1, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (ddd, $J=12.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (dd, J=14.1, 8.0 Hz, 1H), 1.38 (dd, J=13.3, 4.9 Hz, 1H); ${ }^{13}$ C NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,169.8,159.4,155.6,138.9,137.0,135.1,133.8,130.2$ (2C), 129.1, 129.0
(2C), 129.0, 128.7, 128.2, 127.5, 126.5 (2C), 125.1, 123.5, 122.9, 122.1, 118.5, 118.0, 115.4, 114.2 (2C), 55.5, 53.9, 50.6, 50.3, 49.4, 43.7, 40.6, 27.7.
(\pm)-N-(2-(5'-benzyl-5-(iodomethyl)-2-oxo-4,5-dihydro-2H-5l3-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)ethyl)-2-methylpropane-2-sulfinamide (S36) and (\pm)-C2"-epi-N-(2-(5'-benzyl-5-(iodomethyl)-2-oxo-4,5-dihydro-2H-5I3-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)ethyl)-2-methylpropane-2-sulfinamide (S37)

19/ S25
3:1 at *

3:1 at
1:1 at sulfur

都

To a stirred solution of $19 / \mathbf{S 2 5}(7.37 \mathrm{~g}, 13.1 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) and Ti(OEt) { }_{4}(8.98 \mathrm{~g}, 8.25 \mathrm{~mL}$, 39.4 mmol, 3 eq.) in $\mathrm{CHCl}_{3}(130 \mathrm{~mL})$ was added (\pm) $\mathbf{- 1 2}(1.75 \mathrm{~g}, 14.44 \mathrm{mmol}, 1.1 \mathrm{eq}$.). After 16 h, a suspension of $\mathrm{NaBH}_{4}\left(2.0 \mathrm{~g}, 52.56 \mathrm{mmol}, 4\right.$ eq.) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was prepared at $0{ }^{\circ} \mathrm{C}$ and added dropwise immediately. After 0.5 h , the reaction mixture was poured into a mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and brine $(130 \mathrm{~mL})$ and vigorously stirred for 0.5 h then filtered through a pad of Celite ${ }^{\circledR}$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and the aqueous was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. Combined organic extracts were washed with brine (50 mL), dried using MgSO_{4} and concentrated in vacuo. Purification by column chromatography on silica gel ($40 \% \rightarrow 60 \%$ EtOAc/hexane) afforded S36/S37(6.54 g, $9.81 \mathrm{mmol}, 75 \%$) as a yellow solid - as a complex mixture of epimers and rotamers.

IR (FTIR-ATR) $\mathrm{V}_{\text {max }}: 2953,2924,2361,1773,1554 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{IS}^{+} 668.1438[\mathrm{M}+\mathrm{H}]^{+}$, found $668.1432 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.30$ (m, 10H), $7.30-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 8 \mathrm{H}), 5.67-5.40(\mathrm{~m}, 2 \mathrm{H})$, $5.35-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.90(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.61$ $(\mathrm{m}, 4 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 18 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.10-0.99(\mathrm{~m}, 15 \mathrm{H})$.; ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.1, 175.0, 171.8, 171.7, 156.4, 156.3, 138.9, 138.8, 136.6,
$136.5,133.8,133.7,130.1,130.0,129.8$ (2C), 129.1 (2C), 129.1 (2C), 127.9, 127.9, 127.5 (2C), 127.3 (2C), 126.0, 125.9, 124.9, 124.8, 123.9, 123.9, 123.7, 123.7, 122.9, 122.8, 118.5, 118.4, 116.9, 116.8, 75.4 (2C), 56.0, 55.8, 55.7, 55.6, 54.2, 54.2, 49.5, 49.4, 42.3, 42.2, 39.4, 31.4 (2C), 22.6 (2C), $4.8(2 \mathrm{C})$.

Note double the number of peaks in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectrum due to inseparable mixtures of epimers at sulfur.
(10bS,11R)-11-allyl-5-benzyl-10b-(2-(((R/S)-tert-butylsulfinyl)amino)ethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinoline-11-carboxylic acid (20) and (10bR,11S)-11-allyl-5-benzyl-10b-(2((R / S)-tert-butylsulfinyl)amino)ethyl)-10b,11-dihydro-5H-indolo[2,3-b]quinoline-11carboxylic acid (S38)

A stirred suspension of $\mathbf{S 3 6} / \mathbf{S 3 7}(1.99 \mathrm{~g}, 2.99 \mathrm{mmol}, 1 \mathrm{eq}$.$) and activated zinc (5.10 \mathrm{~g}, 78.5$ mmol, 26 eq.) in EtOH (30 mL) was refluxed for 5 h . The reaction was filtered through a pad of Celite ${ }^{\bullet}$, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then concentrated in vacuo. Purification by column chromatography on silica gel $\left(5 \% \rightarrow 10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded the diastereomeric mix 20/ S38 (1.43 g, $2.65 \mathrm{mmol}, 89 \%$) as an off-white solid.

IR (FTIR-ATR) $\mathbf{v}_{\text {max }}$: 3400, 2926, 2362, 1770, $1558 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+} 542.2472$, found $542.2469[\mathrm{M}+\mathrm{H}]^{+},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.48$ - 7.40 (m, 4H), $7.40-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H})$, $7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.41(\mathrm{~m}, 4 \mathrm{H}), 5.37-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.34$ (m, 2H), 2.85-2.62(m, 2H), 2.64-2.51(m, 2H), 2.54-2.12(m, 2H), 2.06-1.92(m, 2H), $1.08-1.02(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.9$ (2C), 173.4 (2C), 154.4 (2C), 140.1, 140.0, 138.1, 138.0, 135.7, 135.6, 130.0, 129.8 (4C), 129.1 (2C), 128.5, 128.3 (2C), 128.2, (2C), 56.8 (2C), $50.6,50.6,43.0,43.0,39.3$ (2C), 36.4, 36.3, 23.0 (6C)

Note double the number of peaks in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectrum due to inseparable mixtures of epimers at the sulfur.

Experimental protocol for the conversion of 20/S38 to 4

(\pm)-14b-allyl-10-benzyl-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2-j][2,6]naphthyridin-1(2H)-one (4) via 21

To a stirred solution of $\mathbf{2 0} / \mathbf{S 3 8}(0.58 \mathrm{~g}, 1.08 \mathrm{mmol})$ in 1,4-dioxane (10 mL) and $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $\mathrm{HCl}(0.8 \mathrm{~mL}, 3.24 \mathrm{mmol}, 4 \mathrm{M}, 3 \mathrm{eq}$.). After $1 \mathrm{~h}, \mathrm{HBTU}(0.61 \mathrm{~g}, 1.62 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to the suspension. After 15 min ., DIPEA ($0.68 \mathrm{~g}, 0.92 \mathrm{~mL}, 5.39 \mathrm{mmol}, 5 \mathrm{eq}$.) was added. After 16 hrs , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$ and washed with aq. $\mathrm{HCl}(10 \mathrm{~mL}, 0.5 \mathrm{M})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL). The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel $0 \% \rightarrow 2 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $4(0.32 \mathrm{~g}, 0.77 \mathrm{mmol}, 71 \%)$ as a yellow amorphous solid.

IR (FTIR-ATR) $\boldsymbol{v}_{\text {max }}$: $3335,2968,1607,1558,1541 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}^{+}$ $420.2070[\mathrm{M}+\mathrm{H}]^{+}$, found 420.2063 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (dd, J=7.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.29$ (m, 7H), $7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18$ (ddd, J=8.5, 7.4, 1.6 Hz, 1H), $7.07-6.99$ (m, 2H), 6.93 (dd, J=8.2, 1.2 Hz, 1H), 6.28 (s, 1H), 5.87 (d, J=16.5 Hz, 1H), 5.37 (dddd, J=16.9, 10.1, 8.1, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (d, J=16.5 Hz, 1H), $4.66-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.68$ (ddd, $J=12.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (dddd, $J=12.0,6.4,3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (dd, $J=14.1,6.8 \mathrm{~Hz}$, 1H), 2.67 (ddd, J=12.7, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (dd, J=14.0, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.43 (dd, J=13.4, 5.3 Hz, 1H);
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,172.3,155.7,139.0,137.0,134.9,133.3,129.3,129.0$ (2C), 128.8, 128.0, 127.5, 126.5 (2C), 124.6, 123.6, 123.1, 122.3, 118.6, 118.4, 115.4, 53.5, 49.8, 49.5, 40.0, 39.1, 27.8.

Experimental procedures for the conversion of 5 to 4 via imine 25

(\pm)-10b'-allyl-5'-benzyl-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline] (22) and (\pm)-C2'"-epi-10b'-allyl-5'-benzyl-5-(iodomethyl)-4,5,5',10b'-tetrahydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline] (S39)

11:1 mixture 22/S39
at C2"
A stirred suspension of $5(5.01 \mathrm{~g}, 11.9 \mathrm{mmol}, 1 \mathrm{eq}$.$) and \mathrm{K}_{2} \mathrm{CO}_{3}(4.11 \mathrm{~g}, 29.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.$) in$ acetonitrile (120 mL) was treated with $\mathrm{I}_{2}(7.56 \mathrm{~g}, 29.8 \mathrm{mmol}, 2.5$ eq.). The reaction mixture was left to stir for 3 hours before being quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(a q)}(25 \mathrm{~mL})$ and then diluted with EtOAc (150 mL). The organic layer was washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(2 \times 25$ mL). The aqueous liquids were combined and extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic extracted were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to afford 22/ S39 (11:1) as an amorphous brown solid ($6.24 \mathrm{~g}, 11.4 \mathrm{mmol}$, 96\%).

IR (FTIR) $\mathrm{v}_{\text {max }} 3025,2925,1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{OI} 547.1246$
$[\mathrm{M}+\mathrm{H}]^{+}$, found 547.1229;

Major Epimer (22)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{dd}, \mathrm{J}=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}$, 5H,), $7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.74(\mathrm{~m}$,
$2 \mathrm{H}), 4.70-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{dq}, J=9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{ddt}, J=13.8$, $7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}),, 1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dd}, \mathrm{J}=12.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 172.8,156.6,139.3,137.1,134.6,132.2,129.6,129.3,128.8$ (2C), $128.6,127.5,127.0(2 \mathrm{C}), 126.5,123.5,123.5,122.8,119.0,117.9,115.7,77.4,57.2,52.3$, 49.9, 40.9, 37.5, 9.9.

Determining the Absolute Configuration at the C2' stereocentre in the major epimer 22

The direct iodoetherification of 6 proceeded in an analogous fashion to the iodolactonisation of $\mathbf{S} 23$ described above via a 5-exo-tet reaction to afford the products 22/S39 (11:1 ratio of epimers at C2'). Again, nOe analysis confirmed the confirguration at the C2" stereocentre in the major epimer of 22 (Figure S6).

Figure S6: Selective pulse irradiation at the $\mathrm{H}_{2}{ }^{\prime \prime}$ proton. Again, nOe enhancements inferred the configuration at the C2" stereocentre (R) in the major epimer 22. The result was consistent with the nOe data obtained for iodolactone 18 in which the configuration at the C2" stereocentre in the major epimer was also found to be (R). Further nOe enhancements were also observed at $\mathrm{H} 3^{\prime \prime}$ and $\mathrm{H} 1^{\prime \prime}$.
(\pm)-2-(5'-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)acetaldehyde (23) and (\pm)-C2"-epi-2-(5'-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)acetaldehyde (S40)

11:1 mixture 23/S40
at 2 "

To a stirred solution of 22/ S39 ($5.81 \mathrm{~g}, 10.6 \mathrm{mmol}, 1 \mathrm{eq}$.$) in THF (103 \mathrm{~mL}$) and water (12 mL), was added NMO ($1.87 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.5 \mathrm{eq}$.). To this mixture, $\mathrm{OsO}_{4}(0.2 \mathrm{~mL}, 2.5 \% \mathrm{w} / \mathrm{w}$ solution in n-butanol, $0.19 \mathrm{~mol} \%$) was added and the reaction was left to stir for 16 hours. After this time, iodosobenzene diacetate ($5.57 \mathrm{~g}, 16.0 \mathrm{mmol}$) was added and the reaction was left to stir for 3 hours. The reaction was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (aq) $(10 \mathrm{~mL})$ and saturated $\mathrm{NaHCO}_{3 \text { (aq) }}(10 \mathrm{~mL})$. The reaction mixture was extracted with ethyl acetate $(120 \mathrm{~mL})$ and the organic layer was washing with water $(2 \times 50 \mathrm{~mL})$ and brine $(2 \times 50$ $\mathrm{mL})$. The aqueous liquids were further extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The crude solid was purified by column chromatography on silica gel ($20 \rightarrow 40 \%$ EtOAc: Hexane) to afford 23/S40 as an off white amorphous solid ($3.83 \mathrm{~g}, 7.00 \mathrm{mmol}, 66 \%$).

IR (FTIR) $v_{\text {max }}$: 2925, 1695, $1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} 549.1039$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 549.1027.

Major Epimer (23)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90$ (dd, $J=3.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.46(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-$ 7.32 (m, 7H), $7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.08$ (dd, J = 7.5, 1.0 Hz, 2H), $7.04-$ $7.01(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-$
$4.53(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dt}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=15.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{dd}, \mathrm{J}=15.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{dd}, \mathrm{J}=12.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 199.0,171.8,156.2,139.0,136.8,133.1,130.2,129.1,129.1$ (2C), 128.6, 127.7, 126.9 (2C), 126.6, 124.1, 123.8, 123.6, 118.6, 116.1, 77.6, 72.8,, 52.1, 50.1, 45.0, 40.0, 9.7.
(\pm)-(R)-N-(2-(5'-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)ethyl)-2-methylpropane-2-sulfinamide (S41) and (\pm)- C2"-epi-(R)-N-(2-(($\pm)$-5'-benzyl-5-(iodomethyl)-4,5-dihydro-2H-spiro[furan-3,11'-indolo[2,3-b]quinoline]-10b'(5'H)-yl)ethyl)-2-methylpropane-2-sulfinamide (S42)

To a stirred solution of $23 / \mathbf{S 4 0}(3.71 \mathrm{~g}, 6.77 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(75 \mathrm{~mL})$ and $\mathrm{Ti}(\mathrm{OEt})_{4}(3.0 \mathrm{~mL} 14$. $1 \mathrm{mmol}, 2$ eq.) in CHCl_{3} was added (R)-12 ($1.20 \mathrm{~g}, 9.92 \mathrm{mmol}, 1 \mathrm{eq}$.). The mixture was left to stir at room temperature overnight before the addition of a slurry of $\mathrm{NaBH}_{4}(1.07 \mathrm{~g}, 28.2$ mmol) in $\mathrm{MeOH}(15 \mathrm{~mL})$. The reaction was left to stir vigorously for 1 hour before quenching with brine $(20 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{SO}_{4 \text { (aq) }}(20 \mathrm{~mL})$. The mixture was filtered through a celite pad and rinsed thoroughly with $\mathrm{DCM}(30 \mathrm{~mL})$. The organic liquid was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure. The crude solid was purified by column chromatography on silica gel ($20 \rightarrow 80$ \% EtOAc: Hexane) to afford S41/ S42 (3.00 g, 4.59 mmol, 68\%) as an off white powder - as an inseparable complex mixture of epimers.
m.p. $81-83{ }^{\circ} \mathrm{C}$; IR (FTIR) $\mathrm{v}_{\max }$: 2930, $1555 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{IN}_{3} \mathrm{O}_{2} \mathrm{~S}$ $654.1651[\mathrm{M}+\mathrm{H}]^{+}$, found 654.1639;

Major Diastereoisomers

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $\mathrm{J}=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.41-7.29(\mathrm{~m}, 14 \mathrm{H}), 7.28-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 7.21(\mathrm{tt}, J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 6 \mathrm{H}), 5.63(\mathrm{dd}, \mathrm{J}=16.2,13.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.18$ (dd, $J=16.2,12.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.68-4.55(\mathrm{~m}, 4 \mathrm{H}), 3.95$ (ddd, $J=9.5,5.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.05(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.89-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 4 \mathrm{H})$, 1.47 (ddd, $J=12.4,9.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.03-1.02(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4$, 156.4, 156.3, 138.9, 138.8, 137.0, 136.9, 134.1, 134.0, 129.7, 129.4, 129.4, 129.0 (6C), 128.7, 128.7, 127.7, 127.2, 127.1 (4C), 126.6, 123.8, 123.8, 123.6, 123.5, 123.3, 123.2, 118.3, 115.8, $77.5,73.0,55.9,55.8,55.8,52.5,49.8,49.7,42.6,42.6,40.5,34.8,34.6,22.6$ (6C), 9.8.

Note double the number of peaks in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectrum due to inseparable mixtures of epimers at the sulfur.
(R)-N-(2-((10bS,11R)-11-allyl-5-benzyl-11-(hydroxymethyl)-5,11-dihydro-10bH-indolo[2,3-b]quinolin-10b-yl)ethyl)-2-methylpropane-2-sulfinamide (24) and (R)-N-(2-((10bR,11S)-11-allyl-5-benzyl-11-(hydroxymethyl)-5,11-dihydro-10bH-indolo[2,3-b]quinolin-10b-yl)ethyl)-2-methylpropane-2-sulfinamide (S43)

 ethanol (43 mL) was refluxed for 16 hours. Having cooled to room temperature, the reaction mixture was filtered through a Celite ${ }^{\circledR}$ pad and the filtrate was washed with EtOAc (50 mL) before concentrating under reduced pressure. The crude solid was purified by column chromatography on silica gel ($40 \rightarrow 90 \%$ EtOAc: Hexane) to afford 24/S43 as an inseparable mixture of diastereoisomers (1.1:1), as an off white powder ($1.79 \mathrm{~g}, 3.39 \mathrm{mmol}, 80 \%$).
m.p. $90-93^{\circ} \mathrm{C}$; IR (FTIR) $v_{\text {max }}$: 2935, $1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{+}$ $528.2685\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 528.2671 ; $^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{dt}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{dt}, \mathrm{J}=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 16 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 6 \mathrm{H})$, $5.74-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.11(\mathrm{~m}, 4 \mathrm{H}), 4.85-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.90-2.39(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.01(\mathrm{~m}$, 18 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,172.9,156.4,156.2,140.3,140.1,137.2,137.1$, $135.8,135.8,134.1,134.1,129.0$ (2C), 128.9 (4C), 128.3, 128.2, 127.9, 127.9, 127.5 (4C), $127.0,126.5,124.7$ (2C), 124.3 (2C), 123.1, 123.0, 122.9, 122.9, 118.2 (2C), 118.0, 118.0, 116.1, 116.0, 64.4, 64.4, 58.7, 58.5, 55.8, 55.7, 49.8, 49.7, 47.1, 47.1, 43.0, 42.7, 37.7, 37.7, 34.6, 34.4, 22.6 (6C)

Note double the number of peaks in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectrum due to inseparable mixtures of epimers at the sulfur.

(\pm)-(4aS,14bR)-14b-allyl-10-benzyl-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2-j][2,6] naphthyridine (25)

To a stirred solution of $24 / \mathrm{S} 43$ (320 mg ; 0.61 mmol) in DCM ($24 \mathrm{~cm}^{3}$) was added DessMartin periodinane (DMP, $386 \mathrm{mg} ; 91 \mathrm{mmol}$) and left to stir for 30 minutes. The solution was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3 \text { (aq) }}(5 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3 \text { (aq) }}(5 \mathrm{~mL})$. The solution was diluted with DCM (18 mL) and the organic layer washed with brine (10 mL); dried (MgSO_{4}) and concentrated under reduced pressure. The crude material was columned on alumina ($10 \rightarrow$ 20\% EtOAc: Hexane) to afford 25 ($127 \mathrm{mg} ; 0.32 \mathrm{~mol}, 52 \%$) as a yellow amorphous solid.

IR (FTIR) $v_{\text {max }}$ 2930, $1560 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3}{ }^{+} 404.2127[\mathrm{M}+\mathrm{H}]^{+}$, found 404.2109; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43$ (t, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 - 7.27 (m, 7H), 7.19 (dd, J
$=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.2,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.23(\mathrm{~m}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=16.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J$ $=7.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dd}, J=4.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 173.5,165.3,155.2,138.5,136.8,135.6,131.4,129.0(2 \mathrm{C}), 129.0$, 128.6, 128.3, 127.5, 127.4, 126.5 (2C), 123.2, 123.2, 122.4, 120.1, 118.4, 115.7, 51.1, 49.3, 46.1, 42.2, 40.5, 29.9.

(\pm)-(4aS,14bR)-14b-allyl-10-benzyl-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2j] [2,6]naphthyridin-1(2H)-one (4)

To a stirred solution of 25 (123 mg, $0.31 \mathrm{mmol}, 1 \mathrm{eq}.), \mathrm{NaClO}_{2}(134 \mathrm{mg}, 1.49 \mathrm{mmol}, 5 \mathrm{eq}$. and 2-methylbuten-2-ene ($0.3 \mathrm{~mL}, 0.20 \mathrm{~g} 2.86 \mathrm{mmol}, 10 \mathrm{eq}$.) in THF (2.9 mL) was added a solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4} . \mathrm{H}_{2} \mathrm{O}$ ($105 \mathrm{mg}, 0.76 \mathrm{mmol}, 2.5$ eq.) in water (2 mL) dropwise over 1 minute. The reaction was left to stir for 3 hours before diluting with EtOAc (20 mL) and washing with brine ($2 \times 10 \mathrm{~mL}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford 4 as an off white amorphous solid. The crude material was used without any further purification.

Alternatively, following the same procedure, $102 \mathrm{mg}(0.25 \mathrm{mmol})$ of 25 gave $58 \mathrm{mg}(0.14$ mmol, 58\%) of 4 after purification on silica gel ($20 \rightarrow 50 \%$ EtOAc:Hexane). Spectroscopic data was consistent with previously reported data for 4 above.
(\pm)-2-(10-benzyl-1-oxo-1,2,3,4-tetrahydrobenzo[c]indolo[3,2-j][2,6]

To a stirred solution of crude $4\left(128 \mathrm{mg}, 0.305 \mathrm{mmol}, 1 \mathrm{eq} .{ }^{*}\right)$ in THF (2.7 mL) and $\mathrm{H}_{2} \mathrm{O}(0.3$ mL), was added and $\mathrm{NMO}\left(54 \mathrm{mg}, 0.458 \mathrm{mmol}, 1.5\right.$ eq.). To this mixture, $\mathrm{OsO}_{4}(0.1 \mathrm{~mL}, 2.5$ \% w/w solution in n-butanol, 3.2 mol\%) was added and the reaction was left to stir for 16 hours. After this time, iodosobenzene diacetate ($147 \mathrm{mg}, 0.456 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added and the reaction was left to stir for a further 3 hours. The reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3 \text { (aq) }}\left(5 \mathrm{~mL}\right.$) and saturated NaHCO_{3} (aq) (5 mL). The reaction mixture was extracted with ethyl acetate (25 mL) and the organic layer was washing with water (2×5 mL) and brine ($2 \times 5 \mathrm{~mL}$). The aqueous liquids were extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic liquid was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The crude solid was purified by column chromatography on silica gel ($25 \rightarrow 70 \%$ EtOAc: Hexane) to afford $\mathbf{S} 44$ as an off white powder ($80 \mathrm{mg}, 0.190 \mathrm{mmol}, 62 \%$ over 2 steps from $\mathbf{2 5}$).
*Crude material from synthesis of lactam 4, assumed theoretical 100% yield for mass and no. of moles calculation.

IR (FTIR) $v_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2960,1715,1555 \mathrm{~cm}^{-1}$; HRMS calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 422.1869[\mathrm{M}+\mathrm{H}]^{+}$, found 422.1862; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58$ (dd, $J=4.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (dd, $J=7.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=8.3$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.39(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{td}, J=12.2$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.51 - 3.43 (m, 1H), 2.70 (ddd, $J=13.6,11.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (dd, $J=16.0,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.15$ (dd, $J=16.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56 (dd, $J=13.4,5.9 \mathrm{~Hz}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (199.4, 171.4, 171.3, 155.6, 138.3, 136.5, 134.0, 129.9, 129.8, 129.1 (2C), 128.4, 127.6, 126.4 (2C), 123.7, 123.6, 123.0, 122.8, 118.9, 116.4, 53.9, 49.4, 48.9, 44.5, 39.1, 25.2.
(\pm)-10-benzyl-14b-(2-(methylamino)ethyl)-3,4,10,14b-tetrahydrobenzo[c]indolo[3,2-j][2,6]naphthyridin-1(2H)-one (26)

To a stirred solution of $\mathbf{S 4 4}(0.393 \mathrm{~g}, 0.93 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{MeNH}_{2} . \mathrm{HCl}$ ($0.126 \mathrm{~g}, 1.87 \mathrm{mmol}$) followed by $\mathrm{NaOAc}(0.153 \mathrm{~g}, 1.87 \mathrm{mmol})$. After $18 \mathrm{~h}, \mathrm{NaBH}_{4}(0.106 \mathrm{~g}$, 2.78 mmol) was added in portions. After 1 hr , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Amine 26 was used without additional purification

HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}^{+} 437.2336[\mathrm{M}+\mathrm{H}]^{+}$, found 437.2335 ; IR (FTIR-ATR) $\mathrm{v}_{\text {max }}$: 3369, 2926, 1645, 1550; ¹H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 - 7.23 (m, $8 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~d}$, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (ddd, $J=12.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=11.1,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.64 (ddd, J=12.7, 6.7 Hz, 1H), $2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 2 \mathrm{H})$, 1.48 (ddd, $J=22.2,11.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,172.5,155.6,138.5$, 136.8, 134.9, 129.3, 129.0 (2C), 128.9, 128.2, 127.6, 126.5 (2C), 124.7, 123.5, 123.0, 122.5, 118.7, 115.6, 54.3, 49.3, 48.9, 48.8, 39.1, 36.1, 34.2, 26.8.
(\pm)-tert-butyl-(2-(10-benzyl-1-oxo-1,2,3,4-tetrahydrobenzo[c]indolo[3,2-
$j][2,6]$ naphthyridin-14b(10H)-yl)ethyl)(methyl)carbamate (27)

To a crude stirred solution of $\mathbf{2 6}$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added di-tert-butyl dicarbonate $(0.235 \mathrm{~g}, 1.08 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.109 \mathrm{~g}, 0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$. After 1 h , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with aq. $\mathrm{HCl}(10 \mathrm{~mL}, 0.5 \mathrm{M})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel $\left(1 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded 27 ($0.221 \mathrm{~g}, 0.412 \mathrm{mmol}, 44 \%, 2$ steps from $\mathbf{S 4 4}$) as a white amorphous solid.

IR (FTIR-ATR) $v_{\text {max }}$: 2963, 2380, $1684 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}^{+}$ $559.2680[\mathrm{M}+\mathrm{Na}]^{+}$; found 559.2667; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{Tol}^{2} \mathrm{~d}_{8}, 363.5 \mathrm{~K}$) $\delta 7.65(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36$ (d, J=7.8 Hz, 1H), 7.27 (d, J=7.6 Hz, 2H), $7.18-7.09$ (m, 2H), $7.05-7.00(\mathrm{~m}, 1 \mathrm{H})$, $6.90-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ (s, 1H), 4.89 (d, J=16.1 $\mathrm{Hz}, 1 \mathrm{H}), 3.31$ (ddd, J=13.0, 4.7 Hz, 1H), 2.99 (ddd, J=11.9, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.88-2.75(\mathrm{~m}, 1 \mathrm{H})$, 2.51 - 2.45 (m, 1H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.73$ (ddd, J=13.5, 11.7, 4.6 Hz, 1H), 1.27 (s, 9H), 0.86 (dd, J=13.2, 5.2 Hz, 1H).
(\pm)-tert-butyl-(2-(10-benzyl-1-ethoxy-3,4-dihydrobenzo[c]indolo[3,2-j][2,6]naphthyridin$14 \mathrm{~b}(10 \mathrm{H})$-yl)ethyl)(methyl)carbamate (28) and (\pm)-2-(10-benzyl-1-ethoxy-3,4-dihydrobenzo[c]indolo[3,2-j][2,6]naphthyridin-14b(10H)-yl)-N-methylethan-1-amine (29)

To a stirred suspension of $\mathbf{2 7}(177 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(150 \mathrm{mg}, 1.79 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Et}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}(0.9 \mathrm{~mL}, 0.895 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After 1 hr , the reaction was allowed to warm to RT then quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ after 1 hr . The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography on silica gel $\left(0 \% \rightarrow 5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $28(0.148 \mathrm{mg}, 0.262$ $\mathrm{mmol}, 73 \%$) as a colourless oil and recovered $\mathbf{2 7}$ ($10 \mathrm{mg}, 0.018 \mathrm{mmol}, 5 \%$).

28

HRMS (ESI-ion trap) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+} 565.3173[\mathrm{M}+\mathrm{H}]^{+}$, found 565.3165 .

To a stirred solution of $28(0.146 \mathrm{~g}, 0.26 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA (1.3 mL) dropwise. After 30 minutes, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$, the combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give $\mathbf{2 9}$ which was used in the next step without additional purification.

Alternatively, purification by column chromatography on silica gel $\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.1 \%\right.$ $\mathrm{NH}_{4} \mathrm{OH}$) afforded 29 ($19 \mathrm{mg}, 40.9 \mu \mathrm{~mol}, 96 \%$) as a colourless oil; starting with 28 (24 mg , $42.5 \mu \mathrm{~mol})$.

29

HRMS (ESI) m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}^{+} 465.2649[\mathrm{M}+\mathrm{H}]^{+}$, found 465.2653 ; IR (FTIR-ATR) $\mathrm{v}_{\text {max }}$: 2932, 2855, 2378, 2309. 1559; ${ }^{1}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (dd, J=7.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34 $-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{ddd}, \mathrm{J}=8.4,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H})$, 7.00 - 6.95 (m, 2H), 6.91 (dd, J=8.2, 1.2 Hz, 1H), 5.84 (d, J=16.5 Hz, 1H), 4.96 (d, J=16.3 Hz, 1H), $4.39-4.28$ (m, 2H), $3.81-3.64$ (m, 2H), 2.55 (td, J=11.4, 4.7 Hz, 1H), 2.41 (ddd, J=13.0, $11.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06$ (td, $J=11.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.93 (ddd, $J=13.8,11.2,4.8 \mathrm{~Hz}$, 1H), 1.51 (ddd, J=13.9, 11.3, 4.7 Hz, 1H), 1.44 (t, J=7.1 Hz, 3H), $1.26-1.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.1,161.8,155.4,138.3,136.9,135.5,129.0(2 \mathrm{C}), 129.0,128.8,128.1$,
127.5, 126.5, 126.5 (2C), 123.3, 123.3, 122.5, 118.4, 115.7, 61.6, 54.2, 49.2, 48.7, 45.1, 43.0, 35.1, 32.8, 27.5, 14.6.

(\pm)-12-benzyl-3-methyl-2,3,5,6-tetrahydro-1H,12H-benzo[c]indolo[3,2-j]pyrrolo[3,2e][2,6]naphthyridine (30)

To a stirred solution of 28 ($0.146 \mathrm{~g}, 0.259 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA (1.3 mL) dropwise. After 30 minutes, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$, the combined organic extracts were
 washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give 29 which was used in the next step without additional purification.

A stirred solution of 29 (0.259 mmol) and DIPEA ($66 \mathrm{mg}, 90 \mu \mathrm{~L}, 0.518 \mathrm{mmol}$) in dry PhMe (25 mL) was refluxed for 18 hrs . The reaction was concentrated in vacuo and purification by column chromatography on silica gel ($5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.1 \% \mathrm{NH}_{4} \mathrm{OH}$) afforded $\mathbf{3 0}$ (90 mg , $0.215 \mathrm{mmol}, 83 \%, 2$ steps) as an off-white amorphous solid. Recrystallisation of a small sample of 30 in DCM/ Hexane afforded crystals was suitable for X-ray analysis (CCDC 1478154). ${ }^{6}$

IR (FTIR-ATR) v max 2932, 2855, 2378, 2309, 1559, 1541, $1506 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{4}{ }^{+} 419.2230[\mathrm{M}+\mathrm{H}]^{+}$, found 419.2228; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}$, 5H), $7.30-7.23$ (m, 2H), 7.16 (ddd, J=7.9, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13-7.11$ (m, 1H), 7.00 (ddd, J=7.4, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.87$ (dd, J=7.6, 1.5 Hz, 1H), $5.74(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (d,
$J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{ddd}, \mathrm{J}=9.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{t}, \mathrm{J}=9.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.33 (ddd, $J=13.4,10.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.83 (ddd, J=12.2, 10.1, $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.71 (dd, $J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (ddd, J=13.4, 6.6, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 172.9$, $161.8,155.6,137.8,136.7,135.2,129.1,129.0$ (2C), 128.8, 127.6, 127.1, 126.5 (2C), 126.2, $123.4,123.1,122.9,118.1,116.0,52.2,49.0,47.6,46.8,42.8,31.6,29.9,25.6$.

(\pm)-Dehalo-perophoramidine (2)

To a stirred solution of $30(10 \mathrm{mg}, 0.024 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added a freshly prepared solution of sodium naphthalide (1 M in THF) until the reaction mixture remained green in colour. The reaction was warmed to rt and stirred for 1 h . The reaction was quenched with brine (2 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatograph on silica gel ($10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / 1 \% \mathrm{NH}_{4} \mathrm{OH}$) afforded 2 ($4 \mathrm{mg}, 0.012 \mathrm{mmol}$, 50\%) as a yellow oil.

HRMS (ESI) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4}{ }^{+} 329.1761[\mathrm{M}+\mathrm{H}]^{+}$, found $329.1764 ;{ }^{1} \mathrm{H} N \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H})$, 6.90 (dd, J=7.6, 1.4 Hz, 1H), 3.70 (dt, J=9.9, $3.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.34(\mathrm{td}, J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dd}, \mathrm{J}=12.1,5.8 \mathrm{~Hz}$, 1H), 1.39 - $1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,161.3,150.5,139.0,132.3$, $128.9,128.7,127.0,126.0,124.1,123.9,122.2,120.3,114.1,50.0,47.1,46.5,43.0,31.4$, 30.1, 25.3.

Comparison of synthetic (\pm)-2 to other reported spectra in the literature

Comparison of Synthetic Dehaloperophoramidine TFA salt (\pm)-2.TFA with Material Provided by Prof. Chris Ireland

Synthetic (\pm)-2 was converted to the corresponding TFA salt ((\pm)-2.TFA) by treatment with TFA in deuterated MeOH (Scheme S9). The ${ }^{1} \mathrm{H}$ NMR spectrum obtained was found to be in agreement with an authentic sample of 2.TFA provided by C. Ireland (Figure S7).

Scheme S9: Preparation of the TFA salt (2.TFA). This compound was prepared in order to compare it with an authentic sample of authentic 2.TFA, provided by Prof Chris Ireland.

Figure S7. The ${ }^{1} \mathrm{H}$ NMR spectra of synthetic (\pm)-2 (free-base in CDCl_{3}, spectrum 3); synthetic (\pm)-2.TFA (TFA salt in d_{4}-MeOD, spectrum 2) and an authentic sample of 2.TFA (TFA salt in d_{4}-MeOD, spectrum 1). The region 6.35 -4.50 ppm contained a broad water signal in spectra 1 and 2 and has therefore been left out for clarity.

Doping Experiment of Authentic 2.TFA with synthetic (\pm)-2.TFA for Structure Confirmation

D

Figure S8. ${ }^{1} \mathrm{H}$ NMR ($d_{4}-\mathrm{MeOD}$) comparison of the aromatic region ($7.60-6.80 \mathrm{ppm}$) of authentic 2.TFA (spectrum A) and synthetic 2.TFA (spectrum B). A sample of authentic 2.TFA was doped with synthetic 2.TFA and the resulting ${ }^{1} \mathrm{H}$ NMR has been superimposed on that of authentic 2.TFA (spectrum \mathbf{C}). A selected region in the aliphatic region (spectrum D; 1.97-1.55 ppm) showed that whilst the signals associated with $\mathrm{H}-\mathbf{1}^{\prime \prime}$ and $\mathrm{H} 1^{\prime}$ increased, a signal associated with a decomposition product from authentic 2.TFA remained unchanged.

A ${ }^{1} \mathrm{H}$ NMR spectrum ($d_{4}-\mathrm{MeOD}$) of authentic 2.TFA was acquired (Figure $\mathrm{S9}$; red spectrum) before doping the sample with synthetic (\pm)-2.TFA and submitting for further ${ }^{1} \mathrm{H}$ NMR analysis (Figure S9; blue spectrum). The two spectra were overlaid (Figure S9).

Figure S9 The ${ }^{1} \mathrm{H}$ NMR spectrum ($d_{4}-\mathrm{MeOD}$) from $\delta_{H} 2.80-1.50 \mathrm{ppm}$ of an authentic sample of 2.TFA (red spectrum) and the ${ }^{1} \mathrm{H}$ NMR spectrum of authentic 2.TFA doped with synthetic (\pm)-2.TFA (blue spectrum). An increase in the signals associated with protons $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-1^{\prime \prime}$ were observed and the signal associated with a decomposition product in authentic 2.TFA ($\delta_{\mathrm{H}} 2.22 \mathrm{ppm}$ and 1.63 ppm) were unchanged.

The unknown impurity peaks from authentic 2.TFA were used as an internal reference. Whilst the peaks corresponding to 2.TFA increased, the impurity did not increase in intensity.

(\pm)-Dehalo-perophoramidine.TFA salt (2.TFA)

(± 2

2.TFA

A solution of TFA in $d_{4}-\mathrm{CD}_{3} \mathrm{OD}$ was added to (\pm) - $\mathbf{2}$ to afford the TFA salt of (\pm)-dehaloperophoramidine (2.TFA).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H})$, $6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (td, J=10.9, 5.9 Hz, 1H), $3.71-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.44$ (s, 3H), 2.47 (ddd, $J=13.1,11.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08 (ddd, J=12.5, 10.5, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (dd, J=13.1, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (dd, J=15.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$).

Tabulated Comparison of ($\mathbf{\pm}$)-2.TFA vs Isolation Paper

Assignment	Ireland ${ }^{20}$	Westwood	Takemoto ${ }^{21}$
8	$\begin{gathered} 7.34 \text { (ddd, } J=7.9, \\ 7.9,1.2) \end{gathered}$		Chemical shifts not written up in paper but a comparison of the published ${ }^{1} \mathrm{H}$ NMR spectrum of authentic 2.TFA with the material prepared by this group was provided.
3	$\begin{gathered} 7.31(\mathrm{dd}, J=7.8, \\ 7.8) \end{gathered}$		
7	7.19 ($\mathrm{d}, \mathrm{J}=7.9$)	7.20 (dd, J = 7.9, 1.3 Hz)	
4	7.12 (d, J = 7.8)	$7.15-7.07$ (m)	
1	7.09 ($\mathrm{d}, \mathrm{J}=7.8$)		
9	7.07 (7.9, $J=7.8)$		
2	$\begin{gathered} 7.04 \text { (dd, } J=7.8, \\ 7.8) \end{gathered}$		
10	$\begin{gathered} 6.73(\mathrm{dd}, J=7.8, \\ 1.2) \end{gathered}$	6.72 (dd, J = 7.7, 1.4 Hz)	
2'	3.75 (m)	$3.74-3.62$ (m)	
2'1	3.71 (m)		
2'	3.67 (m)		
4'	3.61 (s)	3.59 (s, 3H)	
2'	$\begin{gathered} 3.46(\mathrm{dd}, J=10.5, \\ 8.9) \end{gathered}$	3.42 (dd, J = 10.9, 8.7 Hz,)	
1'	$\begin{gathered} 2.41 \text { (ddd, J = 14.1, } \\ 10.6,8.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.40 \text { (ddd, } J=14.0,10.5, \\ 8.3 \mathrm{~Hz}) \\ \hline \end{gathered}$	
1'	$\begin{gathered} 2.10 \text { (ddd, } J=12.5, \\ 8.9,8.7) \end{gathered}$	$\begin{gathered} 2.08 \text { (ddd, } J=12.4,10.4, \\ 8.7 \mathrm{~Hz}) \end{gathered}$	
$1 '$	$\begin{gathered} 1.91(\mathrm{dd}, J=12.5, \\ 5.8) \end{gathered}$	1.91 (dd, J = 12.5, 5.8 Hz)	
1'	$\begin{gathered} 1.68 \text { (ddd, } J=14.1, \\ 5.1,1.2) \end{gathered}$	$\begin{gathered} 1.65(\mathrm{ddd}, \mathrm{~J}=14.0,5.3, \\ 2.3 \mathrm{~Hz}) . \end{gathered}$	

Table S2 Full comparison of the chemical shifts of our synthetic ($\mathbf{\pm}$)-2.TFA vs authentic 2.TFA reported by Ireland et al. Spectra run at 500 MHz in CDCl_{3} and referenced to 7.24 ppm . ${ }^{\text {ad }}$ During our attempts to prepare a sample of our synthetic (\pm)-2.TFA for comparison it was found that the chemical shifts of peaks in the 1H NMR analysis were very sensitive to the amount of TFA used. This led to significant challenges in preparing a sample that was analogous to previous reports. ${ }^{20,21}$

Tabulated Comparison of Reported Syntheses of (\pm)-2 (free base) in CDCl_{3}

	Takemoto ${ }^{21}$	Somfai ${ }^{22}$	Westwood
Aromatic Region	7.29-7.23 (m, 2H)	$7.30-7.26$ (m, 1H)	$7.29-7.23$ (m, 2H)
		$7.25-7.22$ (m, 1H)	
	$\begin{gathered} 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	7.17 (d, J = 7.7 Hz, 1H)	7.15 (d, J=7.7 Hz, 1H)
	7.14-7.10 (m, 2H)	$7.13-7.09$ (m, 2H)	$7.12-7.07$ (m, 2H)
	$\begin{gathered} 7.00(\mathrm{dd}, J=7.0,7.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	$7.02-6.89$ (m, 3H)	7.02-6.95 (m, 2H)
	$\begin{gathered} 6.97(\mathrm{dd}, J=7.0,7.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$		
	$\begin{gathered} 6.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$		$\begin{gathered} 6.90(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, \\ 1 \mathrm{H}, 1 \mathrm{H}) \end{gathered}$
Aliphatic Region	3.72-3.69 (m, 2H)	$3.75-3.65$ (m, 2H)	$\begin{gathered} 3.70(\mathrm{dt}, \mathrm{~J}=9.9,3.8 \mathrm{~Hz}, \\ 2 \mathrm{H}) \end{gathered}$
	$\begin{gathered} \hline 3.32(\mathrm{ddd}, \mathrm{~J}=9.6, \\ 9.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 3.32(\mathrm{td}, J=9.7,5.9 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 3.34 \text { (td, J=9.7, } 5.9 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$
	3.15 (s, 3H)	3.15 (s, 3H)	3.19 (s, 3H)
	$\begin{gathered} 3.06(\mathrm{dd}, J=9.0,9.0 \\ \mathrm{Hz}, 1 \mathrm{H}) \end{gathered}$	3.06 (t, J = 8.9 Hz, 1H)	3.08 (t, J=9.1 Hz, 1H)
	$\begin{gathered} 2.26(\mathrm{ddd}, J=13.2, \\ 8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}) \end{gathered}$	2.31-2.20 (m, 1H)	2.29-2.21 (m, 1H)
	1.88-1.82 (m, 1H)	$1.91-1.79$ (m, 1H)	$1.90-1.81$ (m, 1H)
	$\begin{gathered} 1.74(\mathrm{dd}, J=12.0, \\ 6.0 \mathrm{~Hz}, 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.74(\mathrm{dd}, \mathrm{~J}=12.0,5.7 \mathrm{~Hz}, \\ 1 \mathrm{H}) \end{gathered}$	$\begin{gathered} \hline 1.73(\mathrm{dd}, \mathrm{~J}=12.1,5.8 \mathrm{~Hz}, \\ 1 \mathrm{H}) \\ \hline \end{gathered}$
	$\begin{gathered} 1.35(\mathrm{ddd}, J=13.2, \\ 5.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}) \end{gathered}$	$1.40-1.31$ (m, 1H)	$1.39-1.34$ (m, 1H)

Table $\mathbf{S 3}$ Full comparison of the chemical shifts in CDCl_{3} of synthetic (\pm)-2.TFA reported by Takemoto ${ }^{21}$ (relative to TMS 0.00 ppm), Somfai ${ }^{22}$ (*appears to be relative to CDCl_{3}) and Westwood ${ }^{\text {c }}$ (relative to $\mathrm{CDCl}_{3} 7.26 \mathrm{ppm}$)

Bibliography

1. N. Voûte, D. Philp, A. M. Z. Slawin, N. J. Westwood, Org. Biomol. Chem., 2010, 8, 442.
2. F. D. Suvire, M. Sortino, V. V Kouznetsov, L. Y. Vargas M, S. A. Zacchino, U. M. Cruz, R. D. Enriz, Bioorg. Med. Chem., 2006, 14, 1851.
3. J. Bergman, R. Engqvist, C. Stålhandske, H. Wallberg, Tetrahedron, 2003, 59, 1033.
4. J. L. Charlton, M. M. Alauddin, J. Org. Chem., 1986, 51, 3490.
5. A. Torrado, B. Imperiali, J. Org. Chem., 1996, 61, 8940.
6. CCDC 1486344 (15) CCDC 1478153 (S16), CCDC 1478152 (5) and CCDC 1478154 (30) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
7. K. M. Sadhu, D. S. Matteson, Tetrahedron Lett., 1986, 27, 795.
8. D. B. Dess, J. C. Martin, J. Org. Chem., 1983, 48, 4155.
9. W. P. Griffith, S. V. Ley, G. P. Whitcombe, A. D. White, J. Chem. Soc. Chem. Commun., 1987, 1625.
10. M. Hunsen, Synthesis (Stuttg), 2005, 2487.
11. K. Bowden, I. M. Heilbron, E. R. H. Jones, B. C. L. Weedon, J. Chem. Soc.,1946, 39.
12. B. S. Bal, W. E. Childers, H. W. Pinnick, Tetrahedron, 1981, 37, 2091.
13. V. VanRheenen, R. C. Kelly, D. Y. Cha, Tetrahedron Lett., 1976, 17, 1973.
14. D. J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chemie Int. Ed., 1995, 34, 1059.
15. K. C. Nicolaou, V. A. Adsool, C. R. H. Hale, Org. Lett., 2010, 12, 1552.
16. E. M. Dangerfield, C. H. Plunkett, A. L. Win-Mason, B. L. Stocker, M. S. M. Timmer, J. Org. Chem., 2010, 75, 5470.
17. G. Pandey, M. Balakrishnan, J. Org. Chem., 2008, 73, 8128.
18. J. A. Ellman, T. D. Owens, T. P. Tang, Acc. Chem. Res., 2002, 35, 984.
19. M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev., 2010, 110, 3600.
20. S. M. Verbitski, C. L. Mayne, R. A. Davis, G. P. Concepcion, C. M. Ireland, J. Org. Chem., 2002, 67, 7124.
21. T. Ishida, H. Ikota, K. Kurahashi, C. Tsukano, Y. Takemoto, Angew. Chem. Int. Ed., 2013, 52, 10204.
22. K. Popov, A. Hoang, P. Somfai, Angew. Chemie. Int. Ed., 2016, 55, 1801.
