Supplementary Information

Hypoiodite-Catalyzed Oxidative Cyclisation of Michael Adducts of Chalcones with 1,3-Dicarbonyl compounds: A Facile and Versatile Approach to Substituted Furans and Cyclopropanes

Wen-Chao Gao,* Fei Hu, Jun Tian, Xing Li, Wen-Long Wei, and Hong-Hong Chang*

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan

030024, P. R. of China

E-mail: gaowenchao@tyut.edu.cn changhonghong@tyut.edu.cn

Table of Contents

S2
S2
S10
S12
S13
S13
S14
S15
S31
S32
S34
S35
S56

General Information

¹H NMR spectra were recorded at 600 MHz or 400 MHz and ¹³C NMR spectra were measured at 150MHz or 100 MHz using Bruker AVANCE III NMR spectrometers with CDCl₃ as the solvent. Chemical shifts (δ) were measured in ppm and referenced to the deuterated chloroform (¹H: δ = 7.26 ppm, ¹³C: δ = 77.00 ppm). The multiplicities of signals were described using the following abbreviations: s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, dd = doublet of doublets, tt = triplet of triplets. High-resolution mass spectrometry (HRMS) was performed on a micrOTOF-Q II instrument with an ESI source. Melting points were measured with a RD-II type melting point apparatus. Fluorescence excitation and emission spectra were recorded by Cary Eclipse fluorescence spectrophotometer (Varian, America) with $C = 1.5 \times 10^{-5} \text{ mol/L}$. The known compounds were identified by the comparison of their NMR spectra with reported data in literatures; the new compounds were characterized by NMR, HRMS and melting point for solid samples. Unless otherwise noted, reagents obtained from commercial sources were directly used without further purification; all solvents were obtained from commercial sources and were purified according to standard procedures. Petroleum ether (PE), where used, has the boiling point range 60-90 °C. Column chromatography was performed on silica gel (200-300 mesh).

Preparation of Michael Adducts

General procedure:^{S1}

To a solution of chalcone (7.5 mmol) and 1,3-dicarbonyl compounds (5 mmol) in freshly distilled toluene (5 mL) was added FeCl₃ (0.5 mmol). After stirring at room temperature for 24-48 h, the mixture was diluted with H₂O (10 mL) and extracted with EtOAc (3×20 mL). The combined organic layers were dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography to gain Michael adducts **1**or **4**. All products were known compounds and structures have been confirmed by ¹H NMR.

Ethyl 2-benzoyl-5-oxo-3,5-diphenylpentanoate (1a)^{S2}

Yield: 55%; white solid; m.p. 139-141 °C;¹H NMR (CDCl₃, 400 MHz, two isomers ratio 1:1): δ 8.09 (d, 1H, J = 8.0 Hz), 7.90-7.82 (m, 3H), 7.60 (t, 0.5H, J = 7.2 Hz), 7.55-7.37 (m, 5.5H), 7.31 (d, 1H, J = 8.0 Hz), 7.26-7.21 (m, 2H), 7.19-7.11 (m, 1.5H), 7.06 (t, 0.5H, J = 7.2 Hz), 4.92 (dd, 1H, J = 9.6, 4.0 Hz), 4.45-4.35(m, 1H), 4.20-4.10 (m, 1H), 3.87-3.77 (m, 1H), 3.62-3.52 (m, 1H), 3.48 (dd, 0.5 H, J = 16.0, 4.0 Hz), 3.31 (dd, 0.5 H, J = 16.0, 9.6 Hz), 1.16 (t, 1.5H, J = 7.2 Hz), 0.88 (t, 1.5 H, J=7.2 Hz).

Ethyl 2-benzoyl-5-oxo-3-phenyl-5-(p-tolyl)pentanoate (1b)^{S3}

Yield: 60%; white solid; m.p. 87-89 °C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 1:1): δ 8.09 (d, 1H, *J* = 8.0 Hz), 7.85 (d, 1H, J = 8.0 Hz), 7.79 (t, 2H, J = 8.8 Hz), 7.60 (t, 0.5H, J = 7.2 Hz), 7.55-7.45 (m, 1.5H), 7.39 (t, 1H, J = 7.6 Hz), 7.30 (d, 1H, J = 7.2 Hz), 7.26-7.18 (m, 4H), 7.16-7.10 (m, 1.5H), 7.08-7.02 (m, 0.5H), 4.93 (dd, 1H, J = 9.6, 4.0 Hz), 4.45-4.35(m, 1H), 4.20-4.10 (m, 1H), 3.87-3.77 (m, 1H), 3.45-3.40 (m, 1.5 H), 3.27 (dd, 0.5 H, J = 16.0, 9.6 Hz), 2.38 (s, 3H), 1.16 (t, 1.5H, J = 7.2 Hz), 0.87 (t, 1.5 H, *J* = 7.2 Hz).

Ethyl 2-benzoyl-5-(4-methoxyphenyl)-5-oxo-3-phenylpentanoate (1c)^{S3}

Yield: 60%, white solid; m.p.102-104 °C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 1:3): δ 8.09 (d, 1.4H, J = 7.2 Hz), 7.90-7.80 (m, 2.4H), 7.60 (t, 0.8H, J = 7.2 Hz), 7.55-7.45 (m, 1.7H), 7.39 (t, 0.7H, J = 7.6 Hz), 7.29 (d, 1.6H, J = 7.6 Hz), 7.23 (t, 2H, J = 7.2 Hz), 7.19-7.10 (m, 1.3H), 7.05 (t, 0.3H, J = 7.2 Hz), 6.87 (d, 2H, J = 8.8 Hz) 4.96-4.90 (m, 1H), 4.44-4.32 (m, 0.5H), 3.88-3.78 (m, 4.5H), 3.51-3.40 (m, 1.3H), 3.22 (dd, 0.7H, J = 16.0, 9.6 Hz), 1.16 (t, 0.8H, J = 7.2 Hz), 0.88 (t, 2.4 H, J=7.2 Hz).

S3

Ethyl 2-benzoyl-5-(4-chlorophenyl)-5-oxo-3-phenylpentanoate (1d)^{S3}

Yield: 44%; white solid; m.p.94-96 °C; ¹H NMR (CDCl₃, 600 MHz, two isomers ratio 3:2): δ 8.10 (d, 1H, J = 7.2 Hz), 7.87-7.80 (m, 2.8H), 7.59 (t, 0.6H, J = 7.2 Hz), 7.52-7.46 (m, 1.6H), 7.39-7.34 (m, 2.8H), 7.30 (d, 1H, J = 7.2 Hz), 7.26-7.22 (m, 2H), 7.18-7.12 (m, 1.5H), 7.05 (t, 0.5H, J = 7.2 Hz), 4.93 (dd, 1H, J = 12.0, 9.6 Hz), 4.41-4.35(m, 1H), 4.18-4.11 (m, 0.8H), 3.85-3.77 (m, 1.2H), 3.59 (dd, 0.4H, J = 10.2, 4.2 Hz), 3.53-3.42 (m, 1 H), 3.28 (dd, 0.6H, J=16.2, 10.2 Hz), 1.15 (t, 1.2H, J = 7.2 Hz), 0.86 (t, 1.8H, J=7.2 Hz).

Ethyl 2-benzoyl-5-oxo-3-phenyl-5-(thiophen-2-yl)pentanoate (1e)^{S3}

Yield: 44%; white solid; m.p. 118-120 °C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 3:2): δ 8.10 (d, 1H, J = 8.0 Hz), 7.85 (d, 0.8H, J = 8.4 Hz), 7.76-7.71 (m, 1H), 7.63-7.55 (m, 1.7H), 7.53-7.47 (m, 1.6H), 7.39 (t, 1H, J = 7.6 Hz), 7.31(d, 1.2H, J = 7.6 Hz), 7.23 (d, 1.6H, J = 7.2 Hz), 7.19-7.11 (m, 1.7H), 7.10-7.03 (m, 1.4H), 4.96 (dd, 1H, J = 10.0, 2.8 Hz), 4.42-4.32 (m, 1H), 4.15 (q, 1H, J = 6.8 Hz), 3.88-3.77 (m, 1H), 3.51-3.35 (m, 1.5H), 3.24-3.16 (m, 0.5 H), 1.17 (t, 1.2H, J = 7.2 Hz), 0.87 (t, 1.8 H, J = 7.2 Hz).

Ethyl 2-benzoyl-5-(furan-2-yl)-5-oxo-3-phenylpentanoate (1f)^{S3}

Yield: 59%; white solid; m.p.150-152 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.10 (d, 2H, J = 7.6 Hz), 7.60 (t, 1H, J = 7.6 Hz), 7.49 (t, 3H, J = 7.6 Hz), 7.32 (d, 2H, J = 7.2 Hz), 7.23 (d, 2H, J = 7.6 Hz), 7.19-7.13 (m, 2H), 6.47-6.43 (m, 1H), 4.95 (d, 1H, J = 10.4 S4

Hz), 4.44-4.32 (m, 1H), 3.87-3.76 (m, 2H), 3.29-3.15 (m, 2H), 0.87 (t, 3H, *J* =7.2 Hz).

Ethyl 2-benzoyl-5-(naphthalen-2-yl)-5-oxo-3-phenylpentanoate (1g)^{S3}

Yield: 59%; white solid; m.p.144-146 °C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 1:1): δ 8.45 (s, 1H), 8.13 (d, 1H, J = 7.2 Hz), 7.97-7.81 (m, 4.8 H), 7.64-7.48 (m, 4H), 7.40 (t, 1H, J = 8.0 Hz), 7.28 (d, 1H, J = 8.0 Hz), 7.23 (d, 1H, J = 7.6 Hz), 7.19-7.11 (m, 1.5H), 7.06 (m, 0.5H), 4.97 (dd, 1H, J = 9.6, 4.80 Hz), 4.54-4.42 (m, 1H), 4.22-4.14 (m, 1H), 3.88-3.79 (m, 1H), 3.73-3.58 (m, 1.4H), 3.43 (dd, 0.6 H, J = 15.6, 9.6 Hz), 1.18 (t, 1.2H, J = 7.2 Hz), 0.88 (t, 1.8H, J = 7.2 Hz).

Ethyl 2-benzoyl-5-oxo-5-phenyl-3-(p-tolyl)pentanoate (1h)^{S3}

Yield: 55%; white solid; m.p.113-115 °C; ¹H NMR (CDCl₃, 600 MHz, two isomers ratio 1:1): δ 8.09 (d, 1H, J = 8.4 Hz), 7.91-7.85 (m, 3H), 7.60 (t, 0.5H, J = 7.8 Hz), 7.54-7.47 (m, 2.5H), 7.44-7.38 (m, 3H), 7.18 (d, 1H, J = 7.8 Hz), 7.12 (d, 1H, J = 7.8 Hz), 7.04 (d, 1H, J = 7.8 Hz), 6.94 (d, 1H, J = 8.4 Hz), 4.90 (dd, 1H, J = 12.0, 9.6 Hz), 4.39-4.31 (m, 1H), 4.19-4.11 (m, 1H), 3.87-3.81 (m, 1H), 3.59-3.43 (m, 1H), 3.27 (dd, 0.5 H, J = 15.6, 9.6 Hz), 3.31 (dd, 0.5 H, J = 16.0, 9.6 Hz), 2.26 (s, 1.5 H), 2.18 (s, 1.5 H) 1.16 (t, 1.5H, J = 7.2 Hz), 0.89 (t, 1.5 H, J = 7.2 Hz).

Ethyl 2-benzoyl-3-(4-chlorophenyl)-5-oxo-5-phenylpentanoate (1i)^{S3}

Yield: 45%; white solid; m.p.122-124 $^{\rm o}{\rm C};~^1{\rm H}$ NMR (CDCl₃, 400 MHz, two isomers $_{\rm S5}$

ratio 8:5): δ 8.09 (d, 1.2H, J = 8.0 Hz), 7.90-7.82 (m, 2.7H), 7.62 (t, 0.6H, J = 7.2 Hz), 7.56-7.48 (m, 2.65H), 7.45-7.38 (m, 2.65H), 7.29-7.26 (m, 1H), 7.23-7.17 (m, 2H), 7.11 (d, 0.8H, J = 8.4 Hz), 4.88 (dd, 1H, J = 10.4, 3.2 Hz), 4.43-4.32 (m, 1H), 4.20-4.12 (m, 0.8H), 3.90-3.80 (m, 1.2H), 3.59-3.42 (m, 1.4H), 3.27 (dd, 0.6 H, J = 16.0, 4.0 Hz), 3.31 (dd, 0.5 H, J =16.0, 9.6 Hz), 1.16 (t, 1.15H, J = 7.2 Hz), 0.91 (t, 1.85 H, J =7.2 Hz).

Ethyl 2-benzoyl-3-(furan-2-yl)-5-oxo-5-phenylpentanoate (1j)^{S3}

Yield: 35%; white solid; m.p.58-60 °C; ¹H NMR (CDCl₃, 600 MHz, two isomers ratio 7:3): δ 8.04 (d, 1.4H, J = 8.4 Hz), 7.96-7.91 (m, 2.6H), 7.59 (t, 0.7H, J = 7.2 Hz), 7.56-7.51 (m, 1.3H), 7.50-7.41 (m, 4H), 7.27 (dd, 0.7H, J = 1.8, 1.2 Hz), 7.13 (dd, 0.3H, J = 1.8, 1.2 Hz), 6.20 (dd, 0.7H, J = 3.6, 1.8 Hz), 6.12 (d, 0.7H, J = 3.0 Hz), 6.09 (dd, 0.3H, J = 3.6, 1.8 Hz), 6.02 (d, 0.3H, J = 3.0 Hz), 5.03 (d, 0.3H, J = 8.4 Hz), 4.98 (d, 0.7H, J = 8.4 Hz), 4.55-4.46 (m, 1H), 4.45-4.35 (m, 1H), 4.18-4.11 (m, 0.6H), 4.04-3.94 (m, 1.4H), 3.63-3.51 (m, 0.6H), 3.49-3.39 (m, 1.4H), 1.16 (t, 0.9H, J = 7.2 Hz), 0.88 (t, 2.1H, J=7.2 Hz).

Ethyl 2-benzoyl-5-oxo-5-phenyl-3-(thiophen-2-yl)pentanoate (1k)^{S3}

Yield: 36%; brown solid; m.p.74-76°C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 7:5): δ 8.07 (d, 1.2H, *J* = 7.6 Hz), 7.95-7.88 (m, 2.8H), 7.62-7.48 (m, 3H), 7.47-7.38 (m, 3H), 7.11 (d, 0.56H, J = 5.2 Hz), 7.00 (d, 0.44H, J = 5.2 Hz), 6.92 (d, 0.58H, J = 3.6 Hz), 6.88-6.82 (m, 1H), 6.77-6.72 (m, 0.42H), 5.01 (dd, 1H, J = 14.4, 8.8 Hz), 4.78-4.68 (m, 1H), 4.19-4.08 (m, 1H), 3.98-3.88 (m, 1H), 3.64-3.52 (m, 1.4H), 3.46-3.37 (m, 0.6 H), 1.15 (t, 1.25H, J = 7.2 Hz), 0.88 (t, 1.75 H, *J* = 7.2 Hz).

Ethyl 2-(4-methoxybenzoyl)-5-oxo-3,5-diphenylpentanoate (11)^{S3}

Yield: 54%; white solid; m.p.105-107°C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 2:1): δ 8.09 (d, 0.65H, J = 8.8 Hz), 7.92-7.84 (m, 3.3H), 7.56-7.47 (m, 1H), 7.45-7.37 (m, 2H), 7.29 (d, 0.7H, J = 7.2 Hz), 7.26-7.20 (m, 2H), 7.19-7.11 (m, 1.65H), 7.05 (t, 0.66H, J = 7.2 Hz), 6.96 (d, 0.67H, J = 8.8 Hz), 6.87 (d, 1.33H, J = 8.8 Hz), 4.92-4.84 (m, 1H), 4.44-4.32 (m, 1H), 4.20-4.10 (m, 1.34H), 3.91-3.78 (m, 3.66H), 3.60-3.43 (m, 1.7H), 3.26 (dd, 0.3H, J = 16.0, 10.0 Hz), 1.17 (t, 2H, J = 7.2 Hz), 0.88 (t, 1H, J = 7.2 Hz).

Ethyl 2-(furan-2-carbonyl)-5-oxo-3,5-diphenylpentanoate (1m)^{S3}

Yield: 59%; white solid; m.p.119-121°C; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 3:1): δ 7.88 (m, 2H), 7.63 (s, 0.7H), 7.55-7.48 (m, 1.4H), 7.45-7.35 (m, 2.8H), 7.31-7.26 (m, 1.6H), 7.26-7.20 (m, 1.8H), 7.18-7.12 (t, 1.4H, J = 7.2 Hz), 7.10-7.05 (m, 0.3H), 6.59-6.54 (m, 0.75H), 6.48-6.45 (m, 0.25), 4.71-4.63 (m, 1H), 4.41-4.31 (m, 1H), 4.21-4.12 (m, 0.6H), 3.93-3.83 (m, 1.4H), 3.62-3.45 (m, 1.3H), 3.38-3.30 (dd, 0.7 H, J = 16.0, 10.0 Hz), 1.18 (t, 0.8H, J = 7.2 Hz), 0.88 (t, 2.2 H, *J*=7.2 Hz).

Ethyl 4,4-dimethyl-3-oxo-2-(3-oxo-1,3-diphenylpropyl)pentanoate (1n)^{S3}

Yield: 47%; colorless oil; ¹H NMR (CDCl₃, 400 MHz, two isomers ratio 2:1): δ 7.87 (d, 2H, J = 7.2 Hz), 7.52 (t, 1H, J = 7.2 Hz), 7.41 (t, 2H, J = 7.6 Hz), 7.25-7.11 (m, 5.5H), 4.36 (dd, 1H, J = 14.0, 9.6 Hz), 4.28-4.12 (m, 2.5 H), 3.84 (q, 0.6H, J = 7.2 Hz), 1.24 (t, 2H, J = 7.2 Hz), 1.15 (s, 2.5H), 0.93 (t, 1H, J=7.2 Hz), 0.87 (s, 6.5H).

4-Hydroxy-3-(3-oxo-1,3-diphenylpropyl)-2H-chromen-2-one (10)^{S4}

Yield: 56%; white solid; m.p.162-164 °C; ¹H NMR (CDCl₃, 600 MHz): δ 9.90 (brs, 1H), 8.09 (dd, 2H, J = 7.6, 1.2 Hz), 7.98 (dd, 1H, J = 7.8, 1.2 Hz), 7.63 (t, 1H, J = 7.2 Hz), 7.52-7.46 (m, 3H), 7.41 (d, 2H, J = 7.8 Hz), 7.33-7.27 (m, 3H), 7.25-7.20 (m, 2H), 4.96 (dd, 1H, J = 10.2, 1.8 Hz), 4.49 (dd, 1H, J = 19.2, 10.2 Hz), 3.80 (dd, 1H, J = 19.2, 2.4 Hz).

2-Benzoyl-1,3,5-triphenylpentane-1,5-dione (1p)^{S1}

Yield: 65%; white solid; m.p. 154-156 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.97 (d, 2H, *J* = 7.6 Hz), 7.88 (d, 2H, J = 7.6 Hz), 7.80 (d, 2H, J = 7.6 Hz), 7.58-7.40 (m, 7H), 7.34 (t, 2H, J = 7.6 Hz), 7.25 (d, 2H, J = 7.6 Hz), 7.15-7.02 (m, 3H), 5.91 (d, 1H, J = 8.4 Hz), 4.52-4.64 (m, 1H), 3.68-3.54 (m, 2H).

2-Benzoyl-1,5-diphenyl-3-(p-tolyl)pentane-1,5-dione (1q)^{S1}

Yield: 44%; white solid; m.p.153-155 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, 2H, J = 8.8 Hz), 7.88 (d, 2H, J = 7.2 Hz), 7.81 (d, 2H, J = 7.6 Hz), 7.57-7.40 (m, 7H), 7.34 (t, 2H, J = 7.6 Hz), 7.13 (d, 2H, J = 8.0 Hz), 6.92 (d, 2H, J = 8.0 Hz), 5.88 (d, 1H, J = 8.4 Hz), 4.58-4.48 (m, 1H), 3.66-3.51 (m, 2H), 2.18 (s, 3H).

Diethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (4a)^{S1}

Yield: 80%; white solid; m.p.62-64 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, 2H, J = 8.0 Hz), 7.53 (t, 1H, J = 7.2 Hz), 7.42 (t, 2H, J = 7.2 Hz), 7.26-7.21 (m, 4H), 7.19-7.14 s

(m, 1H) 4.25-4.14 (m, 3H), 3.95 (q, 2H, J = 7.2 Hz), 3.82 (d, 1H, J = 9.6 Hz), 3.59-3.41 (m, 2H), 1.24 (t, 3H, J = 7.2 Hz), 1.00 (t, 3H, J = 7.2 Hz).

Dimethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (4b)^{S1}

Yield: 75%; white solid; m.p. 103-105 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, 2H, J = 8.0 Hz), 7.53 (t, 1H, J = 7.2 Hz), 7.42 (t, 2H, J = 7.2 Hz), 7.26-7.21 (m, 4H), 7.19-7.14 (m, 1H) 4.23-4.16 (m, 3H), 3.86 (d, 1H, J = 9.2 Hz), 3.73 (s, 3H), 3.58-3.44 (m, 5H).

Diethyl 2-(1-(4-methoxyphenyl)-3-oxo-3-phenylpropyl)malonate (4c)^{S1}

Yield: 72%; white solid; m.p. 71-73 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.89 (d, 2H, J = 8.0 Hz), 7.53 (t, 1H, J = 7.6 Hz), 7.42 (t, 2H, J = 7.2 Hz), 7.17 (d, 2H, J = 8.8 Hz), 6.77 (d, 2H, J = 8.8 Hz), 4.25-4.10 (m, 3H), 3.96 (q, 2H, J = 7.2 Hz), 3.78 (d, 1H, J = 9.6 Hz), 3.73 (s, 3H), 3.51 (d, 1H, J = 14.4, 4.4 Hz), 3.40 (d, 1H, J = 14.4, 9.6 Hz), 1.24 (t, 3H, J = 7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz).

Diethyl 2-(3-(4-chlorophenyl)-3-oxo-1-phenylpropyl)malonate (4d)^{S1}

Yield: 87%; white solid; m.p. 62-65 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.83 (d, 2H, J = 8.4 Hz), 7.39 (d, 2H, J = 8.4 Hz), 7.25-7.21 (m, 4H), 7.19-7.14 (m, 1H), 4.24-4.12 (m, 3H), 3.95 (q, 2H, J = 7.2 Hz), 3.80 (d, 1H, J = 9.6 Hz), 3.52 (dd, 1H, J = 16.8, 4.8 Hz), 3.40 (d, 1H, J = 16.8, 9.6 Hz), 1.24 (t, 3H, J = 7.2 Hz), 1.01 (t, 3H, J=7.2 Hz).

General Procedure for the Synthesis of 2, 3 and 5

Synthesis of 2a: A 10 mL oven-dried reaction vessel was charged with Michael adduct of ethyl benzoylacetate with chalcone (**1a**, 40 mg, 0.1 mmol), DBU (31 mg, 0.2 mmol), and NIS (2.3 mg, 0.01 mmol) in 1,4-dioxane (2.0 mL) under air. TBHP (70% in water) (39 mg, 0.3 mmol) was added slowly to the sealed reaction vessel by syringe, and the resulting solution was stirred at 50 °C for 4 h. After the reaction was complete, sat. Na₂S₂O₃ aqueous solution (10 mL) was added to quench the reaction, and the mixture was extracted by ethyl acetate (3 × 10 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. After the removal of the solvent under vacuo, the residue was purified by flash column chromatography with PE/EtOAc (95 : 5) to give **2a** as white solid; yield: 26.4 mg (66%); m.p. 114-116 °C; TLC, $R_f = 0.31$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.93-7.90 (m, 2H), 7.86 (d, 2H, *J* = 7.6 Hz), 7.51-7.45 (m, 4H), 7.40-7.30 (m, 7H), 4.12 (q, 2H, *J* = 7.2 Hz), 0.97 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.3, 163.8, 156.6, 146.2, 137.2, 135.9, 132.5, 131.2, 130.3, 129.6, 128.7, 128.6, 128.2, 128.1, 127.8, 117.5, 61.2, 13.5; HRMS (ESI) m/*z* calcd. for C₂₆H₂₁O₄ [M+H]⁺: 397.1434, found: 397.1438.

Synthesis of 3a: A 10 mL oven-dried reaction vessel was charged with Michael adduct of ethyl benzoylacetate with chalcone (**1a**, 40 mg, 0.1 mmol), TBAI (3.7 mg, 0.01 mmol) in THF (2.0 mL) under air. TBHP (5-6 M in decane) (39 mg, 0.3 mmol) was added slowly to the sealed reaction vessel by syringe, and the resulting solution was stirred at reflux for 2 h. After the reaction was complete, sat. Na₂S₂O₃ aqueous solution (10 mL) was added to quench the reaction, and the mixture was extracted by ethyl acetate (3 × 10 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. After the removal of the solvent under vacuo, the residue was purified by flash column chromatography with PE/EtOAc (95 : 5) to give **3a** as white solid; yield: 30.3 mg (76%); m.p. 138-140 °C; TLC, $R_f = 0.29$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (d, 2H, J = 7.2 Hz), 7.94 (d, 2H, J = 7.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.49 (t, 3H, J = 7.2 Hz), 7.46-7.42 (m, 2H), 7.35 (t, 4H, J = 8.0 Hz), 7.32-7.27(m, 1H), 4.56 (d, 1H, J = 7.2 Hz), 4.02 (d, 1H, J = 7.2 Hz), 3.91-3.82 (m, 2H), 0.78 (t, 3H, J = 7.2 Hz); ¹³C sto

NMR (CDCl₃, 100 MHz): δ 194.0, 190.6, 166.8, 136.8, 136.6, 133.69, 133.66, 133.0, 128.8, 128.7, 128.52, 128.48, 128.4, 127.7, 62.0, 50.1, 36.8, 36.5, 13.6; HRMS (ESI) m/z calcd. for C26H23O4 [M+H]+: 399.1591, found: 399.1589.

Synthesis of 5a:^{S5} A 10 mL oven-dried reaction vessel was charged with Michael adduct of ethyl malonate with chalcone (**4a**, 36.7 mg, 0.1 mmol), DBU (26 mg, 0.2 mmol), and NIS (2.3 mg, 0.01 mmol) in 1,4-dioxane (2.0 mL) under air. TBHP (70% in water) (26 mg, 0.2 mmol) was added slowly to the sealed reaction vessel by syringe, and the resulting solution was run at 50 °C for 2 h. After the reaction was complete, sat. Na₂S₂O₃ aqueous solution (10 mL) was added to quench the reaction, and the mixture was extracted by ethyl acetate (3 × 10 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. After the removal of the solvent under vacuo, the residue was purified by flash column chromatography with PE/EtOAc (9 : 1) to give **5a** as colorless oil; yield: 29 mg (94%). colorless oil; TLC, $R_f = 0.38$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, 2H, J = 7.6 Hz), 7.62 (t, 1H, J = 7.2 Hz), 7.51 (t, 2H, J = 7.2 Hz), 7.32-7.26 (m, 5H), 4.17-4.10(m, 3H), 4.00 (q, 2H, J = 6.8 Hz), 3.80 (d, 1H, J = 7.6 Hz), 1.11 (t, 3H, J = 7.2 Hz), 0.98 (t, 3H, J = 7.2 Hz).

Table S1. Optimization of the reaction conditions for the synthesis of

 $2a^a$

Ph	Ph CO ₂ E O Ph	catalyst (t oxidant (base (2) solvent, rt 50	10 mol %) 3 equiv) equiv) , 4-6 h ℃	Ph CO ₂ Et O Ph + Ph 2a	P EtO ₂ C Ph	h
entry	catalyst	base	oxidant	solvent	yielo 2a	l (%) ^b 3a
1	NIS	DBU	TBHP	THF	55	42
2	_	DBU	TBHP	THF	0	0
3	NIS	_	TBHP	THF	0	0
4	NIS	DBU	TBHP	EtOAc	47	51
5	NIS	DBU	TBHP	CHCl ₃	52	46
6	NIS	DBU	TBHP	1,4-dioxane	66	30
7	NIS	DBU	TBHP	1,4-dioxane/H ₂ O ^c	40	53
8 ^d	NIS	DBU	TBHP	1,4-dioxane	63	36
9	I_2	DBU	TBHP	1,4-dioxane	52	41
10	TBAI	DBU	TBHP	1,4-dioxane	46	53
11	DIH	DBU	TBHP	1,4-dioxane	47	52
12	NIS	DBU	H_2O_2	1,4-dioxane	19	17
13	NIS	DBU	CHP ^e	1,4-dioxane	65	33
14	NIS	DABCO	TBHP	1,4-dioxane	trace	19
15	NIS	K ₂ CO ₃	TBHP	1,4-dioxane	0	trace

^{*a*} Reaction condition: **1a** (0.1 mmol), catalyst (0.01 mmol), TBHP (0.3 mmol), base (0.2 mmol), solvent (2 mL), stirred at 50 °C for 4-6 h. ^{*b*} Isolated yields. ^{*c*} $V(1,4-dioxane):V(H_2O) = 3:1$. ^{*d*} At room temperature, 19 h. ^{*e*} CHP = cumene hydrogen peroxide (80%-85% in water).

O Ph O catalyst (10 mol %) O Ph OEt oxidant (3 equiv) Solvent, reflux 1a 2h 3a					
entry	catalyst	oxidant	solvent	yield (%) ^b	dr ^c
1	TBAI	TBHP	1,4-dioxane	45	> 19:1
2	TBAI	TBHP	DME	43	> 19:1
3	TBAI	TBHP	EtOAc	33	> 19:1
4	TBAI	TBHP	CH ₃ CN	29	> 19:1
5	TBAI	TBHP	DCE	28	> 19:1
6	TBAI	TBHP	THF	76	> 19:1
7	TBAI	TBPB	THF	N.R.	N.D.
8	TBAI	H_2O_2	THF	trace	N.D.
9 ^d	TBAI	TBHP	THF	60	> 19:1
10 ^e	TBAI	TBHP	THF	53	> 19:1
11 ^f	TBAI	TBHP	THF	49	> 19:1

Table S2. Optimization of Reaction Conditions for the Synthesis of 3a^a

^{*a*} Reaction condition: **1a** (0.1 mmol), catalyst (0.01 mmol), TBHP (0.3 mmol) (5-6 M in decane), solvent (1 mL), stirred at reflux for 2 h. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR. ^{*d*} TBHP (70% in water) was used. ^{*e*} The reaction was run at 60 °C. ^{*f*}The reaction was run at 50 °C.

Experiments on Mechanism Study

Characterization Data of Products

Ethyl 5-benzoyl-2,4-diphenylfuran-3-carboxylate (2a)

Yield: 26.4 mg (66%); time: 4 h; white solid; m.p. 114-116 °C; TLC, $R_f = 0.31$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.93-7.90 (m, 2H), 7.86 (d, 2H, J = 7.6 Hz), 7.51-7.45 (m, 4H), 7.40-7.30 (m, 7H), 4.12 (q, 2H, J = 7.2 Hz), 0.97 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.3, 163.8, 156.6, 146.2, 137.2, 135.9, 132.5, 131.2, 130.3, 129.6, 128.7, 128.6, 128.2, 128.1, 127.8, 117.5, 61.2, 13.5; HRMS (ESI) m/z calcd. for C₂₆H₂₁O₄ [M+H]⁺: 397.1434, found: 397.1438.

Ethyl 5-(4-methylbenzoyl)-2,4-diphenylfuran-3-carboxylate (2b)

Yield: 25.4 mg (62%); time: 4 h; white solid; m.p. 152-154 °C; TLC, $R_f = 0.33$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.95-7.90 (m, 2H), 7.82 (d, 2H, J = 8.0 Hz), 7.50-7.45 (m, 3H), 7.40-7.36 (m, 2H), 7.35-7.31 (m, 3H), 7.19 (d, 2H, J = 8.4 Hz), 4.12 (q, 2H, J = 7.2 Hz), 2.39(s, 3H), 0.97 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 182.8, 163.9, 156.2, 143.4, 135.5, 134.5, 131.3, 130.2, 129.8, 129.5, 128.85, 128.77, 128.5, 128.01, 127.98, 127.7, 117.4, 61.2, 21.6, 13.5; HRMS (ESI) m/z calcd. for C₂₇H₂₃O₄[M+H]⁺: 411.1591, found: 411.1600.

Ethyl 5-(4-methoxybenzoyl)-2,4-diphenylfuran-3-carboxylate (2c)

Yield: 21.7 mg (51%); time: 4 h; white solid; m.p. 95-97 °C; TLC, $R_f = 0.16$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.96-7.90 (m, 4H), 7.51-7.46 (m, 3H), 7.40-7.32 (m, 5H), 6.88 (d, 2H, J = 9.2 Hz), 4.12 (q, 2H, J = 7.2 Hz), 3.85(s, 3H), 0.97 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 181.7, 163.9, 163.2, 156.1, 146.5, 135.1, 132.1, 131.4, 130.1, 129.8, 129.6, 128.8, 128.5, 128.01, 127.98, 127.8, 117.3, 113.5, 61.1, 55.4, 13.5; HRMS (ESI) m/z calcd. for C₂₇H₂₃O₅ [M+H]⁺: 427.1540, found: 427.1539.

Ethyl 5-(4-chlorobenzoyl)-2,4-diphenylfuran-3-carboxylate (2d)

Yield: 22.8 mg (53%); time: 3 h; white solid; m.p. 79-81 °C; TLC, $R_f = 0.36$ (PE:EtOAc

= 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.93-7.89 (m, 2H), 7.82 (d, 2H, J = 8.4 Hz), 7.50-7.46 (m, 3H), 7.37-7.32 (m, 7H), 4.12 (q, 2H, J = 7.2 Hz), 0.97 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 181.8, 163.7, 156.7, 145.9, 138.9, 136.3, 135.5, 131.0, 130.9, 130.4, 129.5, 128.8, 128.6, 128.5, 128.4, 128.3, 128.0, 127.8, 117.6, 61.2, 13.5; HRMS (ESI) m/z calcd. for C₂₆H₂₀ClO₄ [M+H]⁺: 431.1045, found: 431.1040.

Ethyl 2,4-diphenyl-5-(thiophene-2-carbonyl)furan-3-carboxylate (2e)

Yield: 25.8 mg (64%); time: 5.5 h; yellow solid; m.p. 101-104 °C; TLC, $R_f = 0.23$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.16 (d, 1H, J = 4.0 Hz), 8.01-7.96 (m, 2H), 7.71 (dd, 1H, J = 4.8, 0.8 Hz), 7.57-7.49 (m, 3H), 7.48-7.39 (m, 5H), 7.19 (t, 1H, J = 4.8 Hz), 4.11 (q, 2H, J = 7.2 Hz), 0.96 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 173.3, 163.7, 156.3, 145.5, 142.6, 136.1, 134.3, 134.1, 131.1, 130.3, 129.4, 128.7, 128.67, 128.2, 128.13, 128.10, 127.8, 118.0, 61.2, 13.5; HRMS (ESI) m/z calcd. for C₂₄H₁₉O₄S [M+H]⁺: 403.0999, found: 403.0998.

Ethyl 5-(furan-2-carbonyl)-2,4-diphenylfuran-3-carboxylate (2f)

Yield: 23.2 mg (60%); time: 6 h; white solid; m.p. 116-119 °C; TLC, $R_{\rm f} = 0.25$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.97-7.93 (m, 2H), 7.64 (d, 1H, J = 1.2 Hz), 7.55-7.48 (m, 4H), 7.47-7.36 (m, 5H), 6.58 (dd, 1H, J = 3.6, 1.6 Hz), 4.11 (q, 2H, J = 7.2 Hz), 0.96 (t, 3H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 163.7, 156.4, 151.1, 147.2, 145.2, 135.9, 130.9, 130.3, 129.5, 128.8, 128.7, 128.2, 128.0, 127.7, 120.3, 117.8, 112.3, 61.2, 13.5. HRMS (ESI) m/z calcd. for C₂₄H₁₉O₅ [M+H]⁺: 387.1227, found: 387.1224.

Ethyl 5-(2-naphthoyl)-2,4-diphenylfuran-3-carboxylate (2g)

Yield: 24.8 mg (54%); time: 7 h; yellow solid; m.p. 96-99 °C; TLC, $R_f = 0.30$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.44 (s, 1H), 7.98-7.92 (m, 3H), 7.88-7.81 (m, 3H), 7.58 (t, 1H, J = 7.2 Hz), 7.52 (d, 1H, J = 8.0 Hz), 7.50-7.46 (m, 3H), 7.42-7.38 (m, 2H), 7.32-7.22 (m, 3H), 4.14 (q, 2H, J = 7.2 Hz), 0.99 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.1, 163.9, 156.5, 146.4, 135.8, 135.2, 134.4, 132.2, 131.7, 131.3, 130.3, 129.53, 129.47, 128.7, 128.6, 128.3, 128.1, 127.99, 127.97, 127.8, 127.7, 126.6, 125.2, 117.5, 61.2, 13.5; HRMS (ESI) m/z calcd. for C₃₀H₂₃O₄ [M+H]⁺: 447.1591, found: 447.1597.

Ethyl 5-benzoyl-2-phenyl-4-(p-tolyl)furan-3-carboxylate (2h)

Yield: 21.7 mg (53%); time: 6.5 h; white solid; m.p. 126-128 °C; TLC, $R_f = 0.38$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.91-7.87 (m, 4H), 7.52-7.45 (m, 4H), 7.38 (t, 2H, J = 7.8 Hz), 7.27 (d, 2H, J = 7.8 Hz), 7.14 (d, 2H, J = 7.8 Hz), 4.15 (q, 2H, J = 7.2 Hz), 2.36 (s, 3H), 1.03 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.2, 163.9, 156.3, 146.2, 138.0, 137.3, 136.0, 132.4, 130.2, 129.6, 129.4, 128.8, 128.54, 128.49, 128.1, 128.0, 117.5, 61.2, 21.3, 13.6; HRMS (ESI) m/z calcd. for C₂₇H₂₃O₄ [M+H]⁺: 411.1591, found: 411.1595.

Ethyl 5-benzoyl-4-(4-chlorophenyl)-2-phenylfuran-3-carboxylate (2i)

Yield: 29.4 mg (68%); time: 1.5 h; white solid; m.p. 131-133 °C; TLC, $R_f = 0.34$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.90 (d, 4H, J = 7.2 Hz), 7.54 (t, 1H, J = 7.2 Hz), 7.49-7.47 (m, 3H), 7.41 (t, 2H, J = 7.8 Hz), 7.33 (s, 4H), 4.14 (q, 2H, J = 7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.0, 163.5, 156.9, 146.3, 137.0, 134.7, 134.2, 132.7, 131.0, 130.4, 129.7, 129.6, 128.6, 128.2, 128.1, 128.0, 117.2, 61.3, 13.6; HRMS (ESI) m/z calcd. for C₂₆H₂₀ClO₄ [M+H]⁺: 431.1045, found: 431.1047.

Ethyl 2'-benzoyl-5'-phenyl-[2,3'-bifuran]-4'-carboxylate (2j)

Yield: 20.4 mg (53%); time: 5 h; white solid; m.p. 91-94 °C; TLC, $R_f = 0.32$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.99-7.93 (m, 2H), 7.84-7.79 (m, 2H), 7.57 (t, 1H, J = 7.2 Hz), 7.51-7.43 (m, 6H), 7.41 (dd, 1H, J = 3.2, 0.4 Hz), 6.49 (dd, 1H, J = 3.1, 1.6 Hz), 4.38 (q, 2H, J = 7.2 Hz), 1.28 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 182.9, 164.6, 154.7, 145.2, 144.3, 143.2, 137.6, 132.5, 130.2, 129.5, 128.8, 128.4, 128.3, 127.3, 124.8, 116.1, 114.0, 111.8, 61.8, 14.0; HRMS (ESI) m/z calcd. for C₂₄H₁₉O₅ [M+H]⁺: 387.1227, found: 387.1222.

Ethyl 5-benzoyl-2-phenyl-4-(thiophen-2-yl)furan-3-carboxylate (2k)

Yield: 21.5 mg (53%); time: 5 h; yellow solid; m.p. 122-124 °C; TLC, $R_f = 0.31$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (d, 2H, J = 7.2 Hz), 7.88-7.83 (m, 2H), 7.52 (t, 1H, J = 7.6 Hz), 7.49-7.45 (m, 3H), 7.44-7.36 (m, 3H), 7.22 (dd, 1H, J = 3.6, 1.2 Hz), 4.23 (q, 2H, J = 7.2 Hz), 1.13 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 183.1, 163.9, 155.9, 146.6, 137.1, 132.6, 130.7, 130.3, 129.6, 129.5, 128.6,

128.5, 128.2, 128.1, 127.8, 127.4, 126.7, 117.7, 61.6, 13.7; HRMS (ESI) m/z calcd. for $C_{24}H_{19}O_4S [M+H]^+$: 403.0999, found: 403.0999.

Ethyl 5-benzoyl-2-(4-methoxyphenyl)-4-phenylfuran-3-carboxylate (2l)

Yield: 23.5 mg (55%); time: 5 h; white solid; m.p. 155-157 °C; TLC, $R_f = 0.16$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.91 (d, 2H, J = 9.0 Hz), 7.86-7.82 (m, 2H), 7.47 (t, 1H, J = 7.2 Hz), 7.38-7.30 (m, 7H), 6.99 (d, 2H, J = 9.0 Hz), 4.09 (q, 2H, J = 7.2 Hz), 3.87 (s, 3H), 0.95 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 183.2, 164.0, 161.3, 157.1, 145.9, 137.4, 136.1, 132.3, 131.6, 129.8, 129.6, 129.5, 128.04, 127.99, 127.7, 121.4, 116.3, 114.1, 61.0, 55.4, 13.5; HRMS (ESI) m/z calcd. for C₂₇H₂₃O₅ [M+H]⁺: 427.1540, found: 427.1534.

Ethyl 5-benzoyl-4-phenyl-[2,2'-bifuran]-3-carboxylate (2m)

Yield: 20 mg (50%); time: 9 h; yellow oil; TLC, $R_f = 0.25$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.89 (d, 2H, J = 7.2 Hz), 7.62 (d, 1H, J = 1.2 Hz), 7.50-7.45 (m, 2H), 7.36 (t, 2H, J = 7.8 Hz), 7.32-7.29 (m, 5H), 6.58 (dd, 1H, J = 3.6, 1.8 Hz), 4.13 (q, 2H, J = 7.2 Hz), 0.98 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 182.9, 162.8, 148.8, 146.1, 144.7, 143.8, 137.1, 135.6, 132.5, 131.3, 129.66, 129.64, 128.1, 128.0, 127.6, 115.6, 114.8, 112.2, 60.9, 13.6; HRMS (ESI) m/z calcd. for C₂₄H₁₉O₅ [M+H]⁺: 387.1227, found: 387.1223.

Ethyl 5-benzoyl-2-(tert-butyl)-4-phenylfuran-3-carboxylate (2n)

Yield: 15.5 mg (41%); time: 5 h; colorless oil; TLC, $R_f = 0.34$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.84 (d, 2H, J = 7.2 Hz), 7.47 (t, 1H, J = 8.4 Hz), 7.35 (t, 2H, J = 7.6 Hz), 7.33-7.26 (m, 5H), 4.09 (q, 2H, J = 7.2 Hz), 1.47 (s, 9H), 1.00 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 182.9, 165.8, 164.7, 144.5, 137.3, 135.3, 132.3, 131.4, 129.5, 129.3, 128.0, 127.7, 117.1, 61.1, 34.8, 28.6, 13.6; HRMS (ESI) m/z calcd. for C₂₄H₂₅O₄[M+H]⁺: 377.1747, found: 377.1748.

2-Benzoyl-3-phenyl-4H-furo[3,2-c]chromen-4-one (20)

Yield: 26 mg (71%); time: 1.5 h; white solid; m.p. 147-149 °C; TLC, $R_f = 0.08$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.04 (dd, 1H, J = 8.0, 1.2 Hz), 7.75 (d, 2H, J = 7.6 Hz), 7.63 (t, 1H, J = 7.2 Hz), 7.50-7.39 (m, 5H), 7.34-7.27 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz): δ 184.0, 158.6, 156.8, 153.7, 147.9, 136.4, 133.1, 132.9, 132.5, 130.5, 129.6, 129.1, 128.14, 128.11, 127.8, 124.8, 122.0, 117.4, 112.0, 110.1; HRMS (ESI) m/z calcd. for C₂₄H₁₅O₄ [M+H]⁺: 367.0965, found: 367.0969.

(3,5-Diphenylfuran-2,4-diyl)bis(phenylmethanone) (2p)

Yield: 35 mg (81%); time: 6 h; white solid; m.p. 70-72 °C; TLC, $R_f = 0.41$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (d, 2H, J = 7.6 Hz), 7.77 (d, 2H, J = 8.0 Hz), 7.69-7.64 (m, 2H), 7.47 (t, 1H, J = 7.2 Hz), 7.41 (t, 1H, J = 7.2 Hz), 7.38-7.27 (m, 6H), 7.26-7.21 (m, 3H), 7.12-7.07 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 192.7, 183.5,

153.9, 145.8, 137.2, 136.8, 136.1, 133.8, 132.5, 130.3, 130.0, 129.71, 129.69, 129.65, 128.8, 128.5, 128.4, 128.3, 128.1, 127.9, 126.9, 123.7; HRMS (ESI) m/z calcd. for $C_{30}H_{21}O_3$ [M+H]⁺: 429.1485, found: 429.1475.

(5-Phenyl-3-(p-tolyl)furan-2,4-diyl)bis(phenylmethanone) (2q)

Yield: 34 mg (77%); time: 4 h; white solid; m.p. 73-75 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.94 (d, 2H, J = 7.2 Hz), 7.82 (t, 2H, J = 7.2 Hz), 7.66 (dd, 2H, J = 6.0, 3.6 Hz), 7.51 (t, 1H, J = 7.2 Hz), 7.45 (t, 1H, J = 7.2 Hz), 7.40 (t, 2H, J = 7.8 Hz), 7.34-7.28 (m, 5H), 7.18 (d, 2H, J = 7.8 Hz), 6.95 (d, 2H, J = 7.8 Hz), 2.21 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 195.7, 186.3, 156.5, 148.8, 141.0, 140.4, 139.9, 139.1, 136.6, 135.3, 132.7, 132.6, 132.5, 131.7, 131.5, 131.4, 131.0, 130.2, 129.9, 126.8, 24.1; HRMS (ESI) m/z calcd. for C₃₁H₂₃O₃ [M+H]⁺: 443.1642, found: 443.1643.

Ethyl 1,2-dibenzoyl-3-phenylcyclopropanecarboxylate (3a)

Yield: 30.3 mg (76%); time: 2 h; white solid; m.p. 138-140 °C; TLC, $R_f = 0.29$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (d, 2H, J = 7.2 Hz), 7.94 (d, 2H, J = 7.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.49 (t, 3H, J = 8.0 Hz), 7.46-7.42 (m, 2H), 7.35 (t, 4H, J = 8.0 Hz), 7.32-7.27(m, 1H), 4.56 (d, 1H, J = 7.2 Hz), 4.02 (d, 1H, J = 7.2 Hz), 3.91-3.82 (m, 2H), 0.78 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 194.0, 190.6, 166.8, 136.8, 136.6, 133.69, 133.66, 133.0, 128.8, 128.7, 128.52, 128.48, 128.4, 127.7, 62.0, 50.1, 36.8, 36.5, 13.6; HRMS (ESI) m/z calcd. for C26H23O4 [M+H]+: 399.1591, found: 399.1589.

Ethyl 1-benzoyl-2-(4-methylbenzoyl)-3-phenylcyclopropanecarboxylate

(**3b**)

Yield: 30.5 mg (74%); time: 2 h; white solid; m.p. 100-102 °C; TLC, $R_f = 0.31$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (t, 4H, J = 8.0 Hz), 7.49-7.45 (m, 1H), 7.44-7.41 (m, 2H), 7.35 (t, 4H, J = 8.0 Hz), 7.31-7.27 (m, 3H), 4.54 (d, 1H, J = 7.2 Hz), 4.01 (d, 1H, J = 7.2 Hz), 3.90-3.80 (m, 2H), 2.43 (s, 3H), 0.77 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.5, 190.7, 166.8, 144.6, 136.6, 134.4, 133.8, 133.0, 129.4, 128.7, 128.5, 128.4, 127.6, 62.0, 49.9, 36.7, 36.5, 21.7, 13.6; HRMS (ESI) m/z calcd. for C27H25O4 [M+H]+: 413.1747, found: 413.1739.

Ethyl 1-benzoyl-2-(4-methoxybenzoyl)-3-phenylcyclopropanecarboxylate (3c)

Yield: 30 mg (70%); time: 1.5 h; white solid; m.p. 110-112 °C; TLC, $R_f = 0.14$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 8.04 (d, 2H, J = 9.0 Hz), 7.93 (dd, 2H, J = 7.8, 1.8 Hz), 7.46 (tt, 1H, J = 7.2, 1.2 Hz), 7.42 (d, 2H, J = 7.2 Hz), 7.37-7.33 (m, 4H), 7.28 (tt, 1H, J = 7.2, 1.2 Hz), 4.51 (d, 1H, J = 7.8 Hz), 4.01 (d, 1H, J = 7.2 Hz), 3.88 (s, 3H), 3.87-3.84 (m, 2H), 0.77 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 192.1, 190.7, 166.9, 164.0, 136.8, 134.0, 132.9, 130.9, 130.0, 128.7, 128.41, 128.39, 128.3, 127.6, 114.0, 61.9, 55.5, 49.9, 36.5, 36.4, 13.5. HRMS (ESI) m/z calcd. for C27H25O5 [M+H]+: 429.1697, found: 429.1687.

Ethyl 1-benzoyl-2-(4-chlorobenzoyl)-3-phenylcyclopropanecarboxylate

(**3d**)

Yield: 30 mg (69%); time: 2 h; white solid; m.p. 151-153 °C; TLC, $R_f = 0.29$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.98 (d, 2H, J = 9.0 Hz), 7.92 (d, 2H, J = 7.2 Hz), 7.50-7.45 (m, 3H), 7.41 (d, 2H, J = 7.2 Hz), 7.38-7.34 (m, 4H), 7.30 (t, 1H, J = 7.2 Hz), 4.47 (d, 1H, J = 7.2 Hz), 4.01 (d, 1H, J = 7.8 Hz), 3.90-3.84 (m, 2H), 0.79 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 192.8, 190.4, 166.7, 140.3, 136.6, 135.3, 133.6, 133.1, 130.0, 129.1, 128.6, 128.5, 128.45, 128.42, 127.8, 62.1, 50.4, 36.8, 36.4, 13.6. HRMS (ESI) m/z calcd. for C₂₆H₂₂ClO₄ [M+H]⁺: 433.1201, found: 433.1195.

Ethyl 1-benzoyl-2-(furan-2-carbonyl)-3-phenylcyclopropanecarboxylate (3e)

Yield: 23.7 mg (61%); time: 2 h; white solid; m.p. 107-109 °C; TLC, $R_f = 0.23$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 7.92 (dd, 2H, J = 8.4, 1.2 Hz), 7.68 (d, 1H, J = 0.6 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.42 (d, 2H, J = 7.2 Hz), 7.36 (t, 2H, J = 7.8 Hz), 7.34 (t, 2H, J = 7.8 Hz), 7.30-7.27 (m, 2H), 6.58 (dd, 1H, J = 3.6, 1.2 Hz), 4.47 (d, 1H, J = 7.8 Hz), 4.00 (d, 1H, J = 7.8 Hz), 3.91-3.83 (m, 2H), 0.79 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 190.1, 182.4, 166.6, 152.9, 147.1, 136.5, 133.8, 133.0, 128.8, 128.5, 128.4, 128.3, 127.6, 118.0, 112.7, 62.0, 49.8, 36.2, 36.1, 13.6. HRMS (ESI) m/z calcd. for C24H21O5 [M+H]+: 389.1384, found: 389.1375.

Ethyl 1-benzoyl-2-phenyl-3-(thiophene-2-carbonyl)cyclopropane carboxylate (3f)

Yield: 23.7 mg (58%); time: 1.5 h; yellow solid; m.p. 86-88 °C; TLC, $R_{\rm f} = 0.21$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.01 (d, 1H, J = 4.2 Hz), 7.93 (d, 2H, J = 7.8 Hz), 7.69 (d, 1H, J = 5.4 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.42 (d, 2H, J = 7.2 Hz), 7.38-7.32 (m, 4H), 7.29 (t, 1H, J = 7.2 Hz), 7.20 (t, 1H, J = 4.2 Hz), 4.40 (d, 1H, J = 7.8 Hz), 4.02 (d, 1H, J = 7.2 Hz), 3.90-3.83 (m, 2H), 0.79 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 190.2, 186.1, 166.7, 144.1, 136.6, 134.8, 133.7, 133.0, 132.9, 128.7, 128.6, 128.5, 128.4, 127.7, 62.0, 49.8, 37.2, 36.5, 13.6. HRMS (ESI) m/z calcd. for C₂₄H₂₁O₄S [M+H]+: 405.1155, found: 405.1142.

Ethyl 2-(2-naphthoyl)-1-benzoyl-3-phenylcyclopropanecarboxylate (3g)

Yield: 27.8 mg (62%); time: 1.5 h; white solid; m.p. 88-90 °C; TLC, $R_f = 0.27$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 8.67 (s, 1H), 8.03 (d, 1H, J = 7.8 Hz), 8.00 (dd, 1H, J = 9.0, 1.2 Hz), 7.96 (d, 2H, J = 7.6 Hz), 7.89 (d, 2H, J = 9.0 Hz), 7.63 (t, 1H, J = 7.2 Hz), 7.59 (t, 1H, J = 7.2 Hz), 7.48 (d, 2H, J = 7.8 Hz), 7.44 (t, 1H, J = 7.2 Hz), 7.38 (t, 2H, J = 7.2 Hz), 7.35-7.30 (m, 3H), 4.72 (d, 1H, J = 7.8 Hz), 4.09 (d, 1H, J = 7.8 Hz), 3.94-3.86 (m, 2H), 0.81 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 193.8, 190.6, 166.9, 136.7, 135.9, 134.4, 133.9, 133.0, 132.5, 130.5, 130.0, 128.8, 128.7, 128.6, 128.5, 128.4, 127.8, 127.7, 127.0, 124.0, 62.0, 50.3, 36.9, 36.6, 13.6. HRMS (ESI) m/z calcd. for C₃₀H₂₅O₄ [M+H]⁺: 449.1747, found: 449.1734.

Ethyl 1,2-dibenzoyl-3-(p-tolyl)cyclopropanecarboxylate (3h)

Yield: 32.5 mg (79%); time: 1 h; white solid; m.p. 97-99 °C; TLC, $R_f = 0.36$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 8.04 (dd, 2H, J = 8.4, 1.2 Hz), 7.93 (dd, 2H, J = 8.4, 1.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.50-7.45 (m, 3H), 7.35 (t, 2H, J = 7.8 Hz), 7.31 (d, 2H, J = 8.4 Hz), 7.15 (d, 2H, J = 7.8 Hz), 4.51 (d, 1H, J = 7.2 Hz), 3.98 (d, 1H, J = 7.2 Hz), 3.88 (q, 2H, J = 7.2 Hz), 2.34 (s, 3H), 0.80 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 194.0, 190.8, 166.9, 137.4, 137.0, 136.8, 133.6, 132.9, 130.7, 129.1, 128.7, 128.5, 128.4, 61.9, 50.2, 36.8, 36.7, 21.1, 13.6. HRMS (ESI) m/z calcd. for C₂₇H₂₅O₄ [M+H]⁺: 413.1747, found: 417.1730.

Yield: 31.1 mg (72%); time: 1 h; white solid; m.p. 119-121 °C; TLC, $R_f = 0.32$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 8.02 (dd, 2H, J = 7.2, 1.2 Hz), 7.90 (dd, 2H, J = 7.2, 1.2 Hz), 7.61 (tt, 1H, J = 7.2, 1.2 Hz), 7.51-7.45 (m, 3H), 7.38-7.31 (m, 6H), 4.52 (d, 1H, J = 7.8 Hz), 3.98 (d, 1H, J = 7.2 Hz), 3.89 (q, 2H, J = 7.2 Hz), 0.81 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.6, 190.2, 166.6, 136.7, 136.4, 133.8, 133.6, 133.1, 132.3, 130.0, 128.8, 128.6, 128.5, 128.3, 62.2, 50.1, 36.5, 35.9, 13.6. HRMS (ESI) m/z calcd. for C₂₆H₂₂ClO₄ [M+H]⁺: 433.1201, found: 433.1200.

Ethyl 1,2-dibenzoyl-3-(furan-2-yl)cyclopropanecarboxylate (3j)

Yield: 20.2 mg (52%); time: 1 h; yellow oil; TLC, $R_f = 0.30$ (PE:EtOAc = 95:5); ¹H s₂₆

NMR (CDCl₃, 600 MHz): δ 8.04 (d, 2H, J = 7.2 Hz), 7.96 (d, 2H, J = 7.8 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.51-7.47 (m, 3H), 7.41-7.36 (m, 3H), 6.38-6.33 (m, 2H), 4.43 (d, 1H, J = 7.2 Hz), 4.05-3.97 (m, 2H), 3.88 (d, 1H, J = 7.2 Hz), 0.93 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.3, 190.3, 166.6, 148.4, 142.3, 136.8, 136.6, 133.7, 133.1, 128.74, 128.67, 128.6, 128.5, 110.7, 108.5, 62.2, 49.0, 36.6, 29.5, 13.6. HRMS (ESI) m/z calcd. for C₂₄H₂₁O₅ [M+H]⁺: 389.1384, found: 389.1381.

Ethyl 1,2-dibenzoyl-3-(thiophen-2-yl)cyclopropanecarboxylate (3k)

Yield: 25.4 mg (63%); time: 2 h; white solid; m.p. 151-153 °C; TLC, $R_f = 0.29$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 400 MHz): δ 8.04 (d, 2H, J = 8.0 Hz), 7.94 (d, 2H, J = 8.0 Hz), 7.61 (t, 1H, J = 7.2 Hz), 7.49 (t, 3H, J = 7.2 Hz), 7.38 (t, 2H, J = 7.2 Hz), 7.24 (d, 1H, J = 5.2 Hz), 7.10-7.05 (m, 1H), 7.01-6.96 (m, 1H), 4.48 (d, 1H, J = 7.2 Hz), 4.05 (d, 1H, J = 7.2 Hz), 3.99-3.91 (m, 2H), 0.87 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.4, 190.4, 166.5, 136.6, 136.5, 133.8, 133.1, 128.8, 128.6, 128.5, 128.4, 126.9, 126.8, 125.2, 62.2, 50.4, 38.4, 31.6, 13.6. HRMS (ESI) m/z calcd. for C₂₄H₂₁O₄S [M+H]+: 405.1155, found: 405.1156.

Ethyl 2-benzoyl-1-(4-methoxybenzoyl)-3-phenylcyclopropanecarboxylate (3l)

Yield: 28.2 mg (66%); time: 1.5 h; white solid; m.p. 116-118 °C; TLC, $R_f = 0.14$ (PE:EtOAc = 95:15); ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (d, 2H, J = 7.2 Hz), 7.92 (dt, 2H, J = 9.2, 2.4 Hz), 7.60 (tt, 1H, J = 7.2, 1.2 Hz), 7.49 (t, 2H, J = 7.2 Hz), 7.42 (d, 2H, J = 6.8 Hz), 7.34 (t, 2H, J = 7.2 Hz), 7.29 (dt, 1H, J = 7.2, 1.2 Hz), 6.82 (d, 2H, J = 8.8 Hz), 4.53 (d, 1H, J = 7.2 Hz), 4.01 (d, 1H, J = 7.2 Hz), 3.92-3.85 (m, 2H), 3.80 (s, 3H),

0.81 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 194.0, 188.9, 167.0, 163.4, 137.0, 133.9, 133.6, 130.7, 129.6, 128.7, 128.66, 128.5, 128.3, 127.6, 113.7, 62.0, 55.4, 50.4, 36.6, 36.0, 13.7. HRMS (ESI) m/z calcd. for C₂₇H₂₅O₅ [M+H]⁺: 429.1697, found: 436.1689.

Ethyl 2-benzoyl-1-(furan-2-carbonyl)-3-phenylcyclopropanecarboxylate (3m)

Yield: 19.4 mg (50%); time: 6 h; white solid; m.p. 92-94 °C; TLC, $R_f = 0.23$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 600 MHz): δ 8.06 (dt, 2H, J = 7.8, 1.2 Hz), 7.59 (tt, 1H, J = 9.0, 1.2 Hz), 7.48 (t, 2H, J = 7.8 Hz), 7.42-7.38 (m, 3H), 7.33 (t, 2H, J = 7.2 Hz), 7.28 (t, 1H, J = 7.2 Hz), 7.21 (dd, 1H, J = 3.6, 0.6 Hz), 6.43 (dd, 1H, J = 3.6, 1.8 Hz), 4.44 (d, 1H, J = 7.2 Hz), 4.07 (d, 1H, J = 7.2 Hz), 3.97-3.92 (m, 2H), 0.88 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 193.8, 179.2, 166.2, 152.7, 146.0, 137.0, 133.8, 133.5, 128.8, 128.6, 128.5, 128.3, 127.6, 117.2, 112.4, 61.9, 49.6, 36.2, 35.7, 13.8. HRMS (ESI) m/z calcd. for C₂₄H₂₁O₅ [M+H]⁺: 389.1384, found: 389.1373.

Ethyl 2-benzoyl-3-phenyl-1-pivaloylcyclopropanecarboxylate (3n)

Yield: 20 mg (53%); time: 4 h; colorless oil; TLC, $R_f = 0.32$ (PE:EtOAc = 95:5); ¹H NMR (CDCl₃, 600 MHz): δ 8.12 (d, 2H, J = 7.8 Hz), 7.64 (t, 1H, J = 7.2 Hz), 7.54 (t, 2H, J = 7.8 Hz), 7.33-7.28 (m, 4H), 7.26-7.23 (m, 1H), 4.33 (d, 1H, J = 7.2 Hz), 3.99 (d, 1H, J = 7.2 Hz), 3.93-3.88 (m, 2H), 1.18 (s, 9H), 0.97 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 150 MHz): δ 206.2, 194.5, 166.4, 137.1, 133.9, 133.6, 128.9, 128.7, 128.6, 128.2, 127.5, 61.9, 52.4, 45.1, 36.5, 35.4, 28.1, 13.7. HRMS (ESI) m/z calcd. for C₂₄H₂₇O₄ [M+H]⁺: 379.1904 found: 379.1896.

Diethyl 2-benzoyl-3-phenylcyclopropane-1,1-dicarboxylate (5a)⁸⁵

Ph EtO₂C CO₂Et

Yield: 34.4 mg (94%); time: 2 h; colorless oil; TLC, $R_f = 0.38$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 400 MHz): δ 8.11 (d, 2H, J = 7.6 Hz), 7.62 (t, 1H, J = 7.2 Hz), 7.51 (t, 2H, J = 7.2 Hz), 7.32-7.26 (m, 5H), 4.17-4.10(m, 3H), 4.00 (q, 2H, J = 6.8 Hz), 3.80 (d, 1H, J = 7.6 Hz), 1.11 (t, 3H, J = 7.2 Hz), 0.98 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.6, 165.9, 165.7, 136.7, 136.6, 133.6, 133.4, 128.7, 128.58, 128.57, 128.3, 127.7, 62.0, 61.9, 46.0, 35.8, 34.9, 13.83, 13.78.

Dimethyl 2-benzoyl-3-phenylcyclopropane-1,1-dicarboxylate (5b)⁸⁵

Ph MeO₂C CO₂Me

Yield: 31.4 mg (93%); time: 1.5 h; colorless oil; TLC, $R_f = 0.26$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 600 MHz): δ 8.10 (d, 2H, J = 7.2 Hz), 7.62 (t, 1H, J = 7.2 Hz), 7.52 (t, 2H, J = 7.8 Hz), 7.34-7.26 (m, 5H), 4.14(d, 1H, J = 7.8 Hz), 3.88 (d, 1H, J = 7.8Hz),3.72 (s, 3H), 3.54 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 193.8, 166.5, 166.1, 136.8, 133.7, 133.4, 128.8, 128.53, 128.49, 128.4, 127.8, 53.0, 52.9, 46.0, 36.6, 35.1;

Diethyl 2-benzoyl-3-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate (5c)^{S5}

Yield: 36.8 mg (93%); time: 2 h; colorless oil; TLC, $R_f = 0.31$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 400 MHz): δ 8.10 (d, 2H, J = 7.2 Hz), 7.61 (t, 1H, J = 7.2 Hz), 7.51 (t, 2H, J = 7.6 Hz), 7.23 (d, 2H, J = 8.4 Hz), 6.83 (d, 2H, J = 8.4 Hz), 4.13(q, 2H, J = 7.2 Hz), 4.07 (d, 1H, J = 7.6 Hz), 4.05-3.98 (m, 2H), 3.82 (d, 1H, J = 7.6 Hz), 3.79 (s, 3H), 1.11 (t, 3H, J = 7.2 Hz), 1.03 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 193.7, S29

166.0, 165.8, 159.1, 136.8, 133.6, 129.7, 128.7, 128.6, 125.4, 113.7, 62.0, 61.8, 55.2, 46.1, 35.4, 35.2, 13.88, 13.84.

Diethyl 2-(4-chlorobenzoyl)-3-phenylcyclopropane-1,1-dicarboxylate (5d)^{S5}

Yield: 38.4 mg (96%); time: 2.5 h; colorless oil; TLC, $R_f = 0.45$ (PE:EtOAc = 90:10); ¹H NMR (CDCl₃, 400 MHz): δ 8.01 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz), 7.28-7.22 (m, 5H), 4.11 (q, 2H, J = 7.2 Hz), 4.01 (d, 1H, J = 7.6 Hz), 3.97 (q, 2H, J = 7.2 Hz), 3.84 (d, 1H, J = 7.6 Hz), 1.08 (t, 3H, J = 7.2 Hz), 0.95 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 192.3, 165.8, 165.6, 140.2, 135.0, 133.2, 129.9, 129.1, 128.5, 128.3, 127.7, 62.1, 61.9, 46.1, 35.7, 34.9, 13.83, 13.75.

X-Ray structure of 2i and the corresponding data

CCDC 1497561 (**2i**), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via: <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Crystal data			
Chemical formula	C ₂₆ H ₁₉ ClO ₄		
M _r	430.86		
Crystal system, space group	Triclinic, P		
Temperature (K)	293		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.8081 (4), 9.9881 (5), 12.6194 (6)		
α, β, γ (°)	79.9048 (16), 82.4837 (16), 80.2931 (16)		
$V(Å^3)$	1071.49 (9)		
Ζ	2		
Radiation type	Μο Κα		
$\mu (mm^{-1})$	0.21		
Crystal size (mm)	$0.15 \times 0.13 \times 0.08$		
Data collection			
Diffractometer	Bruker APEX-II CCD		

Absorption correction	Multi-scan SADABS
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14454, 3790, 2661
R _{int}	0.027
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.143, 1.31
No. of reflections	3790
No. of parameters	281
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.21, -0.29

Computer programs: Bruker *APEX2*, Bruker *SAINT*, *SHELXS97* (Sheldrick 2008), *SHELXL2014*/7 (Sheldrick, 2014), Bruker *SHELXTL*.

X-Ray structure of 3a and the corresponding data

CCDC 1497563 (3a), contains the supplementary crystallographic data for

this paper. These data can be obtained free of charge from the Cambridge

Crystallographic Data Centre via: www.ccdc.cam.ac.uk/data_request/cif.

Crystal data				
Chemical formula	C ₂₆ H ₂₂ O ₄			
M _r	398.45			
Crystal system, space group	Monoclinic, $P2_1/n$			
Temperature (K)	299			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.5852 (6), 15.9050 (12), 15.6721 (12)			
β (°)	95.176 (2)			
$V(Å^3)$	2131.3 (3)			
Ζ	63			
Radiation type	Μο Κα			
$\mu (mm^{-1})$	0.13			
Data collection				
Diffractometer	Bruker APEX-II CCD diffractometer			
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15870, 3759, 2729			
R _{int}	0.032			
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.596			
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.126, 1.03			
No. of reflections	3759			
No. of parameters	272			
H-atom treatment	H-atom parameters constrained			
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.16, -0.19			

Computer programs: SHELXL2014/7 (Sheldrick, 2014).

References:

[S1] Yang, H.-M.; Gao, Y.-H.; Li, L.; Jiang, Z.-Y.; Lai, G.-Q.; Xia, C.-G.; Xu, L.-W. *Tetrahedron Lett.* **2010**, *51*,3836.

[S2] Christoffers, J. Chem. Commun. 1997, 943.

[S3] Sammour, A.; Raouf, A.; Elkasaby, M.; Ibrahim, M. A. *Acta Chimica Academiae Scientiarum Hungaricae* **1973**, *78*, 399.

[S4] Shkel, A. A.; Mazhukina, O. A.; Fedotova, O. V. Chem. Heterocycl. Compd. 2011, 47, 656.

[S5] Ye, Y.; Zheng, C.; Fan, R. Org. Lett. 2009, 11, 3156.

¹H NMR Spectra of Michael Adducts

- 6 6 0 6 7 - 6 6 4 6	NN4 MNN 0 4 4 8	M 4 9 6 0 8 M 0 0 0 M 6	-40	50 - 70
0 0 0 8 9 4 0 8 0 - 6 0 0 0 8 -	- 0 N 4 M N 20 N M F M	40,0000 - 04040	× 0 4	C 0 0
-00888000044444600	0000	00040 0000400		$\infty \infty \odot$
xx		44 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6		000
		LILL 1111		1 1

S36

0 0

NMR Spectra of Products

