Supporting Information

Guar Gum as Novel Aqueous Binder for Sulfur Composite

Cathodes in Rechargeable Lithium Batteries

Qinyu Li^a, Huijun Yang ^a, Lisheng Xie^{a,b}, Jun Yang ^a, Yanna Nuli ^a, Jiulin Wang^{a*}

^a Shanghai Electrochemical Energy Devices Research Center, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai

^{200240,} China, email: wangjiulin@sjtu.edu.cn

^{b.} College of Environmental and Chemical Engineering, Yanshan University, Hebei 066004, China

Experimental section

Sample preparation

The sulfur composite materials used in this work was mainly synthesized by two steps, including the ball milling and succedent heat treating at 300 °C in nitrogen for 450 min of elemental sulfur and polyacrylonitrile (PAN, Aldrich) at the mass ratio of 8:1.

Electrode fabrication

Preparation process of electrodes: S@pPAN with 42.3%wt S was mixed with Super P and GG binder in deionized water in the ratio of 8:1:1 to get slurry. For comparison, sulfur-based composite, carbon black and other binders, like CMC and PVDF, with a weight ratio of 8:1:1, were mixed in deionized water or N-methyl-2-pyrrolidone (NMP) solvent to get slurry. Then the slurry was coated onto a carbon coated aluminum foil and dried in vacuum for 12 hours at 60°C. After the dispersant was evaporated, the electrode film was cut to sheets with 12 mm in diameter and then dried at 70 °C under vacuum for 12 h. The electrode thickness is ca. 100µm and the cathode load is about 1 mg cm⁻².

Coin-cell assembly

Assembly of batteries: The CR2016-type coin cells were assembled in an argon-filled glove box using the above electrode as cathode, pure lithium foil as anode, and Celgard2300 film as separator. The electrolyte solution was 1 M $LiPF_6$ in ethylene carbonate (EC) / dimethyl carbonate (DMC) (1:1 by volume).

Physical characterizations

Fourier transform infrared (FTIR) spectra were collected on a Paragon 1000 spectropho-tometer (Perkin-Elmer, Inc., USA). The morphologies of the S@pPAN cathodes with various binders before and after charge-discharge tests were observed using scanning electron microscopy (Nova Nano SEM 450, FEI company, USA).

Electrochemical tests

The discharge/charge tests were carried out galvanostatically at 0.2C with the cell testing machine LAND-CT 2001A Cell Test System (Wuhan, China) between 1.0~3.0 V (vs. Li/Li⁺) under room temperature. The rate performance of cells was evaluated using the same equipment at 1C, 3C, 5C, 7C, 9C, 10C and 1C, respectively. Electrochemical impedance spectroscopy (EIS) was measured with a CHI604D Electrochemical Workstation at the full-charged state over a frequency range from 100 kHz to 0.01 Hz with an AC amplitude of 5 mV. All experiments were conducted

under room temperature.

Cyclic voltammetry (CV) measurement was performed on CHI604A Electrochemical Workstation (Shanghai, China) at a scanning rate of 0. 5 mVs⁻¹.

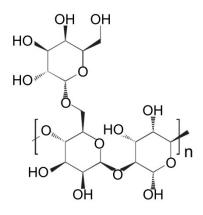
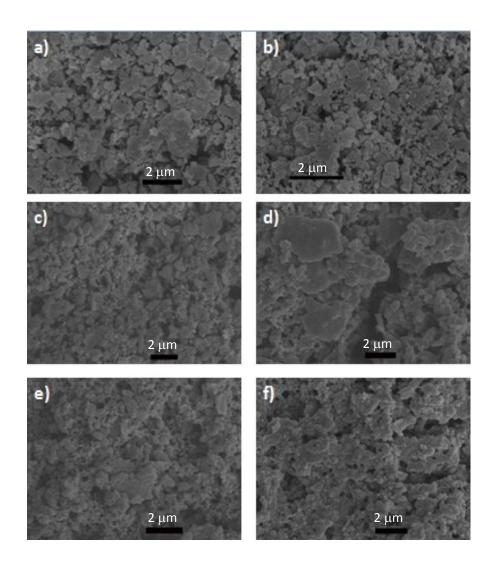



Fig. S1 Chemical structures of Guar Gum (GG)

Reference

1. T. T. Reddy and S. Tammishetti, Polym. Degrad. Stabil., 2004, 86, 455-459

Fig. S2 Morphologies of the S@pPAN cathodes with GG binder as prepared (a) and after100 cycles (b), S@pPAN/PVDF as prepared (c) and after 100 cycles (d), S@pPAN/CMC as prepared (e) and after 100 cycles (f).

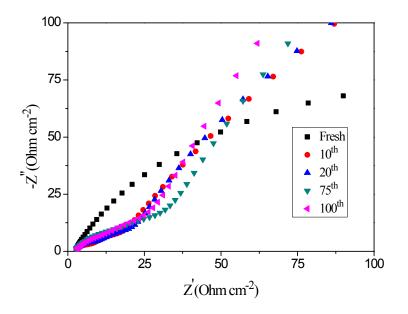
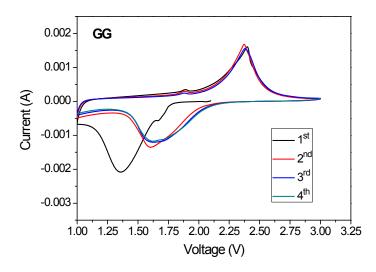



Fig. S3 Nyquist plots for the S@pPAN cathodes with PVDF binder.

Tuble 2 The fitted Lib data of cells with various binders in different states									
Cycle Number		Fresh	10 th	20 th	75 th	100 th			
P. (O)	Guar gum	4.266	5.024	3.455	3.414	3.583			
R _e (Ω)	PVDF	3.959	3.979	4.084	3.647	3.893			
P (O)	Guar gum	34.74	15.33	15.72	12.73	12.77			
R _f (Ω)	PVDF	168.13	26.56	24.62	32.69	26.73			

Tab. S1 The fitted EIS data of cells with various binders in different states

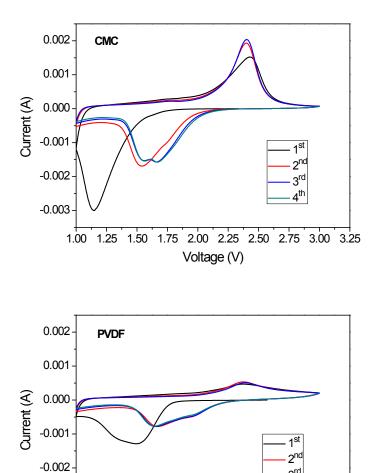


Fig. S4 CV spectra of the cathodes with various binders.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 Voltage (V)

-0.003

3rd 4th

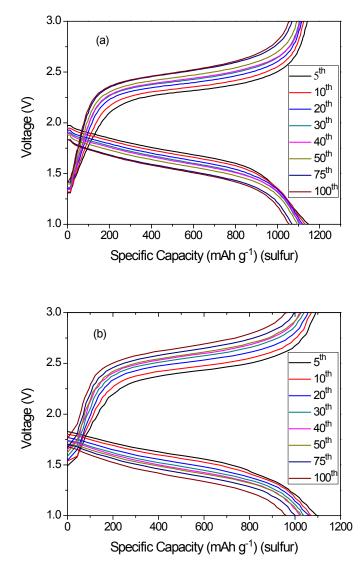


Fig. S5 The charge–discharge profiles of the S@pPAN with GG binder at 3C (a) and 7C (b)

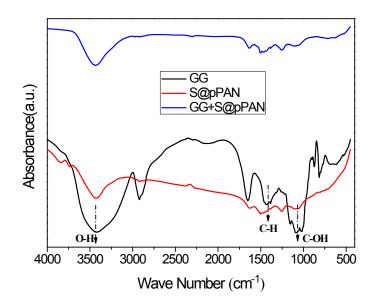


Fig. S6 FTIR images of GG, S@pPAN and S@pPAN/GG electrode.

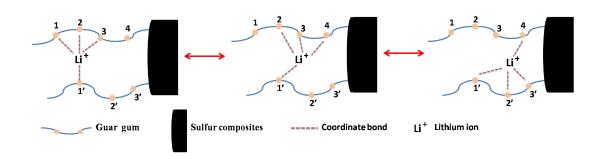


Fig.S7 Schematic lithium-ion transfer in the Guar gum binder.

Reference

1. J. Liu, Q. Zhang, T. Zhang, J.-T.Li, L. Huang and S.-G. Sun, *Adv. Funct. Mater.*, 2015, **25**, 3599-3605

Sulfur	Electrode		Cycliability			
material	composition	Type of binder	(mAhg⁻¹)		Rate	Reference
	(active materials:		1 ^{rt}	50 th	performance	
	conductive additives:				(mAhg ⁻¹)	
	binder)					
S-KB	8:1:1	LA132	1169	885		Ref.1
(80wt% S)						
S-CNF	7:2:1	CMC+SBR	1313	610	_	Ref.2
(75.7wt%S)						
S-MPC	7:2:1	SiO ₂ -	1380	1100	1200 (0.2C	Ref.3
(70wt% S)		impregnated) >	
		polymer blend			420 (5C)	
S-C	7:1:2	P(VDF-TPFE)	1200	895		Ref.4
(70wt%S)						
S-C	8:1:1	PS(DCP-	1000	905	1150 (0.2C	Ref.5
(58wt%S)		PEG)/Li⁺) >	
					690 (3C)	
S-C	8:0:2	Gum arabic	1386	1090	1250 (0.2C	Ref.6
(55wt%S)		(GA)) >	
					800 (5C)	
S@pPAN	8:1:1	Carbonyl-β -	1543	1456		Ref.7
(45wt%S)		Cyclodextrin				
Elemental	6:3:1	CMC+SBR	870	660	_	Ref.8
Sulfur						
Elemental	5:4:1	PEO+PVP	1380	1050		Ref.9
Sulfur						
Elemental	63:7:30	Geltin	1132	408		Ref.10
Sulfur						
Elemental	55:35:10	Na-alginate	776	508	_	Ref.11
Sulfur						
Elemental	6:3:1	РАА	758	325	_	Ref.12
Sulfur						

Tab. S2 Comparison of the electrochemical performances for sulfur electrodesfabricated by recently published novel binders with S/C materials.

Reference:

- 1. X. Hong, J. Jin, Z. Wen, S. Zhang, Q. Wang, Chen Shen and K. Rui, *J. Power Sources*, 2016, **324**, 455-461.
- 2. M. Rao, X. Song, H. Liao and E.J. Cairns, *Electrochim. Acta*, 2012,65, 228-233.
- 3. G. Li, W. Cai, B. Liu, Z. Li, J. Power Sources, 2015, **294**, 187-192.

- 4. H. Wang, V. Sencadas , G. Gao, H. Gao, A. Du, H. Liu and Z.Guo, *Nano Eng*, 2016, **26**, 722-728
- 5. Y.-J. Zhong, Z. Liu, X. Zheng, S.-L. Luo, N. -Yi Yuan, Solid State Ionics, 2016, 289, 23-27.
- G. Li, M. Ling, Y. Ye, Z. Li, J. Guo, Y. Yao, J. Zhu, Z. Lin and S. Zhang, *Adv. Energy Mater*, 2015, 5 ,1500878
- 7. J. Wang, Z. Yao, C. W. Monroe, J. Yang and Y. Nuli, Adv. Funct. Mater., 2013, 23, 1194-1201.
- M. He, L.-X. Yuan, W.-X. Zhang, X.-L. Hu and Y.-H. Huang, J. Phy. Chem. C, 2011, 115, 15703-15709.
- 9. M. -J. Lacey, F. Jeschull, K. Edström and D. Brandell, J. Power Sources, 2014, 264, 8-14.
- 10. J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang and K. Yuan, *Electrochim. Acta*, 2008, **53**, 7084-7088.
- 11. W. Bao, Z. Zhang, Y.Gan, X.Wang and J.Li, *J. Energ.Chem*, 2013, **22**, 790-794.
- 12. Z. Zhang, W, Bao, H.Lu, M.Jia, K. Xie, Y. Lai and J.Li, *J.Electrochem. Soc.*, 2012, **1**, A34-A37.