Supporting Information

A Radical-Promoted Site-Specific Cross Dehydrogenative Coupling of Heterocycles with Nitriles

Zhong-Quan Liu* and Zejiang Li

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: liuzhq@lzu.edu.cn

General Information

Typical procedure

Modification of the typical reaction conditions

Competing Kinetic Isotope Effect (KIE) experiment

Radical trapping by addition of 2, 6-DTBP

Physical data and references for the following products

Copies of the 1H NMR, 13C NMR, 19F NMR, 135DEPT

General Information

1H and 13C NMR spectra were recorded on a Bruker advance III 400 spectrometer in CDCl$_3$ with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 eV. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II. Element analysis (EA) data were measured on a Vario EL. All products were identified by 1H and 13C NMR, 19F NMR, 135DEPT NMR, MS, HRMS. The starting materials were purchased from Energy Chemicals, Alfa Aesar, Acros Organics, J&K Chemicals, Adamas, or Aldrich and used without further purification.

Typical procedure

Reaction of Acetonitriles with heterocycles: A mixture of heterocycles (1 equiv, 0.20 mmol), acetonitriles (7 mL), CuCl (10 mol%, 0.02 mmol), and DCP (3 equiv, 0.60 mmol) was heated at 110 °C, 115 °C or 130 °C (the measured temperature of the oil bath) under nitrogen condition
for 12 h in a sealed tube (15 mL). After the reaction finished, the mixture was evaporated under vacuum and purified by column chromatography to afford the desired product.

Modification of the typical reaction conditions

![Chemical Structure Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>CH$_3$CN (mL)</th>
<th>Initiator (mol%)</th>
<th>Peroxide (equiv)</th>
<th>T (°C)</th>
<th>t (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>CuI(10)</td>
<td>DTBP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>CuI(10)</td>
<td>BPO(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>CuI(10)</td>
<td>TBHP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>CuI(10)</td>
<td>TBBP(3)</td>
<td>110</td>
<td>12</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>CuI(10)</td>
<td>TBCP(3)</td>
<td>110</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(1)</td>
<td>110</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(2)</td>
<td>110</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(4)</td>
<td>110</td>
<td>12</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(5)</td>
<td>110</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>50</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>80</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>120</td>
<td>12</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>130</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>23</td>
<td>7</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>26</td>
<td>CH$_3$CN(5) + t-Butanol(2)</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td>CuF$_2$(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>Cu(OAc)$_2$(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>CuBr(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>30</td>
<td>7</td>
<td>CuCl(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>53</td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>CuCl(5)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>CuCl(20)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>CuCl(50)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>34</td>
<td>7</td>
<td>TBAI(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>Cu₂O(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>Cu(acac)₂ (10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>37</td>
<td>7</td>
<td>Cu(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>7</td>
<td>-</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>39</td>
<td>7</td>
<td>CuSO₄·5H₂O(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>CuO(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>41</td>
<td>7</td>
<td>CuCl₂·2H₂O(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>42</td>
<td>7</td>
<td>NiCl₂·2H₂O(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>43</td>
<td>7</td>
<td>FeCl₃ (10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>44</td>
<td>7</td>
<td>Co(acac)₂ (10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>7</td>
<td>Mn(OAc)₂(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>46</td>
<td>7</td>
<td>Cu(OOTf)₂(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>7</td>
<td>TTF-OMe(10)</td>
<td>-</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>48</td>
<td>7</td>
<td>CuCl(10)</td>
<td>H₂O₂(3)</td>
<td>R.T.</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>49</td>
<td>7</td>
<td>FeCl₃(10)</td>
<td>H₂O₂(3)</td>
<td>R.T.</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>Ferrocene (10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>51</td>
<td>7</td>
<td>CuNO₃(PPh₃)₂(10)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>52</td>
<td>7</td>
<td>CuI(10)+TFA(20)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>53</td>
<td>7</td>
<td>CuI(10)+1,10-phen(20)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>54</td>
<td>7</td>
<td>CuI(10)+TMEDA(20)</td>
<td>DCP(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>55</td>
<td>7</td>
<td>AgNO₃(20)</td>
<td>K₂S₂O₇(3)</td>
<td>110</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>56</td>
<td>7</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>105</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>57</td>
<td>7</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>115</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>58</td>
<td>7</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>120</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>CuI(10)</td>
<td>DCP(3)</td>
<td>130</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>60</td>
<td>7</td>
<td>CuCl(10)</td>
<td>DCP(3)</td>
<td>105</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>61</td>
<td>7</td>
<td>CuCl(10)</td>
<td>DCP(3)</td>
<td>115</td>
<td>12</td>
<td>55</td>
</tr>
<tr>
<td>62</td>
<td>7</td>
<td>CuCl(10)</td>
<td>DCP(3)</td>
<td>120</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>63</td>
<td>7</td>
<td>KI(10)</td>
<td>DCP(3)</td>
<td>115</td>
<td>12</td>
<td>Trace</td>
</tr>
<tr>
<td>64</td>
<td>7</td>
<td>NaI(10)</td>
<td>DCP(3)</td>
<td>115</td>
<td>12</td>
<td>Trace</td>
</tr>
</tbody>
</table>

* Reaction conditions: 2-phenylfuran (1 equiv, 0.20 mmol), acetonitrile as solvent, sealed tube, unless otherwise noted. * Isolated yields.
Competing Kinetic Isotope Effect (KIE) Experiment:

At low conversion (38%): $K_\text{H}/K_\text{D} = 4.7$.

1H NMR
Note: The value of k_H/k_D was calculated from the 1H NMR spectra above which should be the mixture of compound a and b (the KIE scheme). The sum of the integral of a and b at chemical shift 3.78 was integrated as 3.00 (both a and b keep the same single bond hydrogen). Compound a has 2 hydrogen atoms at chemical shift 3.86, while b has no H atoms. The amount of a could be defined as 1.65, on the other hand, the sum of a and b is 2.00, so the amount of b is 0.35 ($2.00 - 1.65 = 0.35$). As a result, $k_H / k_D = 1.65 / 0.35 = 4.7$.

Radical trapping by addition of 2,6-DTBP:

Physical data and references for the following products:

All known compounds are determined by 1H NMR, 13C NMR and 19F NMR, MS analysis and compared with which were cited in the following references, and the new compounds were further confirmed by HRMS and/or element analysis.
References:

Physical data for the following products:

1a. 2-(5-(hydroxymethyl)furan-2-yl)acetonitrile
A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1).

\[\text{HO} \overset{\text{CN}}{\text{O}} \]

\textbf{1H NMR (400 MHz, CDCl}_3\text{)}: \delta 6.29 (d, J = 3.2 Hz, 1H), 6.27 (d, J = 3.2 Hz, 1H), 4.59 (s, 2H), 3.76 (s, 2H), 1.79 (s, 1H).
\textbf{13C NMR (100 MHz, CDCl}_3\text{)}: \delta 154.7, 143.0, 115.3, 109.3, 109.0, 57.3, 17.6.
\textbf{HRMS (ESI, m/z):} Calculated for C\textsubscript{2}H\textsubscript{11}N\textsubscript{2}O\textsubscript{2} (M+NH\textsubscript{4})+ 155.0815, found 155.0811.

1b. 2-(5-(hydroxydiphenylmethyl)furan-2-yl)acetonitrile
A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

\[\text{Ph} \overset{\text{CN}}{\text{O}} \]

\textbf{1H NMR (400 MHz, CDCl}_3\text{)}: \delta 7.36 – 7.29 (m, 10H), 6.29 (d, J = 2.8 Hz, 1H), 5.89 (d, J = 3.2 Hz, 1H), 3.75 (s, 2H), 3.04 (s, 1H).
\textbf{13C NMR (100 MHz, CDCl}_3\text{)}: \delta 158.6, 144.1, 143.3, 128.1, 127.8, 127.1, 115.3, 110.9, 109.0, 77.9, 17.7.
\textbf{HRMS (ESI, m/z):} Calculated for C\textsubscript{19}H\textsubscript{15}NO\textsubscript{2}Na (M+Na+) 312.0995, found 312.1001.

1c. 2-(5-([1,1’-biphenyl]-2-yl)(hydroxy)methyl)furan-2-yl)acetonitrile
A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

\[\text{Ph} \overset{\text{CN}}{\text{O}} \]
\[1^1\text{H NMR (400 MHz, CDCl}_3\text{)}: \delta 7.70 (dd, J = 7.6, 1.2 \text{ Hz, 1H}), 7.46 - 7.42 (m, 1H), 7.41 - 7.36 (m, 4H), 7.29 - 7.24 (m, 3H), 6.25 (d, J = 3.2 \text{ Hz, 1H}), 6.00 (d, J = 3.2 \text{ Hz, 1H}), 5.82 (s, 1H), 3.72 (s, 2H), 2.27 (s, 1H).\]

\[1^3\text{C NMR (100 MHz, CDCl}_3\text{)}: \delta 156.9, 142.8, 141.1, 140.2, 137.7, 130.0, 129.2, 128.2, 128.1, 127.9, 127.4, 127.2, 115.4, 109.2, 109.1, 66.7, 17.6.\]

\[\text{HRMS (ESI, m/z): Calculated for C}_{19}\text{H}_{19}\text{N}_2\text{O}_2 (M+NH}_4^+ 307.1441, \text{ found 307.1438.}\]

1d. 2-(5-phenylfuran-2-yl)acetonitrile

A red solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

\[1^1\text{H NMR (400 MHz, CDCl}_3\text{)}: \delta 7.65 (d, J = 7.2 \text{ Hz, 2H}), 7.39 (t, J = 7.6 \text{ Hz, 2H}), 7.29 (t, J = 7.2 \text{ Hz, 1H}), 6.61 (d, J = 3.2 \text{ Hz, 1H}), 6.41 (d, J = 3.2 \text{ Hz, 1H}), 3.84 (s, 2H).\]

\[1^3\text{C NMR (100 MHz, CDCl}_3\text{)}: \delta 154.6, 142.2, 130.1, 128.7, 127.8, 123.7, 115.4, 110.6, 105.9, 17.7.\]

\[\text{HRMS (ESI, m/z): Calculated for C}_{12}\text{H}_{10}\text{NO (M+H)}^+ 184.0757, \text{ found 184.0760.}\]

1e. 2-(5-(4-methoxyphenyl)furan-2-yl)acetonitrile

A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1); m.p.: 93-95 °C.

\[1^1\text{H NMR (400 MHz, CDCl}_3\text{)}: \delta 7.57 (d, J = 8.8 \text{ Hz, 2H}), 6.92 (d, J = 8.8 \text{ Hz, 2H}), 6.46 (d, J = 3.2 \text{ Hz, 1H}), 6.38 (d, J = 3.2 \text{ Hz, 1H}), 3.84 (s, 3H), 3.83 (s, 2H).\]

\[1^3\text{C NMR (100 MHz, CDCl}_3\text{)}: \delta 159.3, 154.7, 141.5, 125.2, 123.2, 114.2, 110.5, 104.3, 55.3, 17.7.\]

\[\text{HRMS (ESI, m/z): Calculated for C}_{13}\text{H}_{12}\text{NO}_2 (M+H)}^+ 214.0863, \text{ found 214.0861.}\]

1f. 2-(4-(4-methoxyphenyl)furan-2-yl)acetonitrile

A colorless liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).
\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 7.43 (d, } J = 1.6 \text{ Hz, 1H), 7.27 (d, } J = 8.8 \text{ Hz, 2H), 6.97 (d, } J = 8.8 \text{ Hz, 2H), 6.51 (d, } J = 2.0 \text{ Hz, 1H), 3.84 (s, 3H), 3.82 (s, 2H).} \]

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 7.98 (d, } J = 8.4 \text{ Hz, 2H), 7.41 (d, } J = 8.8 \text{ Hz, 2H), 6.47 (d, } J = 3.2 \text{ Hz, 1H), 6.35 (d, } J = 3.2 \text{ Hz, 1H), 5.26 (s, 2H), 3.78 (s, 2H).} \]

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 6.30 (dd, } J = 7.2, 3.2 \text{ Hz, 2H), 4.49 (q, } J = 12.8 \text{ Hz, 2H), 3.78 (dd, } J = 11.6, 2.8 \text{ Hz, 1H), 3.76 (s, 2H), 3.42 (dd, } J = 11.6, 6.0 \text{ Hz, 1H), 3.16 (dq, } J = 8.8, 2.8 \text{ Hz, 1H), 2.80 (t, } J = 4.8 \text{ Hz, 1H), 2.61 (dd, } J = 4.8, 2.8 \text{ Hz, 1H).} \]

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 159.1, 142.6, 137.5, 129.0, 124.4, 115.6, 114.4, 112.0, 55.3, 16.4.} \]

\[\text{HRMS (ESI, m/z): Calculated for C}_{13}\text{H}_{12}\text{NO}_2 (M+H)^+ 214.0863, found 214.0860.} \]

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 159.1, 142.6, 137.5, 129.0, 124.4, 115.6, 114.4, 112.0, 55.3, 16.4.} \]

\[\text{HRMS (ESI, m/z): Calculated for C}_{14}\text{H}_{10}\text{ClNO}_3\text{Na(M+Na)}^+ 298.0241, found 298.0237.} \]

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 152.1, 143.4, 115.3, 110.8, 109.2, 70.8, 64.9, 50.7, 44.2, 17.6.} \]

\[\text{HRMS (ESI, m/z): Calculated for C}_{10}\text{H}_{11}\text{NO}_3\text{Na(M+Na)}^+ 216.0631, found 216.0627.} \]

A light yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

A light yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1).
ii. 2-(5-(hydroxydiphenylmethyl)thiophen-2-yl)acetonitrile

A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

![Diagram of 2-(5-(hydroxydiphenylmethyl)thiophen-2-yl)acetonitrile]

^{1}H NMR (400 MHz, CDCl$_3$): δ 7.36 – 7.31 (m, 10H), 6.91 (d, $J = 3.6$ Hz, 1H), 6.61 (d, $J = 3.6$ Hz, 1H), 3.85 (s, 2H), 2.95 (s, 1H).

^{13}C NMR (100 MHz, CDCl$_3$): δ 153.0, 145.9, 131.0, 128.1, 127.8, 127.1, 126.8, 126.6, 116.7, 80.1, 18.8.

HRMS (ESI, m/z): Calculated for C$_{19}$H$_{15}$NOSNa (M+Na$^+$) 328.0767, found 328.0772.

2a. 2-(1-methyl-1H-indol-2-yl)acetonitrile

A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 99-101 °C.

![Diagram of 2-(1-methyl-1H-indol-2-yl)acetonitrile]

^{1}H NMR (400 MHz, CDCl$_3$): δ 7.59 (d, $J = 8.0$ Hz, 1H), 7.32 (d, $J = 8.0$ Hz, 1H), 7.28 – 7.24 (m, 1H), 7.16 – 7.12 (m, 1H), 6.54 (s, 1H), 3.89 (s, 2H), 3.76 (s, 3H).

^{13}C NMR (100 MHz, CDCl$_3$): δ 137.9, 127.6, 127.1, 122.3, 120.7, 120.1, 116.0, 109.1, 102.3, 29.8, 16.7.

MS(EI): m/z(%): 170(100.0), 169(94.3), 144(39.0), 128(10.0), 115(13.6).

2b. 2-(1,5-dimethyl-1H-indol-2-yl)acetonitrile

A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 110-112 °C.

![Diagram of 2-(1,5-dimethyl-1H-indol-2-yl)acetonitrile]

^{1}H NMR (400 MHz, CDCl$_3$): δ 7.36 (s, 1H), 7.20 (d, $J = 8.4$ Hz, 1H), 7.08 (dd, $J = 8.4, 1.2$ Hz, 1H), 6.44 (s, 1H), 3.86 (s, 2H), 3.72 (s, 3H), 2.44 (s, 3H).

^{13}C NMR (100 MHz, CDCl$_3$): δ 136.3, 129.4, 127.5, 127.3, 123.9, 120.3, 116.0, 108.8, 101.7, 29.8, 21.3, 16.7.

HRMS (ESI, m/z): Calculated for C$_{12}$H$_{13}$N$_{2}$ (M+H$^+$) 185.1073, found 185.1071.

2c. 2-(1,4-dimethyl-1H-indol-2-yl)acetonitrile

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl...
acetate = 10/1); m.p.: 112-114 °C.

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.19 - 7.14 (m, 2H), 6.94 (dd, J = 6.0, 1.2 Hz, 1H), 6.55 (s, 1H), 3.88 (s, 2H), 3.73 (s, 3H), 2.54 (s, 3H). \]

\[\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 137.7, 130.2, 127.0, 122.4, 120.3, 116.0, 106.8, 100.8, 29.9, 18.6, 16.7. \]

HRMS (ESI, m/z): Calculated for C\(_{12}\)H\(_{13}\)N\(_2\) (M+H\(^+\)) 185.1073, found 185.1070.

2d. 2-(1,7-dimethyl-1H-indol-2-yl)acetonitrile
A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 145-146 °C.

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.41 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 7.2 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 6.50 (s, 1H), 3.99 (s, 3H), 3.84 (s, 2H), 2.78 (s, 3H). \]

\[\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 136.8, 128.0, 127.9, 125.4, 121.0, 120.2, 118.8, 116.1, 102.9, 32.9, 20.2, 17.0. \]

HRMS (ESI, m/z): Calculated for C\(_{12}\)H\(_{13}\)N\(_2\) (M+H\(^+\)) 185.1073, found 185.1070.

2e. 2-(1,3-dimethyl-1H-indol-2-yl)acetonitrile
A red solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1); m.p.: 90-92 °C.

\[\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.54 (d, J = 7.6 Hz, 1H), 7.30 - 7.27 (m, 1H), 7.25 - 7.23 (m, 1H), 7.15 - 7.11 (m, 1H), 3.84 (s, 2H), 3.77 (s, 3H), 2.31 (s, 3H). \]

\[\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 137.1, 127.6, 123.4, 122.5, 119.4, 118.9, 116.0, 109.8, 109.0, 29.9, 13.8, 8.8. \]

HRMS (ESI, m/z): Calculated for C\(_{12}\)H\(_{13}\)N\(_2\) (M+H\(^+\)) 185.1073, found 185.1072.

2f. 2-(5-fluoro-1-methyl-1H-indol-2-yl)acetonitrile
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate =
5/1); m.p.: 101-103 °C.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.24 - 7.22 (m, 1H), 7.21 (t, J = 3.6 Hz, 1H), 7.00 (td, J = 9.2, 2.4 Hz, 1H), 6.49 (s, 1H), 3.87 (s, 2H), 3.74 (s, 3H).
\]

\[
\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 159.2, 156.9, 134.5, 129.2, 127.3, 127.2, 115.7, 110.8, 110.6, 109.9, 109.8, 105.6, 105.4, 102.2, 102.1, 30.1, 16.8.
\]

\[
\text{F NMR (376 MHz, CDCl}_3\text{): } \delta \text{ -124.27 (td, } J = 9.4, 4.1 \text{ Hz, 1F).}
\]

\[
\text{HRMS (ESI, m/z): Calculated for C}_{11}\text{H}_{10}\text{FN}_2\text{(M+H)}^+ 189.0823, \text{found 189.0822.}
\]

2g. 2-(5-chloro-1-methyl-1H-indol-2-yl)acetonitrile
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1); m.p.: 118-120 °C.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.54 - 7.53 (m, 1H), 7.23 - 7.18 (m, 2H), 6.47 (s, 1H), 3.87 (s, 2H), 3.73 (s, 3H).
\]

\[
\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 136.3, 129.0, 128.0, 125.8, 122.6, 120.0, 115.6, 110.2, 101.9, 30.0, 16.7.
\]

\[
\text{HRMS (ESI, m/z): Calculated for C}_{11}\text{H}_{10}\text{ClN}_2\text{(M+H)}^+ 205.0527, \text{found 205.0525.}
\]

2h. 2-(5-bromo-1-methyl-1H-indol-2-yl)acetonitrile
A red solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1); m.p.: 107-109 °C.

\[
\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.70 (d, J = 1.6 Hz, 1H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H), 7.17 (d, J = 8.8 Hz, 1H), 6.47 (s, 1H), 3.87 (s, 2H), 3.73 (s, 3H).
\]

\[
\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 136.6, 128.9, 128.7, 125.2, 123.2, 115.6, 113.4, 110.7, 101.8, 30.0, 16.7.
\]

\[
\text{HRMS (ESI, m/z): Calculated for C}_{11}\text{H}_{10}\text{BrN}_2\text{(M+H)}^+ 249.0022, \text{found 249.0019.}
\]
2i. methyl 2-(cyanomethyl)-1-methyl-1H-indole-5-carboxylate

A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1).

\[\text{MeO}_2\text{C} \backslash \text{N} \]

1H NMR (400 MHz, CDCl$_3$): δ 8.34 (s, 1H), 7.96 (d, $J = 8.4$ Hz, 1H), 7.32 (d, $J = 8.8$ Hz, 1H), 6.64 (s, 1H), 3.93 (s, 3H), 3.91 (s, 2H), 3.79 (s, 3H).

13C NMR (150 MHz, CDCl$_3$): δ 167.9, 140.3, 129.2, 126.6, 123.7, 123.6, 122.3, 115.6, 108.9, 103.8, 51.9, 30.1, 16.8.

HRMS (ESI, m/z): Calculated for C$_{13}$H$_{13}$N$_2$O$_2$ (M+H)$^+$ 229.0972, found 229.0975.

2j. 2-(3-(2-methoxyethyl)-1-methyl-1H-indol-2-yl)acetonitrile

A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 85-87 °C.

\[\text{O} \backslash \text{N} \]

1H NMR (400 MHz, CDCl$_3$): δ 7.55 (d, $J = 8.0$ Hz, 1H), 7.31 (d, $J = 8.4$ Hz, 1H), 7.27 – 7.23 (m, 1H), 7.15 – 7.11 (m, 1H), 3.92 (s, 2H), 3.78 (s, 3H), 3.54 (t, $J = 6.4$ Hz, 2H), 3.32 (s, 3H), 2.99 (t, $J = 6.4$ Hz, 2H).

13C NMR (100 MHz, CDCl$_3$): δ 137.0, 126.9, 125.2, 122.3, 119.5, 118.6, 116.4, 111.4, 109.2, 72.8, 58.8, 29.9, 25.0, 14.2.

HRMS (ESI, m/z): Calculated for C$_{14}$H$_{17}$N$_2$O (M+H)$^+$ 229.1335, found 229.1334.

2k. 2-(2-(cyanomethyl)-1-methyl-1H-indol-3-yl)ethyl acetate

A red solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1); m.p.: 90-91 °C.
1H NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 6.8, 1.2 Hz, 1H), 7.18 – 7.14 (m, 1H), 4.25 (t, J = 6.8 Hz, 2H), 3.91 (s, 2H), 3.81 (s, 3H), 3.08 (t, J = 6.8 Hz, 2H), 2.07 (s, 3H).

13C NMR (100 MHz, CDCl₃): δ 171.1, 137.2, 126.8, 124.9, 122.7, 119.8, 118.7, 116.0, 110.2, 109.3, 64.4, 30.0, 23.9, 21.0, 14.0.

HRMS (ESI, m/z): Calculated for C₁₅H₂₀N₃O₂ (M+NH₄)⁺ 274.1550, found 274.1549.

2l. methyl 2-(cyanomethyl)-1-methyl-1H-indole-3-carboxylate
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 2/1); m.p.: 128-130 °C.

1H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 7.6 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.36 – 7.32 (m, 1H), 7.31 – 7.28 (m, 1H), 4.57 (s, 2H), 3.97 (s, 3H), 3.86 (s, 3H).

13C NMR (100 MHz, CDCl₃): δ 165.7, 136.8, 134.6, 125.6, 123.7, 122.5, 115.3, 109.6, 105.7, 51.3, 30.3, 14.3.

HRMS (ESI, m/z): Calculated for C₁₃H₁₃N₂O₂ (M+H)⁺ 229.0972, found 229.0969.

2m. 2-(1-methyl-3-(2,2,2-trifluoro-1-methoxyethyl)-1H-indol-2-yl)acetonitrile
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 123-125 °C.

1H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.23 – 7.19 (m, 1H), 4.99 (q, J = 6.8 Hz, 1H), 4.22 (d, J = 18.0 Hz, 1H), 3.98 (d, J = 18.0 Hz, 1H), 3.85 (s, 3H), 3.50 (s, 3H).

13C NMR (150 MHz, CDCl₃): δ 137.0, 127.2, 126.6, 124.3(d, J = 281.9 Hz), 123.1, 120.8, 118.7, 115.5, 109.6, 104.9, 75.6(q, J = 32.6 Hz), 58.5, 30.0, 14.3.

19F NMR (376 MHz, CDCl₃): δ -76.79 (s, 3F).
HRMS (ESI, m/z): Calculated for C$_{14}$H$_{14}$F$_3$N$_2$O (M+H)$^+$ 283.1053, found 283.1058.

2n. 2-(1-ethyl-1H-indol-2-yl)acetonitrile
A yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

1H NMR (400 MHz, CDCl$_3$): δ 7.59 (d, $J = 8.0$ Hz, 1H), 7.33 (d, $J = 8.0$ Hz, 1H), 7.27 – 7.22 (m, 1H), 7.15 – 7.11 (m, 1H), 6.54 (d, $J = 0.8$ Hz, 1H), 4.19 (q, $J = 7.2$ Hz, 2H), 3.88 (s, 2H), 1.42 (t, $J = 7.2$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 136.8, 127.4, 126.9, 122.3, 120.8, 120.1, 116.1, 109.3, 102.5, 38.3, 16.6, 15.2.

HRMS (ESI, m/z): Calculated for C$_{12}$H$_{13}$N$_2$ (M+H)$^+$ 185.1073, found 185.1067.

2o. 2-(1-acetyl-1H-indol-2-yl)acetonitrile
A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

1H NMR (400 MHz, CDCl$_3$): δ 7.66 (d, $J = 8.4$ Hz, 1H), 7.59 (d, $J = 8.0$ Hz, 1H), 7.38 – 7.34 (m, 1H), 7.32 – 7.28 (m, 1H), 6.83 (s, 1H), 4.23 (s, 2H), 2.84 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 170.3, 135.8, 130.8, 129.2, 124.8, 123.6, 121.5, 116.7, 114.1, 111.4, 27.4, 20.9.

HRMS (ESI, m/z): Calculated for C$_{12}$H$_{14}$N$_3$O (M+NH$_4$)$^+$ 216.1131, found 216.1128.

2p. 2-(1-methyl-1H-pyrrolo[2,3-b]pyridin-2-yl)acetonitrile
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 3/1); m.p.: 100-103 °C.

1H NMR (400 MHz, CDCl$_3$): δ 8.34 (dd, $J = 4.8$, 1.2 Hz, 1H), 7.87 (dd, $J = 8.0$, 1.2 Hz, 1H), 7.08 (dd, $J = 8.0$, 4.8 Hz, 1H), 6.52 (s, 1H), 3.92 (s, 2H), 3.88 (s, 3H).

13C NMR (100 MHz, CDCl$_3$): δ 148.7, 143.4, 128.6, 128.5, 119.7, 116.4, 115.5, 100.1, 28.2, 17.0.
HRMS (ESI, m/z): Calculated for C_{10}H_{10}N_{3} (M+H)^{+} 172.0869, found 172.0864.

2q. 2-(1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl)acetonitrile
A red solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 100-102 °C.

\[
\begin{array}{c}
\text{O} \\
\text{I} \\
\text{N} \\
\text{CN}
\end{array}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 7.71 (d, } J = 8.0 \text{ Hz, 2H), 7.26 (d, } J = 8.0 \text{ Hz, 2H),} \\
6.67 (d, } J = 4.4 \text{ Hz, 1H), 6.23 (d, } J = 4.4 \text{ Hz, 1H), 3.98 (s, 3H), 3.77 (s, 2H), 2.43 (s, 3H).} \\
\text{^13C NMR (100 MHz, CDCl}_3\text{): } \delta \text{ 186.1, 142.4, 136.7, 132.3, 129.5, 129.1, 128.8,} \\
121.7, 115.4, 109.2, 33.1, 21.6, 16.5.} \\
\text{HRMS (ESI, m/z): Calculated for C}_{15}\text{H}_{15}\text{N}_{2}\text{O} (\text{M+H})^{+} 239.1179, \text{ found 239.1176.}
\]

2r. 4-methoxyphenyl 5-(cyanomethyl)-1-methyl-1H-pyrrole-2-carboxylate
A yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1); m.p.: 136-138 °C.

\[
\begin{array}{c}
\text{MeO} \\
\text{O} \\
\text{I} \\
\text{N} \\
\text{CN}
\end{array}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 7.15 (d, } J = 4.0 \text{ Hz, 1H), 7.08 (d, } J = 9.2 \text{ Hz, 2H),} \\
6.92 (d, } J = 9.2 \text{ Hz, 2H), 6.27 (d, } J = 4.0 \text{ Hz, 1H), 3.93 (s, 3H), 3.81 (s, 3H), 3.75 (s, 2H).} \\
\text{^13C NMR (100 MHz, CDCl}_3\text{): } \delta \text{ 159.8, 157.2, 143.8, 128.5, 123.3, 122.6, 118.4,} \\
115.4, 114.5, 109.5, 55.6, 32.7, 16.5.} \\
\text{HRMS (ESI, m/z): Calculated for C}_{15}\text{H}_{15}\text{N}_{2}\text{O}_{3} (\text{M+H})^{+} 271.1077, \text{ found 271.1075.}
\]

2s. tert-butyl 2-(cyanomethyl)-5-(4-methoxyphenyl)-1H-pyrrole-1-carboxylate
A blue liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1).

\[
\begin{array}{c}
\text{O} \\
\text{I} \\
\text{N} \\
\text{CN}
\end{array}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{): } \delta \text{ 7.20 (d, } J = 8.8 \text{ Hz, 2H), 6.90 (d, } J = 8.8 \text{ Hz, 2H),} \\
6.30 (d, } J = 3.6 \text{ Hz, 1H), 6.07 (d, } J = 3.6 \text{ Hz, 1H), 4.00 (s, 2H), 3.83 (s, 3H), 1.28 (s, 3H).} \\
\text{^13C NMR (100 MHz, CDCl}_3\text{): } \delta \text{ 159.8, 157.2, 143.8, 128.5, 123.3, 122.6, 118.4,} \\
115.4, 114.5, 109.5, 55.6, 32.7, 16.5.} \\
\text{HRMS (ESI, m/z): Calculated for C}_{15}\text{H}_{15}\text{N}_{2}\text{O}_{3} (\text{M+H})^{+} 271.1077, \text{ found 271.1075.}
\]
H).

\(^{13}\text{C NMR (150 MHz, CDCl}_3\):} \quad \delta 159.0, 149.7, 136.6, 130.0, 127.2, 123.8, 117.2, 113.2, 112.2, 110.0, 84.7, 55.4, 27.4, 19.2.

HRMS (ESI, m/z): Calculated for C\textsubscript{18}H\textsubscript{21}N\textsubscript{2}O\textsubscript{3} (M+H)+ 313.1547, found 313.1548.

2s'. 2-(5-(4-methoxyphenyl)-1H-pyrrol-2-yl)acetonitrile

A red liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

\(^{1}\text{H NMR (400 MHz, CDCl}_3\):} \quad \delta 8.35 (s, 1H), 7.39 (d, \(J = 8.8 \) Hz, 2H), 6.92 (d, \(J = 8.8 \) Hz, 2H), 6.31 (t, \(J = 3.2 \) Hz, 1H), 6.16 (t, \(J = 3.2 \) Hz, 1H), 3.83 (s, 3H), 3.81 (s, 2H).

\(^{13}\text{C NMR (150 MHz, CDCl}_3\):} \quad \delta 158.6, 133.4, 125.3, 118.8, 116.9, 114.4, 110.0, 109.9, 105.5, 55.3, 17.1.

HRMS (ESI, m/z): Calculated for C\textsubscript{13}H\textsubscript{13}N\textsubscript{2}O (M+H)+ 213.1022, found 213.1020.

2t. (S)-2-(1,3-dimethyl-1H-indol-2-yl)butanenitrile

A light yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 20/1).

\(^{1}\text{H NMR (400 MHz, CDCl}_3\):} \quad \delta 7.55 (d, \(J = 8.0 \) Hz, 1H), 7.30 (d, \(J = 8.0 \) Hz, 1H), 7.28 – 7.24 (m, 1H), 7.16 – 7.12 (m, 1H), 4.07 (t, \(J = 8.0 \) Hz, 1H), 3.81 (s, 3H), 2.35 (s, 3H), 2.20 – 2.09 (m, 1H), 2.00 – 1.89 (m, 1H), 1.10 (t, \(J = 7.6 \) Hz, 3H).

\(^{13}\text{C NMR (100 MHz, CDCl}_3\):} \quad \delta 137.1, 127.9, 127.8, 122.4, 119.4, 119.2, 118.8, 109.5, 109.0, 30.5, 29.4, 27.1, 11.9, 8.9.

HRMS (ESI, m/z): Calculated for C\textsubscript{14}H\textsubscript{17}N\textsubscript{2} (M+H)+ 213.1386, found 213.1384.

Tolmetin. 2-(1-methyl-5-(4-methylbenzoyl)-1H-pyrrol-2-yl)acetic acid

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 1/1); m.p.: 160-161 °C.
1H NMR (400 MHz, CDCl$_3$): δ 7.71 (d, $J = 8.0$ Hz, 2H), 7.24 (d, $J = 8.0$ Hz, 2H), 6.68 (d, $J = 4.0$ Hz, 1H), 6.13 (d, $J = 4.0$ Hz, 1H), 3.95 (s, 3H), 3.76 (s, 2H), 2.42 (s, 3H).
13C NMR (100 MHz, CDCl$_3$): δ 186.1, 174.7, 142.0, 137.1, 133.8, 131.5, 129.5, 128.7, 122.4, 109.7, 33.2, 32.5, 21.5.
HRMS (ESI, m/z): Calculated for C$_{15}$H$_{15}$NO$_3$Na (M+Na)$^+$ 280.0944, found 280.0948.

2-(3,3',5,5'-tetra-tert-butyl-4'-hydroxy-4-oxo-1,4-dihydro-[1,1'-biphenyl]-1-yl)acetonitrile

1H NMR (400 MHz, CDCl$_3$): δ 7.01 (s, 2H), 6.58 (s, 2H), 5.25 (s, 1H), 3.00 (s, 2H), 1.42 (s, 18H), 1.27 (s, 18H).
13C NMR (100 MHz, CDCl$_3$): δ 185.6, 153.3, 147.2, 142.1, 136.5, 128.8, 122.6, 116.4, 44.5, 35.0, 34.6, 30.1, 29.4, 27.5.
13DEPT NMR (150 MHz, CDCl$_3$): δ 142.1, 122.5, 30.1, 29.4, 27.5.
HRMS (ESI, m/z): Calculated for C$_{30}$H$_{43}$NO$_2$Na (M+Na)$^+$ 472.3186, found 472.3173.
Copies of the 1H NMR, 13C NMR, 19F NMR, 135DEPT

1a- 1H NMR

1a- 13C NMR
1b-1H NMR

1b-13C NMR
1c-^1^H NMR

1c-^13^C NMR
$1\text{e}^{-1}H$ NMR

$1\text{e}^{-13}C$ NMR
^{1}H NMR

^{13}C NMR
^{1}H NMR

^{13}C NMR
^{1}H NMR

^{13}C NMR
2a-1H NMR

2a-13C NMR
2b-1H NMR

2b-13C NMR
$2e^{-1}{}^1\text{H NMR}$

$2e^{-13}{}^1\text{C NMR}$
2f1H NMR

2f13C NMR
2f-19F NMR

2g-1H NMR
13C NMR

1H NMR
2i-13C NMR

2j-1H NMR
2j-^{13}C NMR

2k-^{1}H NMR
$2m^{13}\text{C NMR}$

$2m^{19}\text{F NMR}$
$2n^{-1}{^1}H$ NMR

$2n^{-13}C$ NMR
2o-¹H NMR

2o-¹³C NMR
2p-1H NMR

2p-13C NMR
$2r^{-13}C$ NMR

![2r^{-13}C NMR spectrum](image)

$2s^{-1}H$ NMR

![2s^{-1}H NMR spectrum](image)
2s-13C NMR

2s-1H NMR
$2s^1$-^{13}C NMR

$2t^1$H NMR
$^{2t-13}C \text{ NMR}$

![$^{2t-13}C \text{ NMR}$ graph]

$^{1}H \text{ NMR}$

![$^{1}H \text{ NMR}$ graph]
Tolmetin-\(^{13}\)C NMR

trap-\(^{1}\)H NMR
trap13C NMR

trap135DEPT