Supporting Information

Palladium-Catalyzed Oxidative Cyclization of Aniline-Tethered Alkylidene cyclopropanes with O\textsubscript{2}: a Facile Protocol to Selectively Synthetize 2- and 3-Vinylindoles

Bo Cao,a Marwan Simaan,c Ilan Marek,c Yin Wei,b,* and Min Shia,b,*

aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China.

bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.

cThe Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry and Lise Meitner-Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000 Israel.

CONTENTS

1. General remarks..S2
2. General procedure for synthesis of ACPs 1 and 3...S3-S4
3. Characterization and spectra charts for ACPs 1 and 3..S5-S35
4. Optimization of the reaction conditions...S36-S38
5. General procedure for synthesis of products 2 and 4..S38
6. Substrate scope for synthesis of 2 and 4...S39-S41
7. Characterization and spectra charts for vinylindoles 2 and 4...S41-S81
8. General procedure for synthesis of 5 and its and spectrum chart..................................S81-S83
9. Proposed mechanism..S84
10. X-ray crystallographic information of product 2f..S85
11. References..S86

1H NMR spectrum were recorded on a Bruker AM-400 spectrometer for solution in CDCl$_3$ with tetramethylsilane (TMS) as internal standard; J-values are in Hz. 13C NMR spectrum were recorded at 100 MHz. 19F NMR spectrum were recorded at 376 MHz. Data for 1H, 13C, 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Mass spectrum were recorded with a HP-5989 instrument. All of the compounds reported in this paper gave satisfactory HRMS analytic data. Melting points were determined on a digital melting point apparatus and temperatures were uncorrected. Infrared spectrum were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm$^{-1}$. THF, toluene and 1,4-dioxane were distilled from sodium (Na) under argon (Ar) atmosphere. DMF and dichloromethane were distilled from CaH$_2$ under argon (Ar) atmosphere. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure.

Compounds M1, M2, 1 and 3$^{[1],[2]}$ were prepared according to the previous literatures.
2. General procedure for synthesis of ACPs 1 and 3

Under argon atmosphere, a solution of 3-bromopropyltriphenylphosphonium bromide (5.5 g, 12 mmol) and NaH (576 mg, 24 mmol) in THF (10 mL) was stirred at 70 °C for 12 h. Afterwards M1 (10 mmol) in THF (5 mL) was added and the reaction solution was stirred at 70 °C for another 12 h. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 50 / 1) to afford the product M2 in moderate yield.

To a solution of M2 (2 mmol) and Et3N (556 µL, 4 mmol) in DCM (5 mL) was added R3Cl (3 mmol) at 0 °C. Afterwards the mixture was stirred at room temperature overnight. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 50 / 1) to afford the product 1 in high yield.

To a solution of N1 (30 mmol, 1.0 eq) in dry THF was added dropwise into a solution of LiAlH4 (60 mmol, 2.0 eq) in THF while the temperature was maintained at 0 °C. The resulting mixture was allowed to warm to room temperature and was stirred for 2 hours. Then the mixture was hydrolyzed by addition of H2O (2.5 mL) and 5% NaOH (7.5 mL). The resulting suspension was filtered, and the precipitate was washed with ethyl acetate. Next, the combined organic collection was evaporated. The residue was recrystallized from ethyl acetate and petroleum ether,
affording the corresponding alcohols N2 quantitatively as a white or yellow soild.

To a solution of N2 (10.0 mmol) and pyridine (1.0 mL, 12.0 mmol) in DCM (30 mL) was added a solution of p-TsCl (2.3 g, 12.0 mmol) in DCM (10 mL), and the mixture was stirred at rt for 3 hours. Upon completion monitored by TLC, 10 mL of saturated sodium bicarbonate was added to the reaction mixture. The aqueous phase was extracted with CH2Cl2 (3×15 mL), and the combined organic phases washed with H2O (1×20 mL), and brine (1×20 mL) respectively. The organic phase was separated and dried over Na2SO4. After concentration, the resulting solid was added to a suspension of PCC (3.3 g, 12.0 mmol) in DCM (30 mL). After being stirred at rt for 2 h, the mixture was filtered and concentrated. The residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 8 / 1) to afford the product N4 in moderate yield as colorless solid.

A solution of 3-bromopropyltriphenylphosphonium bromide (1.4 g, 3 mmol), NaH (168 mg, 7 mmol) and N4 (2 mmol) in THF (8 mL) was stirred at 70 °C for 12 h. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 50 / 1) to afford the product 3 in moderate yield.
3. Characterization and spectra charts for ACPs 1 and 3

\[
N-(2-(cyclopropylidene(2-methoxyphenyl)methyl)phenyl)-4-methylbenzenesulfonamide 1b
\]

A faint yellow solid, 54% yield (378 mg). M.p.: 142-144 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 1.03-1.08 (m, 2H), 1.18-1.23 (m, 2H), 2.31 (s, 3H), 3.76 (s, 3H), 6.85-6.90 (m, 1H), 6.93-7.20 (m, 3H), 7.06 (dd, \(J = 0.4\) Hz, 8.8 Hz, 2H), 7.13-7.18 (m, 2H), 7.24-7.31 (m, 2H), 7.34-7.38 (m, 2H), 7.51-7.55 (m, 1H). \(^1\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 3.6, 4.3, 21.4, 55.5, 111.2, 118.5, 120.7, 122.6, 123.5, 127.1, 127.7, 128.8, 129.1, 129.2, 129.8, 130.0, 130.9, 132.9, 134.6, 136.4, 143.2, 156.2. IR (neat) \(\nu\) 3267, 3065, 3053, 2970, 2920, 2845, 1599, 1577, 1489, 1328, 1241, 1166, 1112, 1088, 1019, 918, 887, 751, 653 cm\(^{-1}\). HRMS (ESI) Calcd. for C\(_{24}\)H\(_{27}\)N\(_2\)O\(_3\)S \(\text{+1(M+NH}_4^+)\) requires: 423.1737, Found: 423.1739.

\(^1\)H NMR spectrum of 1b:
13C NMR spectrum of 1b:

A white solid, 58% yield (312 mg). M.p.: 114-117 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.86-0.91 (m, 2H), 1.48-1.52 (m, 2H), 2.27 (s, 3H), 2.35 (s, 3H), 6.47 (s, 1H), 6.94-6.98 (m, 2H), 7.05-7.15 (m, 6H), 7.28-7.33 (m, 1H), 7.41-7.45 (m, 2H), 7.70 (dd, $J = 0.8$ Hz, 8.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.6, 5.7, 21.46, 21.53, 121.1, 123.5, 124.7, 125.5, 126.9, 127.2, 127.4, 128.3, 128.4, 128.6, 129.2, 130.6, 132.5, 134.3, 136.3, 138.2, 138.4, 143.4. IR (neat) ν 3255, 3048, 3015, 2967, 2920, 2848, 1724, 1596, 1577, 1493, 1452, 1395, 1334, 1279, 1169, 1092, 913, 856, 809, 787, 749, 698, 667 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{24}$H$_{27}$N$_2$O$_2$S$^+$(M+NH$_4$)$^+$ requires: 407.1788, Found: 407.1790.
1H NMR spectrum of 1c:

13C NMR spectrum of 1c:
N-(2-(cyclopropylidene(3-methoxyphenyl)methyl)phenyl)-4-methylbenzenesulfonamide 1d

A faint yellow solid, 42% yield (270 mg). M.p.: 148-150 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 0.88-0.93 (m, 2H), 1.49-1.54 (m, 2H), 2.35 (s, 3H), 3.73 (s, 3H), 6.46 (s, 1H), 6.71-6.76 (m, 2H), 6.80 (dd, \(J = 1.6\) Hz, 8.0 Hz, 1H), 7.07-7.18 (m, 5H), 7.28-7.33 (m, 1H), 7.42 (d, \(J = 8.4\) Hz, 2H), 7.70 (d, \(J = 8.0\) Hz, 1H). \(^13\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 1.6, 5.7, 21.5, 55.0, 112.1, 112.8, 118.9, 121.1, 124.8, 125.4, 127.2, 128.0, 128.4, 129.2, 129.7, 130.6, 132.3, 134.3, 136.2, 139.9, 143.5, 159.7. IR (neat) \(\tilde{\nu}\) 3254, 3087, 3054, 3023, 2967, 2951, 2915, 2851, 2829, 1603, 1578, 1485, 1446, 1431, 1396, 1334, 1285, 1205, 1168, 1159, 1092, 1044, 911, 855, 814, 776, 694, 665 cm\(^{-1}\). HRMS (ESI) Calcd. for C\(_{24}\)H\(_{27}\)N\(_2\)O\(_3\)S\(^{+}\)(M+NH\(_4\))\(^{+}\) requires: 423.1737, Found: 423.1739.

\(^1\)H NMR spectrum of 1d:

![NMR spectrum of 1d](image-url)
13C NMR spectrum of 1d:

N-(2-((4-bromophenyl)(cyclopropylidene)methyl)phenyl)-4-methylbenzenesulfonamide 1f

A faint yellow solid, 74% yield (399 mg). M.p.: 167-169 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.95-1.00 (m, 2H), 1.53-1.59 (m, 2H), 2.38 (s, 3H), 6.50 (s, 1H), 6.93-6.97 (m, 2H), 7.03 (dd, $J = 1.6$ Hz, 7.6 Hz, 1H), 7.07 (d, $J = 8.0$ Hz, 2H), 7.12 (ddd, $J = 0.8$ Hz, 7.2 Hz, 7.2 Hz, 1H), 7.22-7.26 (m, 2H), 7.30-7.36 (m, 2H), 7.38-7.42 (m, 2H), 7.78 (dd, $J = 0.8$ Hz, 8.0 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.6, 5.8, 21.5, 120.7, 121.3, 124.5, 124.7, 127.0, 127.7, 128.4, 128.6, 129.3, 130.5, 131.4, 131.5, 134.5, 136.1, 137.3, 143.7. IR (neat) $\tilde{\nu}$ 3255, 3067, 3042, 2973, 2918, 1602, 1580, 1486, 1399, 1336, 1092, 924, 893, 812, 748, 706, 664 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{23}$H$_{21}$BrNO$_2$S$^+$(M+H)$^+$ requires: 454.0471, Found: 454.0456.
1H NMR spectrum of 1f:

13C NMR spectrum of 1f:
N-(2-(cyclopropylidene)(4-(trifluoromethyl)phenyl)methyl)phenyl)-4-methylbenzenesulfonamide 1h

A faint yellow solid, 55% yield (336 mg). M.p.: 143-145 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ
1.00-1.04 (m, 2H), 1.60-1.65 (m, 2H), 2.34 (s, 3H), 6.59 (s, 1H), 7.00-7.03 (m, 3H), 7.11-7.19 (m, 3H), 7.33-7.41 (m, 5H), 7.81 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.6, 6.0, 21.3, 120.6, 124.1 (q, J = 270.6 Hz), 124.3, 124.7, 125.2 (q, J = 3.8 Hz), 126.2, 126.9, 128.7, 128.9 (q, J = 32.2 Hz), 129.4, 130.6, 130.7, 131.1, 134.5, 136.2, 141.8 (q, J = 1.1 Hz), 143.7. 19F NMR (CDCl$_3$, 376 MHz, CFCl$_3$) δ -62.5. IR (neat) $\tilde{\nu}$ 3284, 3264, 3062, 3037, 1613, 1491, 1395, 1338, 1325, 1117, 1093, 1070, 1042, 934, 811, 760, 738, 660 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{24}$H$_{24}$F$_3$N$_2$O$_2$S$^+$ (M+NH$_4$)$^+$ requires: 461.1505, Found: 461.1508.

1H NMR spectrum of 1h:
13C NMR spectrum of 1h:

19F NMR spectrum of 1h:
N-(2-((1,1′-biphenyl)-4-yl(cyclopropyldene)methyl)phenyl)-4-methylbenzenesulfonamide 1i

A white solid, 67% yield (301 mg). M.p.: 161-163 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.91-0.96 (m, 2H), 1.54-1.59 (m, 2H), 2.27 (s, 3H), 6.56 (s, 1H), 7.05 (d, J = 8.0 Hz, 2H), 7.07-7.15 (m, 2H), 7.18-7.22 (m, 2H), 7.30-7.38 (m, 2H), 7.41-7.47 (m, 6H), 7.57-7.60 (m, 2H), 7.76 (dd, J = 0.4 Hz, 8.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.6, 5.8, 21.4, 120.9, 124.7, 125.1, 126.6, 126.8, 127.1, 127.2, 127.4, 127.7, 128.4, 128.8, 129.3, 130.6, 132.1, 134.5, 136.3, 137.3, 140.1, 140.4, 143.5. IR (neat) $\tilde{\nu}$ 3356, 3337, 3314, 3254, 3067, 3026, 2976, 1599, 1580, 1488, 1449, 1412, 1384, 1333, 1274, 1166, 1091, 921, 895, 847, 812, 766, 730, 701, 664 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{29}$H$_{29}$N$_2$O$_2$S$^{1+}$ (M+NH$_4$)$^+$ requires: 469.1944, Found: 469.1938.

1H NMR spectrum of 1i:
\(^{13}\)C NMR spectrum of 1i:

![C NMR spectrum image]

N-(2-((4-(benzyloxy)phenyl)(cyclopropylidene)methyl)phenyl)-4-methylbenzenesulfonamide 1j

A white solid, 78% yield (374 mg). M.p.: 128-130 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 0.85-0.90 (m, 2H), 1.45-1.50 (m, 2H), 2.33 (s, 3H), 5.01 (s, 2H), 6.53 (s, 1H), 6.79-6.84 (m, 2H), 7.03-7.12 (m, 6H), 7.23-7.45 (m, 8H), 7.71 (dd, \(J = 0.8\) Hz, 8.4 Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 1.5, 5.5, 21.4, 70.0, 114.9, 120.8, 124.6, 124.8, 125.3, 127.1, 127.4, 127.5, 128.0, 128.2, 128.6, 129.2, 130.5, 131.2, 132.4, 134.3, 136.2, 136.7, 143.4, 158.2. IR (neat) \(\tilde{\nu}\) 3262, 3065, 3031, 2967, 2959, 2856, 1603, 1576, 1508, 1489, 1381, 1333, 1243, 1164, 1092, 1039, 921, 833, 814, 757, 740, 688, 667 cm\(^{-1}\). HRMS (ESI) Calcd. for C\(_{30}\)H\(_{31}\)N\(_2\)O\(_3\)S\(^{+}\)(M+NH\(_4\))^+ requires: 499.2050, Found: 499.2044.
1H NMR spectrum of 1j:

13C NMR spectrum of 1j:
N-(2-((4-((tert-butyl)phenyl)(cyclopropyldiene)methyl)phenyl)-4-methylbenzenesulfonamide

1k

An orange solid, 99% yield (595 mg). M.p.: 104-107 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.84-0.88 (m, 2H), 1.33 (s, 9H), 1.48-1.52 (m, 2H), 2.37 (s, 3H), 6.51 (s, 1H), 7.04-7.12 (m, 6H), 7.24-7.33 (m, 3H), 7.45 (d, $J = 8.4$ Hz, 2H), 7.72 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.4, 5.7, 21.5, 31.2, 34.5, 120.8, 124.7, 125.2, 125.6, 126.0, 126.7, 127.2, 128.2, 129.2, 130.6, 132.4, 134.3, 135.4, 136.3, 143.4, 150.6. IR (neat) $\tilde{\nu}$ 3258, 2962, 2954, 2926, 2868, 1599, 1577, 1337, 1269, 1165, 1105, 1091, 1016, 923, 895, 831, 812, 755, 662 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{27}$H$_{30}$NO$_2$S$^+$(M+H)$^+$ requires: 432.1992, Found: 432.2004.

1H NMR spectrum of 1k:
13C NMR spectrum of 1k:

N-(4-chloro-2-((2-chlorophenyl)(cyclopropylidene)methyl)phenyl)-4-methylbenzenesulfonamide 1m

A brown solid, 59% yield (361 mg). M.p.: 115-118 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 1.25-1.31 (m, 2H), 1.32-1.39 (m, 2H), 2.37 (s, 3H), 6.86 (s, 1H), 7.00-7.03 (m, 2H), 7.14-7.27 (m, 5H), 7.36 (dd, $J = 1.2$ Hz, 8.0 Hz, 1H), 7.53 (d, $J = 8.4$ Hz, 2H), 7.58 (d, $J = 9.2$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 4.7, 4.9, 21.5, 120.3, 123.8, 126.9, 127.2, 127.1, 129.0, 129.1, 129.5, 129.7, 130.2, 130.8, 132.7, 132.8, 133.1, 133.2, 136.1, 138.3, 143.9. IR (neat) ν 3334, 3257, 2959, 2929, 2851, 1594, 1482, 1471, 1380, 1338, 1263, 1165, 1116, 1089, 1019, 922, 883, 833, 818, 750, 704, 673, 658 cm$^{-1}$. HRMS (APCI) Caled. for C$_{23}$H$_{20}$Cl$_2$NO$_2$S$^{+}$ requires: 444.0586, Found: 444.0588.
1H NMR spectrum of 1m:

13C NMR spectrum of 1m:
N-(2-(cyclopropylidene(furan-2-yl)methyl)phenyl)-4-methylbenzenesulfonamide 1n

A faint yellow solid, 11% yield (122 mg). M.p.: 129-131 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ
0.93-0.98 (m, 2H), 1.48-1.53 (m, 2H), 2.34 (s, 3H), 5.69 (d, $J = 2.8$ Hz, 1H), 6.28 (dd, $J = 2.0$ Hz, 2.8 Hz, 1H), 6.68 (s, 1H), 7.07-7.13 (m, 4H), 7.29-7.34 (m, 1H), 7.37 (s, 1H), 7.48 (d, $J = 8.0$ Hz, 2H), 7.71 (d, $J = 8.0$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 2.2, 5.3, 21.5, 107.7, 111.2, 117.3, 121.0, 124.6, 126.1, 127.2, 128.7, 129.3, 129.9, 130.4, 134.4, 136.1, 142.6, 143.5, 153.0. IR (neat) $\tilde{\nu}$ 3269, 3062, 3034, 2990, 2970, 2923, 2851, 1599, 1580, 1488, 1382, 1333, 1169, 1148, 1093, 1009, 941, 910, 860, 816, 808, 751, 740, 728, 707, 693, 681 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{21}$H$_{20}$NO$_3$S$^{+}$(M+H)$^+$ requires: 366.1158, Found: 366.1160.

1H NMR spectrum of 1n:

S19
13C NMR spectrum of 1n:

1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.99-1.04 (m, 2H), 1.43-1.48 (m, 2H), 2.33 (s, 3H), 6.21 (d, $J = 3.6$ Hz, 1H), 6.64 (s, 1H), 6.79 (dd, $J = 3.6$ Hz, 4.8 Hz, 1H), 7.07 (d, $J = 8.0$ Hz, 2H), 7.10-7.13 (m, 2H), 7.20 (d, $J = 5.2$ Hz, 1H), 7.30-7.35 (m, 1H), 7.45 (d, $J = 8.4$ Hz, 2H), 7.74 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 3.3, 6.0, 21.5, 121.2, 121.3, 124.7, 125.5, 126.1, 127.0, 127.1, 128.7, 129.3, 130.2, 131.2, 134.3, 136.10, 136.12, 143.5, 144.0. IR (neat) $\tilde{\nu}$ 3264, 3101, 3067, 3042, 2965, 1600, 1582, 1492, 1455, 1393, 1335, 1297, 1278, 1162, 1092, 914, 838, 820, 813, 702, 670, 653 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{21}$H$_{20}$NO$_2$S$_2$+1(M+H)$^+$ requires: 382.0930, Found: 382.0932.

N-(2-(cyclopropylidene(thiophen-2-yl)methyl)phenyl)-4-methylbenzenesulfonamide 1o

A faint yellow solid, 85% yield (449 mg). M.p.: 165-167 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.99-1.04 (m, 2H), 1.43-1.48 (m, 2H), 2.33 (s, 3H), 6.21 (d, $J = 3.6$ Hz, 1H), 6.64 (s, 1H), 6.79 (dd, $J = 3.6$ Hz, 4.8 Hz, 1H), 7.07 (d, $J = 8.0$ Hz, 2H), 7.10-7.13 (m, 2H), 7.20 (d, $J = 5.2$ Hz, 1H), 7.30-7.35 (m, 1H), 7.45 (d, $J = 8.4$ Hz, 2H), 7.74 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 3.3, 6.0, 21.5, 121.2, 121.3, 124.7, 125.5, 126.1, 127.0, 127.1, 128.7, 129.3, 130.2, 131.2, 134.3, 136.10, 136.12, 143.5, 144.0. IR (neat) $\tilde{\nu}$ 3264, 3101, 3067, 3042, 2965, 1600, 1582, 1492, 1455, 1393, 1335, 1297, 1278, 1162, 1092, 914, 838, 820, 813, 702, 670, 653 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{21}$H$_{20}$NO$_2$S$_2$+1(M+H)$^+$ requires: 382.0930, Found: 382.0932.
1H NMR spectrum of 1o:

13C NMR spectrum of 1o:
N-(2-(1-cyclopropylidenepentyl)phenyl)-4-methylbenzenesulfonamide 1q

A yellow solid, 60% yield (486 mg). M.p.: 74-77 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.81, (t, $J = 6.8$ Hz, 3H), 0.96-1.01 (m, 2H), 1.14-1.19 (m, 4H), 1.24-1.28 (m, 2H), 2.18, (t, $J = 7.2$ Hz, 2H), 2.35 (s, 3H), 6.96 (s, 1H), 7.01-7.05 (m, 2H), 7.16-7.21 (m, 3H), 7.63-7.66 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 3.2, 3.3, 13.8, 21.4, 22.5, 29.8, 36.3, 118.9, 123.1, 123.7, 126.2, 127.1, 127.5, 128.4, 129.5, 132.5, 133.8, 136.4, 143.7. IR (neat) ν 3279, 3253, 3067, 3034, 2956, 2926, 2873, 2851, 1599, 1574, 1489, 1452, 1381, 1328, 1289, 1260, 1169, 1159, 1092, 910, 816, 809, 759, 750, 709, 693, 659 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{21}$H$_{29}$N$_2$O$_2$S$^+$(M+NH$_4$)$^+$ requires: 373.1944, Found: 373.1943.

1H NMR spectrum of 1q:
13C NMR spectrum of 1q:

![13C NMR spectrum of 1q](image)

Characterization and spectra charts for 3

N-(2-(cyclopropylidinemethyl)-6-methylphenyl)-4-methylbenzenesulfonamide 3b

A white solid, 73% yield (690 mg). M.p.: 159-161 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.94-0.99 (m, 2H), 1.24-1.29 (m, 2H), 2.14 (s, 3H), 2.38 (s, 3H), 6.33 (s, 1H), 6.65-6.68 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.13-7.20 (m, 3H), 7.54-7.59 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 0.6, 3.9, 18.8, 21.4, 114.2, 124.7, 125.9, 127.4, 127.8, 129.4, 130.7, 137.1, 137.2, 138.2, 143.4. IR (neat) $\tilde{\nu}$ 3239, 3037, 2979, 2934, 2815, 1595, 1582, 1465, 1406, 1325, 1196, 1183, 1157, 1090, 977, 918, 807, 765, 716, 664 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{18}$H$_{20}$NO$_2$S$^+$(M+1H)$^+$ requires: 314.1209, Found: 314.1214.
1H NMR spectrum of 3b:

13C NMR spectrum of 3b:
N-(5-chloro-2-(cyclopropylidenemethyl)phenyl)-4-methylbenzenesulfonamide 3c

A white solid, 49% yield (492 mg). M.p.: 167-169 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 1.15-1.20 (m, 2H), 1.29-1.35 (m, 2H), 2.38 (s, 3H), 6.52-6.55 (m, 1H), 6.89 (s, 1H), 7.09 (dd, \(J = 2.4\) Hz, 8.4 Hz, 1H), 7.23 (d, \(J = 8.0\) Hz, 2H), 7.38-7.41 (m, 2H), 7.61-7.65 (m, 2H). \(^1\)\(^3\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 2.0, 4.4, 21.5, 112.7, 123.9, 126.1, 127.2, 128.6, 128.9, 129.6, 129.8, 132.9, 133.9, 136.1, 144.0. IR (neat) \(\tilde{\nu}\) 3273, 3070, 3040, 2979, 2959, 2920, 1595, 1557, 1483, 1388, 1330, 1307, 1159, 1121, 1089, 1011, 978, 926, 834, 816, 726, 704, 678, 669 cm\(^{-1}\). HRMS (ESI) Calcd. for C\(_{17}\)H\(_{20}\)ClN\(_2\)O\(_2\)S\(^+\)(M+NH\(_4^+\))\(^+\) requires 351.0929, Found: 351.0928.

\(^1\)H NMR spectrum of 3c:
\[^{13}\text{C} \text{NMR spectrum of 3c:}\]

![C NMR spectrum](image)

\[N-(4\text{-bromo-2-}(\text{cyclopropylidenemethyl})\text{phenyl})-4\text{-methylbenzenesulfonamide 3d}\]

A faint yellow solid, 59% yield (1.209 g). M.p.: 187-188 °C. \[^1\text{H} \text{NMR (CDCl}_3, \text{TMS, 400 MHz)}\] \(\delta\) 1.13-1.18 (m, 2H), 1.31-1.36 (m, 2H), 2.38 (s, 3H), 6.51-6.53 (m, 1H), 6.73 (s, 1H), 7.18-7.28 (m, 4H), 7.58-7.63 (m, 3H). \[^{13}\text{C} \text{NMR (CDCl}_3, 100 MHz, TMS)}\] \(\delta\) 1.7, 4.2, 21.5, 112.2, 119.9, 126.5, 127.2, 129.5, 129.61, 129.63, 130.4, 131.8, 134.2, 136.1, 143.9. IR (neat) \(\tilde{\nu}\) 3272, 2962, 2918, 1596, 1585, 1476, 1385, 1329, 1307, 1158, 1088, 976, 867, 818, 800, 768, 719, 675, 657 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{17}\)H\(_{17}\)BrNO\(_2\)S\(^{+}\)(M+H)\(^{+}\) requires: 378.0158, Found: 378.0149.
1H NMR spectrum of 3d:

13C NMR spectrum of 3d:
N-(2-(cyclopropylidenemethyl)-4-methylphenyl)-4-methylbenzenesulfonamide 3e

A white solid, 61% yield (577 mg). M.p.: 155-158 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ: 1.09-1.15 (m, 2H), 1.29-1.34 (m, 2H), 2.29 (s, 3H), 2.37 (s, 3H), 6.56-6.59 (m, 1H), 6.67 (s, 1H), 6.95 (dd, $J = 2.0$ Hz, 8.4 Hz, 1H), 7.15-7.20 (m, 3H), 7.32 (d, $J = 1.2$ Hz, 1H), 7.56-7.60 (m, 2H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ: 1.6, 4.3, 21.1, 21.5, 113.5, 125.5, 127.2, 127.3, 128.1, 128.3, 129.4, 130.2, 132.5, 136.1, 136.5, 143.5. IR (neat) ν: 3271, 3054, 3037, 2981, 2970, 2970, 2915, 1594, 1571, 1494, 1410, 1382, 1324, 1159, 1090, 895, 884, 814, 704, 680 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{18}$H$_{20}$NO$_2$S$^+$ (M+H)$^+$ requires 314.1209, Found: 314.1208.

1H NMR spectrum of 3e:
13C NMR spectrum of 3e:

N-(2-(cyclopropylidene)methyl)-3-methoxyphenyl)-4-methylbenzenesulfonamide 3f

A yellow solid, 39% yield (385 mg). M.p.: 113-116 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 1.33-1.37 (m, 4H), 2.35 (s, 3H), 3.76 (s, 3H), 6.59 (dd, J = 1.2 Hz, 8.0 Hz, 1H), 6.72-6.74 (m, 1H), 7.10-7.20 (m, 4H), 7.60-7.64 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 3.9, 5.6, 21.4, 55.6, 106.2, 111.9, 112.1, 116.7, 127.1, 127.4, 128.3, 129.4, 135.0, 136.3, 143.7, 157.3. IR (neat) $\tilde{\nu}$ 3316, 3001, 2967, 2940, 2840, 1598, 1587, 1471, 1388, 1306, 1293, 1254, 1155, 1086, 982, 815, 775, 658 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{18}$H$_{20}$NO$_3$S$^+$ (M+H)$^+$ requires: 330.1158, Found: 330.1157.
1H NMR spectrum of 3f:

13C NMR spectrum of 3f:
N-(6-(cyclopropylidenemethyl)-2,3-dimethylphenyl)-4-methylbenzenesulfonamide 3g

A white solid, 73% yield (713 mg). M.p.: 169-171 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.90-0.95 (m, 2H), 1.19-1.24 (m, 2H), 2.10 (s, 3H), 2.23 (s, 3H), 2.37 (s, 1H), 6.43 (s, 1H), 6.50-6.53 (m, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.51-7.55 (m, 2H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 0.6, 3.8, 15.5, 20.5, 21.4, 114.2, 123.9, 124.8, 127.4, 129.2, 129.4, 130.5, 134.7, 136.6, 137.0, 137.1, 143.2. IR (neat) ν 3272, 3067, 3040, 2970, 2920, 1597, 1482, 1455, 1402, 1378, 1326, 1159, 1082, 1003, 956, 834, 813, 753, 704, 666 cm$^{-1}$. HRMS (ESI) Calcd. for C$_{19}$H$_{22}$NO$_2$S+$^+$ (M+H)$^+$ requires: 328.1366, Found: 328.1366.

1H NMR spectrum of 3g:
13C NMR spectrum of 3g:

A faint yellow solid, 48% yield (215 mg). M.p.: 115-117 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 1.25-1.31 (m, 2H), 1.42-1.48 (m, 2H), 2.99 (s, 3H), 6.90 (s, 1H), 6.97-7.00 (m, 1H), 7.20-7.28 (m, 2H), 7.49 (dd, $J = 1.6$ Hz, 7.6 Hz, 1H), 7.67 (dd, $J = 2.0$ Hz, 7.6 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 1.9, 4.6, 39.6, 113.5, 124.2, 126.3, 127.9, 128.1, 128.2, 131.5, 132.9. IR (neat) ν 3279, 3078, 3067, 3034, 2970, 2926, 2845, 1599, 1569, 1488, 1393, 1321, 1272, 1101, 1046, 972, 912, 832, 796, 769, 749 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{11}$H$_{14}$NO$_2$S$^+$ (M+H)$^+$ requires: 224.0740, Found: 224.0742.
1H NMR spectrum of 3h:

13C NMR spectrum of 3h:
N-(2-(cyclopropyldienemethyl)phenyl)-2,4-dimethoxybenzenesulfonamide 3j

A faint yellow solid, 47% yield (678 mg). M.p.: 113-115 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) δ 1.09-1.14 (m, 2H), 1.28-1.33 (m, 2H), 3.72 (s, 3H), 3.88 (s, 3H), 6.63-6.66 (m, 1H), 6.82 (d, \(J = 8.8\) Hz, 1H), 7.04 (s, 1H), 7.08 (d, \(J = 2.4\) Hz, 1H), 7.13-7.18 (m, 2H), 7.27-7.33 (m, 1H), 7.36 (dd, \(J = 2.0\) Hz, 8.4 Hz, 1H), 7.54-7.57 (m, 2H). \(^1\)\(^3\)C NMR (CDCl\(_3\), 100 MHz, TMS) δ 1.4, 4.1, 55.9, 56.0, 109.6, 110.1, 113.1, 121.0, 125.7, 126.4, 127.4, 127.45, 127.53, 130.7, 132.8, 132.9, 148.6, 152.4. IR (neat) \(\tilde{\nu}\) 3259, 3040, 3009, 2973, 2937, 2901, 2840, 1587, 1509, 1455, 1389, 1328, 1264, 1236, 1185, 1152, 1135, 1026, 1016, 907, 843, 806, 750, 688 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{18}\)H\(_{20}\)NO\(_4\)S\(^+\)(M+H)\(^+\) requires 346.1108, Found: 346.1105.

\(^1\)H NMR spectrum of 3j:
13C NMR spectrum of 3j:
4. Optimization of the reaction conditions

Table SI-1. Optimization of Conditions for Pd-Catalyzed Oxidative Cyclization of Substrate 1a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Additive (equiv.)</th>
<th>Solvent</th>
<th>Oxidant</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(CH$_3$CN)$_2$(OTf)$_2$</td>
<td>none</td>
<td>dioxane</td>
<td>air</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>Pd(dppp)(H$_2$O)$_2$(OTf)$_2$</td>
<td>none</td>
<td>dioxane</td>
<td>air</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$/bpy</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>air</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>air</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Pd(TFA)$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>air</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>Pd(dppf)Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>air</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>air</td>
<td>19</td>
</tr>
<tr>
<td>8a</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>CuCl$_2$</td>
<td>13</td>
</tr>
<tr>
<td>9a</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>AgOAc</td>
<td>13</td>
</tr>
<tr>
<td>10a</td>
<td>Pd(OAC)$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>28 (24)c</td>
</tr>
<tr>
<td>11</td>
<td>Pd$_2$(dba)$_3$ · CHCl$_3$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>Pd$_2$(dba)$_3$·CHCl$_3$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Pd(dppb)Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>Pd(dppe)Cl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>PdCl$_2$</td>
<td>K$_2$CO$_3$ (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>34</td>
</tr>
<tr>
<td>19</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (0.5)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (0.25)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_2$CO$_3$ (0.1)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>48</td>
</tr>
<tr>
<td>22</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>C$_6$H$_5$CO$_3$ (0.25)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>Na$_2$CO$_3$ (0.75)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>48</td>
</tr>
<tr>
<td>24</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>1BuONa (0.5)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>33</td>
</tr>
<tr>
<td>25</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>NaOH (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>NaHCO$_3$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>52</td>
</tr>
<tr>
<td>27</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>Et$_3$Na (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>46</td>
</tr>
<tr>
<td>28</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>NaOAc (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>43</td>
</tr>
<tr>
<td>29</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>Na(COO)$_2$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>Na$_2$PO$_4$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>51</td>
</tr>
<tr>
<td>31</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>EtOK (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>13</td>
</tr>
<tr>
<td>32</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>KHCO$_3$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>55</td>
</tr>
<tr>
<td>33</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_3$PO$_4$ + H$_2$O (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>22</td>
</tr>
<tr>
<td>34</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>K$_3$PO$_4$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>1BuOLi (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>46</td>
</tr>
<tr>
<td>36</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>NH$_4$HCO$_3$ (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>Et$_3$N (2.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>DBU (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>trace</td>
</tr>
<tr>
<td>39</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>DABCO (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>trace</td>
</tr>
<tr>
<td>40</td>
<td>Pd(PPh$_3$)$_2$Cl$_2$</td>
<td>DMAP (1.0)</td>
<td>toluene</td>
<td>O$_2$</td>
<td>0</td>
</tr>
</tbody>
</table>

a Reactions were performed with 1a (0.2 mmol), additive and 10 mol % of catalyst in solvent (2.0 mL) under O$_2$ (1.0 atm; balloon) at 100 °C in 12 h. b Yields are determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal standard. c Yield of the isolated products. d Using 2.0 equiv. BQ under Ar. e Using 2.0 equiv. CuCl$_2$ under Ar. f Using 2.0 equiv. AgOAc under Ar. g The reaction was performed in air.
Entry	Catalyst	Additive (equiv.)	Solvent	Oxidant	Yield (%)^b
41 | Pd[CoC(H₄)]Cl₂ | KHCO₃ (1.0) | toluene | O₂ | 52
42 | Pd[PdCl₂] | KHCO₃ (1.0) | toluene | O₂ | 38
43 | Pd[PdCl₂] | KHCO₃ (1.0) | toluene | O₂ | 64
44 | Pd[PdCl₂] | KHCO₃ (1.0) | toluene | O₂ | 74 (63)^c
45 | Pd[PdCl₂] | KHCO₃ (1.0) | toluene | O₂ | 8
46 | Pd[PdCl₂] | KHCO₃ (1.0) | toluene | O₂ | 43
47 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 53
48 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 61
49 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 49
50 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 60
51 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 49
52 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 51
53 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 49
54 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 62
55 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 49
56 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 52
57 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 39
58 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 70
59 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 72
60 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 69
61 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | trace
62 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | trace
63 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 28
64 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 27
65 | Pd[PdCl₂] | Na₂CO₃ (1.0) | toluene | O₂ | 50

^a Reactions were performed with 1a (0.2 mmol), additive and 10 mol % of catalyst in solvent (2.0 mL) under O₂ (1.0 atm; balloon) at 100 °C in 12 h. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^c Yield of the isolated products. ^d Using 2.0 equiv. BQ under Ar. ^e Using 2.0 equiv. CuCl₂ under Ar. ^f Using 2.0 equiv. AgOAc under Ar. ^g The reaction was performed in air.
Table SI-2. Optimization of Conditions for Pd-Catalyzed Oxidative Cyclization of Substrate 3a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Additive (1.0 equiv.)</th>
<th>Solvent</th>
<th>Oxidant</th>
<th>Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>Pd[P(4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>60 (58)<sup>c</sup></td>
</tr>
<tr>
<td>3</td>
<td>PdPrCl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Pd[P(4-FC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>Pd[P(4-CF<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>Pd[P(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Pd[P(4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>NaHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Pd[P(4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>Na<sub>3</sub>PO<sub>4</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>Pd[P(4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>NaOAc</td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>8</td>
</tr>
<tr>
<td>10<sup>d</sup></td>
<td>Pd[P(4-MeOC<sub>6</sub>H<sub>4</sub>)<sub>3</sub>]Cl<sub>2</sub></td>
<td>KHCO<sub>3</sub></td>
<td>toluene</td>
<td>O<sub>2</sub></td>
<td>45</td>
</tr>
</tbody>
</table>

^a Reactions were performed with 1a (0.2 mmol), additive and 10 mol % of catalyst in solvent (2.0 mL) under O₂ (1.0 atm; balloon) at 100 °C in 12 h. ^b Yields are determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^c Yield of the isolated products. ^d Using 2.0 equiv. KHCO₃.

5. General procedure for synthesis of products 2 and 4

To a flame dried Schlenk tube was added ACPs 1 (0.2 mmol), Pd[P(4-CF₂C₆H₄)₃]Cl₂ (10 mol%), KHCO₃ (1.0 mmol). Then, the tube was evacuated and backfilled with O₂ for 3 times, and inserted an O₂ balloon. The anhydrous solvent toluene (2.0 mL) was added under O₂. Next, the resulting solution was allowed to stir at 100 °C for 12 h. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel to give the desired products 2 (eluent: petroleum ether / ethyl acetate = 20 / 1).

To a flame dried Schlenk tube was added ACPs 3 (0.2 mmol), Pd[P(4-MeOC₆H₄)₃]Cl₂ (10 mol%), KHCO₃ (1.0 mmol). Then, the tube was evacuated and backfilled with O₂ for 3 times, and inserted an O₂ balloon. The anhydrous solvent toluene (2.0 mL) was added under O₂. Next, the resulting solution was allowed to stir at 100 °C for 12 h. The solvent was removed under reduced pressure and the residue was purified by a flash column chromatography on silica gel to give the desired products 4 (eluent: petroleum ether / ethyl acetate = 30 / 1).
6. Substrate scope for synthesis of 2 and 4

Scheme SI-1. Substrate Scope for the Synthesis of 2-Vinylindole 2

Having determined the viability of the Pd-catalyzed oxidative cycloaddition of ACPs, different substrates 1 were examined in the presence of Pd[P(4-CF₃C₆H₄)₃]₂Cl₂ and KHCO₃ in toluene at 100 °C under O₂ and the results are summarized in Scheme SI-1. We first examined the substituent position effect at benzene ring: as for substrates 1b-1e, the reactions could all proceed smoothly to furnish the corresponding 2-vinylindols 2b-2e in the yields ranging from 56% to 65% regardless of whether they have substituents at the ortho-, meta-, or para-position. Then, the electronic effect at the para-position of the benzene ring was examined. Substrates with both...
electron-donating and electron-withdrawing groups can afford the desired products 2f-2k in yields from 33% to 70%. When substrates 1l (R^1 = Ph, R^2 = 5-Cl) and 1m (R^1 = 2-ClC_6H_4, R^2 = 5-Cl) were employed as the substrate, the corresponding products 2l and 2m were obtained in 59% and 60% yield. To further investigate this reaction, we attempted substrates with a heteroaromatic (furan 1n and thiophene 1o) or alkyl group (methyl group 1p and n-butyl group 1q). The experimental results showed that 1o and 1q were suitable under the current reaction conditions, giving the corresponding products 2o and 2q in 40% and 45% yields. However the yield of 2n and 2p are low, which is probably due to the byproducts. The byproduct 2p' was main product and the byproduct of 1n cannot be determined. Other N-sulfonyl protecting groups such as 4-bromobenzene sulfonyl (Bs) 1r, 4-nitrobenzene sulfonyl (Ns) 1s and N-carbonyl protecting group (Ac) 1t were compatible in this reaction. To our delight, N without protecting group also worked smoothly, giving the desired product 2u albeit in 31% yield. Also we got 2u through detosylation of 2a in yield 81%.

Scheme SI-2. Substrate Scope for the Synthesis of 3-Vinylindole 4a

4b, 51%
4c, 46%
4d, 39%
4e, 58%
4f, 40%
4g, 42%
4h, 55%
4i, 48%
Ar = (2,4-MeO_C_6H_3)

a The reaction was conducted with 3 (0.2 mmol), PdCl_2[P(4-MeOC_6H_4)_3]_2 (0.2 mmol) and KHCO_3 (0.2 mmol) in toluene (2.0 mL) for 12 h at 100 °C with an O_2 balloon. b Yield of the isolated products.
With the optimized reaction conditions in hand, the substrate scope for 3 was explored and the results are shown in Scheme SI-1. The substrates of type 3 having both electron-donating and electron-withdrawing substituents (R^1) at different positions of benzene ring were tolerated, providing the 3-vinylindoles (4b-4g) in moderate yields from 39% to 58%. Also, when methyl sulfonyl and 2,4-dimethoxybenzene sulfonyl were used as N-protecting groups, the reaction took place efficiently to afford the corresponding 3-vinylindoles 4h and 4i in yields of 55% and 48%.

7. Characterization and spectra charts for vinylindoles 2 and 4

3-(2-methoxyphenyl)-1-tosyl-2-vinyl-1H-indole 2b
A faint yellow solid, 62% yield (60 mg). M.p.: 62-65 °C. ^1H NMR (CDCl^3, TMS, 400 MHz) δ 2.33 (s, 3H), 3.66 (s, 3H), 5.10 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 5.24 (dd, J = 1.6 Hz, 10.4 Hz, 1H), 6.94-7.01 (m, 2H), 7.10-7.22 (m, 6H), 7.27-7.37 (m, 2H), 7.65-7.69 (m, 2H), 8.22 (d, J = 8.4 Hz, 1H). ^13C NMR (CDCl^3, 100 MHz, TMS) δ 21.5, 55.5, 111.4, 115.1, 120.13, 120.15, 120.5, 120.7, 122.2, 123.7, 124.9, 126.8, 127.1, 129.2, 129.5, 131.4, 131.9, 135.4, 135.5, 136.2, 144.5, 157.3. IR (neat) ν 3070, 3048, 3031, 3004, 2959, 2929, 2834, 1616, 1597, 1577, 1493, 1449, 1372, 1246, 1173, 1148, 1090, 1022, 1014, 932, 812, 749, 667 cm^{-1}. HRMS (APCI) Calcd. for C_{24}H_{22}NO_{3}S^{+}(M+H)^+ requires: 404.1315, Found: 404.1309.
1H NMR spectrum of 2b:

13C NMR spectrum of 2b:
3-(m-toly1)-1-tosyl-2-vinyl-1H-indole 2c

An orange solid, 60% yield (47 mg). M.p.: 71-73 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.33 (s, 3H), 3.66 (s, 3H), 5.16 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.34 (dd, $J = 1.6$ Hz, 11.2 Hz, 1H), 7.09-7.22 (m, 7H), 7.26-7.35 (m, 3H), 7.66-7.70 (m, 2H), 8.26 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.4, 21.5, 115.1, 120.0, 122.1, 123.8, 124.1, 125.1, 126.4, 126.8, 127.2, 128.0, 128.4, 129.5, 130.7, 131.1, 133.2, 134.5, 135.4, 136.2, 138.1, 144.6. IR (neat) $\tilde{\nu}$ 3067, 3029, 3048, 2965, 2920, 2859, 1610, 1598, 1540, 1491, 1449, 1374, 1261, 1228, 1187, 1174, 1148, 1090, 1035, 924, 812, 791, 747, 705, 683, 668 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{24}$H$_{22}$NO$_2$S$^{+}$(M+H)$^+$ requires: 388.1366, Found: 388.1366.

1H NMR spectrum of 2c:
13C NMR spectrum of 2c:

3-(3-methoxyphenyl)-1-tosyl-2-vinyl-$1H$-indole 2d

A faint yellow solid, 65% yield (53 mg). M.p.: 49-51 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.33 (s, 3H), 3.79 (s, 3H), 5.18 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.36 (dd, $J = 1.6$ Hz, 11.2 Hz, 1H), 6.86-6.92 (m, 3H), 7.16-7.23 (m, 4H), 7.29-7.36 (m, 3H), 7.66-7.70 (m, 2H), 8.26 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 55.2, 112.8, 115.1, 115.6, 120.0, 122.3, 122.5, 123.7, 123.9, 125.2, 126.3, 126.8, 129.56, 129.59, 130.9, 134.6, 134.7, 135.4, 136.1, 144.7, 159.7. IR (neat) $\tilde{\nu}$ 3067, 3042, 3029, 2998, 2959, 2923, 2870, 2859, 2831, 1727, 1598, 1574, 1488, 1449, 1374, 1285, 1253, 1228, 1186, 1173, 1149, 1090, 1026, 983, 808, 748, 702, 669 cm$^{-1}$. HRMS (APCI) Calcd. for $C_{24}H_{22}NO_{3}S$+ (M+H)$^+$ requires: 404.1315, Found: 404.1314.
1H NMR spectrum of 2d:

13C NMR spectrum of 2d:
3-\((\rho\text{-tolyl})\)-1-tosyl-2-vinyl-1H-indole 2e

A faint yellow solid, 56% yield (44 mg). M.p.: 136-138 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 2.32 (s, 3H), 2.38 (s, 3H), 5.16 (dd, \(J = 1.6\) Hz, 17.6 Hz, 1H), 5.34 (dd, \(J = 1.6\) Hz, 11.6 Hz, 1H), 7.13-7.22 (m, 8H), 7.27-7.35 (m, 2H), 7.65-7.69 (m, 2H), 8.25 (d, \(J = 8.4\) Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 21.3, 21.6, 115.1, 120.0, 122.0, 123.8, 124.0, 125.1, 126.5, 126.8, 129.3, 129.5, 129.9, 130.2, 131.1, 134.5, 135.5, 136.2, 137.0, 144.6. IR (neat) \(\nu\) 3072, 3042, 2962, 2923, 2868, 2854, 1594, 1510, 1449, 1374, 1324, 1260, 1230, 1174, 1148, 1091, 1029, 1014, 933, 894, 818, 802, 747, 667 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{24}\)H\(_{22}\)NO\(_2\)S\(^+\)(M+H\(^+\)) requires: 388.1366, Found: 388.1359.

\(^1\)H NMR spectrum of 2e:
3-(4-bromophenyl)-1-tosyl-2-vinyl-1H-indole 2f

A white solid, 33% yield (30 mg). M.p.: 133-135 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.34 (s, 3H), 5.12 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 5.37 (dd, J = 1.6 Hz, 11.6 Hz, 1H), 7.14-7.24 (m, 6H), 7.27 (dd, J = 0.8 Hz, 8.0 Hz, 1H), 7.32-7.37 (m, 1H), 7.51-7.55 (m, 2H), 7.67-7.71 (m, 2H), 8.27 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 115.1, 119.7, 121.4, 122.5, 122.7, 124.0, 125.3, 126.3, 126.9, 129.6, 130.4, 131.80, 131.83, 132.4, 134.8, 135.4, 136.1, 144.8. IR (neat) $\tilde{\nu}$ 3067, 3045, 2956, 2924, 2854, 1596, 1487, 1449, 1375, 1229, 1174, 1150, 1090, 1075, 1026, 1008, 927, 894, 826, 812, 765, 748, 704, 667 cm$^{-1}$. HRMS (EI) Calcd. for C$_{23}$H$_{18}$BrNO$_2$S requires: 451.0242, Found: 451.0246.
1H NMR spectrum of 2f:

13C NMR spectrum of 2f:
3-(4-fluorophenyl)-1-tosyl-2-vinyl-1H-indole 2g

A faint yellow solid, 70% yield (55 mg). M.p.: 70-72 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) δ 2.33 (s, 3H), 5.11 (dd, \(J = 1.6\) Hz, 18.0 Hz, 1H), 5.35 (dd, \(J = 1.6\) Hz, 11.6 Hz, 1H), 7.07-7.13 (m, 2H), 7.14-7.19 (m, 3H), 7.20-7.23 (m, 1H), 7.25-7.31 (m, 3H), 7.32-7.37 (m, 1H), 7.68 (d, \(J = 8.4\) Hz, 2H), 8.27 (d, \(J = 8.4\) Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz, TMS) δ 21.6, 115.1, 115.6 (d, \(J = 21.3\) Hz), 119.7, 122.3, 122.8, 123.9, 125.3, 126.4, 126.8, 129.2 (d, \(J = 3.4\) Hz), 129.6, 130.8, 131.8 (d, \(J = 7.9\) Hz), 134.8, 135.4, 136.1, 144.8, 162.1 (d, \(J = 245.4\) Hz). \(^{19}\)F NMR (CDCl\(_3\), 376 MHz, CFCI\(_3\)) δ -114.68- -114.60 (m). IR (neat) \(\nu\) 3070, 3048, 3026, 2970, 2923, 2859, 1621, 1597, 1557, 1506, 1449, 1373, 1355, 1223, 1173, 1148, 1090, 1045, 1025, 1012, 928, 894, 837, 812, 760, 747, 714, 665 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{23}\)H\(_{19}\)FNO\(_2\)S\(^{+}\)(M+H\(^{+}\)) requires: 392.1115, Found: 392.1110.

\(^1\)H NMR spectrum of 2g:
13C NMR spectrum of 2g:

19F NMR spectrum of 2g:
1-tosyl-3-(4-(trifluoromethyl)phenyl)-2-vinyl-1H-indole 2h

A faint yellow solid, 59% yield (53 mg). M.p.: 138-140 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ
2.35 (s, 3H), 5.08 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 5.39 (dd, J = 1.6 Hz, 11.2 Hz, 1H), 7.16-7.30 (m, 5H), 7.34-7.39 (m, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H), 8.29 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 115.1, 119.6, 122.2, 123.1, 124.07, 124.15 (q, J = 270.4 Hz), 125.5, 125.6 (q, J = 3.9 Hz), 126.2, 126.9, 129.3 (q, J = 21.3 Hz), 129.7, 130.2, 130.5, 135.2, 135.4, 136.1, 137.4 (q, J = 1.2 Hz), 144.9. 19F NMR (CDCl$_3$, 376 MHz, CFCl$_3$) δ -62.5. IR (neat) \tilde{v} 3067, 3048, 2956, 2918, 1845, 1616, 1594, 1446, 1405, 1371, 1322, 1227, 1771, 1118, 1106, 1088, 1068, 1010, 932, 838, 812, 763, 749, 703, 665, 653 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{24}$H$_{19}$F$_3$NO$_2$S$^+$ (M+H)$^+$ requires: 442.1083, Found: 442.1078.

1H NMR spectrum of 2h:
13C NMR spectrum of 2h:

19F NMR spectrum of 2h:
3-[[1,1'-biphenyl]-4-yl]-1-tosyl-2-vinyl-1H-indole 2i

A white solid, 56% yield (51 mg). M.p.: 186-188 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.33 (s, 3H), 5.11 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.38 (dd, $J = 1.6$ Hz, 11.6 Hz, 1H), 7.16-7.24 (m, 4H), 7.32-7.47 (m, 7H), 7.62-7.65 (m, 4H), 7.68-7.72 (m, 2H), 8.28 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.5, 115.1, 120.0, 122.5, 123.5, 123.9, 125.2, 126.4, 126.8, 126.9, 127.2, 127.4, 128.8, 129.6, 130.5, 130.8, 132.3, 134.7, 135.4, 136.2, 140.0, 140.5, 144.7. IR (neat) $\tilde{\nu}$ 3059, 3031, 2956, 2925, 2854, 1725, 1598, 1487, 1449, 1372, 1324, 1227, 1173, 1147, 1123, 1090, 1029, 1008, 916, 809, 771, 762, 728, 699, 666 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{29}$H$_{24}$NO$_2$S$^+$ (M+H)$^+$ requires: 450.1522, Found: 450.1537.

1H NMR spectrum of 2i:
13C NMR spectrum of 2i:

3-(4-(benzyloxy)phenyl)-1-tosyl-2-vinyl-1H-indole 2j

A faint yellow solid, 52% yield (50 mg). M.p.: 118-120 °C. 1H NMR (CDCl₃, TMS, 400 MHz) δ 2.32 (s, 3H), 5.08 (s, 2H), 5.17 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 5.35 (dd, J = 1.6 Hz, 11.6 Hz, 1H), 6.99-7.04 (m, 2H), 7.13-7.25 (m, 6H), 7.28-7.36 (m, 3H), 7.38-7.47 (m, 4H), 7.65-7.69 (m, 2H), 8.26 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl₃, 100 MHz, TMS) δ 21.5, 70.0, 114.9, 115.1, 120.0, 122.0, 123.6, 123.8, 125.1, 125.7, 126.5, 126.8, 127.5, 128.0, 128.6, 129.5, 131.16, 131.21, 134.5, 135.4, 136.2, 136.8, 144.6, 158.1. IR (neat) ν 3065, 3029, 2923, 2851, 1610, 1598, 1560, 1507, 1449, 1374, 1358, 1283, 1240, 1173, 1148, 1090, 1023, 1007, 925, 891, 832, 812, 764, 747, 699, 667 cm⁻¹. HRMS (APCI) Calcd. for C₃₀H₂₆NO₃S⁺(M+H)⁺ requires: 480.1628, Found: 480.1636.
\(^1\text{H NMR spectrum of } 2j:\)

\(^{13}\text{C NMR spectrum of } 2j:\)
3-(4-(tert-butyl)phenyl)-1-tosyl-2-vinyl-1H-indole 2k

A faint yellow solid, 45% yield (39 mg). M.p.: 159-161 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ
1.34 (s, 9H), 2.33 (s, 3H), 5.18 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.35 (dd, $J = 1.6$ Hz, 11.6 Hz, 1H), 7.13-7.27 (m, 6H), 7.30-7.35 (m, 2H), 7.38-7.42 (m, 2H), 7.65-7.69 (m, 2H), 8.26 (d, $J = 8.8$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 31.4, 34.6, 115.2, 120.1, 122.1, 123.8, 124.0, 125.1, 125.4, 126.4, 126.8, 129.5, 129.6, 130.1, 131.2, 134.5, 135.4, 136.3, 144.6, 150.2. IR (neat) $\tilde{\nu}$ 3061, 3048, 2958, 2925, 2854, 1738, 1716, 1596, 1507, 1450, 1376, 1261, 1229, 1174, 1149, 1109, 1091, 1012, 833, 811, 767, 747, 668 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{27}$H$_{28}$NO$_2$S$^{+1}$(M+H)$^{+}$ requires: 430.1835, Found: 430.1835.

1H NMR spectrum of 2k:
13C NMR spectrum of 2k:

5-chloro-3-phenyl-1-tosyl-2-vinyl-1H-indole 2l

A white solid, 59% yield (48 mg). M.p.: 142-145 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.34 (s, 3H), 5.14 (dd, J = 1.6 Hz, 18.0 Hz, 1H), 5.37 (dd, J = 1.6 Hz, 11.6 Hz, 1H), 7.12-7.20 (m, 3H), 7.25-7.30 (m, 4H), 7.32-7.43 (m, 3H), 7.66 (d, J = 8.0 Hz, 2H), 8.19 (d, J = 8.8 Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 116.2, 119.5, 123.0, 123.2, 125.3, 126.0, 126.8, 127.6, 128.7, 129.7, 129.8, 130.0, 132.2, 132.6, 134.5, 135.1, 135.9, 145.0. IR (neat) $\tilde{\nu}$ 3059, 3031, 2956, 2925, 2854, 1724, 1597, 1494, 1446, 1377, 1324, 1264, 1230, 1166, 1133, 1090, 1036, 1014, 958, 927, 898, 810, 787, 771, 728, 703, 688, 665 cm$^{-1}$. HRMS (EI) Calcd. for C$_{23}$H$_{18}$ClNO$_2$S requires: 407.0747, Found: 407.0750.
1H NMR spectrum of 2l:

13C NMR spectrum of 2l:
5-chloro-3-(2-chlorophenyl)-1-tosyl-2-vinyl-1H-indole 2m

A faint yellow solid, 60% yield (53 mg). M.p.: 69-70 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 2.35 (s, 3H), 5.03 (dd, \(J = 1.2\) Hz, 17.6 Hz, 1H), 5.31 (dd, \(J = 1.2\) Hz, 11.6 Hz, 1H), 7.01 (d, \(J = 2.0\) Hz, 1H), 7.13-7.22 (m, 4H), 7.26-7.37 (m, 3H), 7.46-7.49 (m, 1H), 7.60-7.64 (m, 2H), 8.16 (d, \(J = 8.8\) Hz, 1H). \(^1\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 21.6, 114.8, 116.4, 119.4, 120.8, 121.7, 125.4, 126.3, 126.7, 127.1, 129.5, 129.6, 129.8, 129.9, 131.8, 131.9, 132.0, 134.5, 135.0, 137.0, 145.0. IR (neat) \(\nu\) 3067, 3026, 2967, 2920, 2848, 1597, 1474, 1447, 1375, 1348, 1324, 1228, 1166, 1089, 1075, 1014, 927, 810, 760, 740, 709, 664 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{23}\)H\(_{18}\)Cl\(_2\)NO\(_2\)S\(^{+}\)(M+H\(^+\)) requires: 442.0430, Found: 442.0418.

\(^1\)H NMR spectrum of 2m:
13C NMR spectrum of 2m:

3-(furan-2-yl)-1-tosyl-2-vinyl-1H-indole 2n
An orange solid, 18% yield (14 mg). M.p.: 101-103 °C. 1H NMR (CDCl₃, TMS, 400 MHz) δ 2.32 (s, 3H), 5.53 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 5.62 (dd, J = 1.6 Hz, 11.6 Hz, 1H), 6.47-6.49 (m, 1H), 6.57 (d, J = 3.2 Hz, 1H), 7.12-7.21 (m, 3H), 7.28 (d, J = 7.6 Hz, 1H), 7.34-7.38 (m, 1H), 7.51 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl₃, 100 MHz, TMS) δ 21.6, 109.3, 111.0, 113.5, 115.1, 120.8, 122.8, 122.9, 124.1, 125.4, 126.7, 126.8, 129.2, 129.6, 135.4, 136.2, 141.9, 144.9, 147.4. IR (neat) ν 3109, 3078, 2940, 2926, 2868, 1619, 1602, 1488, 1452, 1379, 1350, 1313, 1223, 1186, 1171, 1147, 1087, 1018, 1010, 994, 934, 851, 785, 774, 754, 739, 723, 703, 683 cm⁻¹. HRMS (APCI) Calcd. for C₂₁H₁₈NO₃S⁺(M+H)⁺ requires: 364.1002, Found: 364.1018.
\(^1\text{H NMR spectrum of } 2n:\)

\(^{13}\text{C NMR spectrum of } 2n:\)
3-(thiophen-2-yl)-1-tosyl-2-vinyl-1H-indole 2o

A yellow solid, 40% yield (30 mg). M.p.: 69-71 °C. 1H NMR (CDCl₃, TMS, 400 MHz) δ 2.26 (s, 3H), 5.21 (dd, J = 0.8 Hz, 17.6 Hz, 1H), 5.42 (dd, J = 0.8 Hz, 11.2 Hz, 1H), 6.89-7.05 (m, 2H), 7.07-7.19 (m, 4H), 7.28-7.31 (m, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl₃, 100 MHz, TMS) δ 21.6, 115.0, 116.5, 120.1, 123.0, 124.0, 125.4, 126.0, 126.1, 126.9, 127.2, 128.0, 129.6, 130.8, 133.7, 135.5, 135.8, 135.9, 144.9. IR (neat) ν 3106, 3070, 3045, 3031, 2959, 2926, 2851, 1682, 1596, 1449, 1373, 1226, 1173, 1149, 1089, 998, 927, 844, 812, 747, 702, 668 cm⁻¹. HRMS (APCI) Calcd. for C₂₁H₁₈NO₂S²⁺(M+H)⁺ requires: 380.0773, Found: 380.0781.

1H NMR spectrum of 2o:
13C NMR spectrum of 2o:

3-methyl-1-tosyl-2-vinyl-1H-indole 2p

A white solid, 5% yield (3 mg). M.p.: 146-148 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.25 (s, 3H), 2.30 (s, 3H), 5.38 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.64 (dd, $J = 1.6$ Hz, 11.6 Hz, 1H), 7.12 (d, $J = 8.0$ Hz, 2H), 7.16-7.25 (m, 2H), 7.29-7.34 (m, 1H), 7.40 (d, $J = 7.6$ Hz, 1H), 7.61 (d, $J = 8.4$ Hz, 2H), 8.20 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 10.3, 21.5, 115.1, 118.7, 119.1, 120.1, 123.6, 125.0, 126.7, 127.8, 129.4, 131.8, 134.7, 135.4, 136.1, 144.4. IR (neat) $\tilde{\nu}$ 3067, 3042, 2961, 2926, 2856, 1619, 1599, 1491, 1453, 1370, 1305, 1294, 1228, 1204, 1187, 1174, 1142, 1092, 1019, 956, 913, 812, 801, 791, 757, 747, 683, 666 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{18}$H$_{18}$NO$_2$S$^+$ (M+H)$^+$ requires 312.1053, Found: 312.1048.
1H NMR spectrum of 2p:

13C NMR spectrum of 2p:
3-butyl-1-tosyl-2-vinyl-1H-indole 2q

A faint yellow solid, 45% yield (52 mg). M.p.: 85-88 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 0.90 (t, $J = 7.6$ Hz, 3H), 1.28-1.38 (m, 2H), 1.47-1.55 (m, 2H), 2.30 (s, 3H), 2.68 (t, $J = 8.0$ Hz, 2H), 5.40 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.58 (dd, $J = 1.6$ Hz, 11.6 Hz, 1H), 7.11 (dd, $J = 11.6$ Hz, 17.6 Hz, 1H), 7.12 (d, $J = 8.0$ Hz, 2H), 7.21-7.25 (m, 1H), 7.28-7.33 (m, 1H), 7.42 (d, $J = 8.4$ Hz, 1H), 7.56-7.60 (m, 2H), 8.19 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 13.9, 21.5, 22.8, 24.5, 32.5, 115.3, 119.2, 119.4, 123.5, 124.0, 124.9, 126.7, 127.9, 129.4, 131.3, 134.6, 135.2, 136.4, 144.4. IR (neat) ν 3067, 3048, 2957, 2928, 2873, 2859, 1621, 1598, 1491, 1452, 1371, 1305, 1231, 1186, 1172, 1150, 1090, 1041, 1019, 986, 972, 934, 812, 748, 704, 666 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{21}$H$_{24}$NO$_2$S$^+$ (M+H)$^+$ requires: 354.1522, Found: 354.1531.

1H NMR spectrum of 2q:
13C NMR spectrum of 2q:

1-(4-bromophenyl)sulfonyl)-3-phenyl-2-vinyl-1H-indole 2r

A white solid, 27% yield (36 mg). M.p.: 136-138 °C. 1H NMR (CDCl3, TMS, 400 MHz) δ 5.14 (dd, J = 1.2 Hz, 17.6 Hz, 1H), 5.36 (dd, J = 1.2 Hz, 11.2 Hz, 1H), 7.15 (dd, J = 11.2 Hz, 17.6 Hz, 1H), 7.20-7.25 (m, 1H), 7.29-7.38 (m, 5H), 7.39-7.44 (m, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 8.23 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3, 100 MHz, TMS) δ 115.1, 120.2, 122.5, 124.3, 124.6, 125.5, 126.2, 127.5, 128.3, 128.6, 128.9, 130.0, 131.1, 132.3, 133.0, 134.5, 136.1, 137.1. IR (neat) ν 3067, 3054, 3032, 2951, 2873, 2853, 1574, 1536, 1493, 1472, 1449, 1390, 1377, 1227, 1174, 1148, 1120, 1088, 1070, 1018, 1008, 917, 889, 842, 820, 809, 782, 750, 741, 720, 701, 686, 668, 656 cm⁻¹. HRMS (APCI) Calcd. for C22H17BrNO2S⁺(M+H)⁺ requires 438.0158, Found: 438.0167.
1H NMR spectrum of 2r:

13C NMR spectrum of 2r:
1-((4-nitrophenyl)sulfonyl)-3-phenyl-2-vinyl-1H-indole 2s

A yellow solid, 61% yield (49 mg). M.p.: 1148-1150 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 5.17 (dd, $J = 1.6$ Hz, 17.6 Hz, 1H), 5.40 (dd, $J = 1.6$ Hz, 11.6 Hz, 1H), 7.16 (dd, $J = 11.6$ Hz, 17.6 Hz, 1H), 7.22-7.27 (m, 1H), 7.28-7.31 (m, 3H), 7.32-7.43 (m, 4H), 7.93-7.97 (m, 2H), 8.19-8.25 (m, 3H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 115.1, 120.4, 122.9, 124.2, 124.8, 125.4, 125.8, 126.0, 127.6, 128.1, 128.7, 129.9, 131.3, 132.6, 134.3, 136.0, 143.1, 150.5. IR (neat) ν 3109, 3070, 3029, 2959, 2920, 2870, 2845, 1624, 1605, 1529, 1449, 1379, 1350, 1310, 1299, 1224, 1185, 1170, 1146, 1086, 1018, 1010, 994, 934, 851, 784, 775, 754, 739, 703, 683 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{22}$H$_{17}$N$_2$O$_4$S$^+$ (M+H)$^+$ requires 405.0904, Found: 405.0912.

1H NMR spectrum of 2s:
13C NMR spectrum of 2s:

A faint yellow solid, 46% yield (25 mg). M.p.: 159-161 °C. 1H NMR (CDCl3, TMS, 400 MHz) δ 2.69 (s, 3H), 5.27 (dd, J = 1.2 Hz, 17.6 Hz, 1H), 5.40 (dd, J = 1.2 Hz, 11.6 Hz, 1H), 6.87 (dd, J = 11.6 Hz, 17.6 Hz, 1H), 7.22-7.26 (m, 1H), 7.33-7.40 (m, 2H), 7.41-7.48 (m, 5H), 8.22 (d, J = 8.4 Hz, 1H). 13C NMR (CDCl3, 100 MHz, TMS) δ 28.1, 115.4, 119.8, 121.4, 123.6, 123.8, 125.5, 127.3, 127.7, 128.5, 129.9, 130.3, 133.4, 133.8, 136.3, 171.2. IR (neat) ν 3053, 3026, 2959, 2926, 2854, 1749, 1702, 1621, 1540, 1450, 1416, 1369, 1345, 1305, 1222, 1206, 1180, 1149, 1078, 1025, 1003, 937, 919, 773, 749, 702, 673 cm⁻¹. HRMS (APCI) Calcd. for C18H16NO2 (M+H)+ requires 262.1226, Found: 262.1236.
1H NMR spectrum of 2t:

13C NMR spectrum of 2t:
3-phenyl-2-vinyl-1H-indole 2u

A yellow solid, 31% yield (20 mg). M.p.: 125-127 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 5.30 (d, $J = 11.2$ Hz, 1H), 5.57 (d, $J = 18.0$ Hz, 1H), 6.89 (dd, $J = 11.2$ Hz, 18.0 Hz, 1H), 7.09-7.14 (m, 1H), 7.22-7.27 (m, 1H), 7.34-7.39 (m, 2H), 7.45-7.54 (m, 4H), 7.68 (d, $J = 8.0$ Hz, 1H), 8.25 (s, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 110.7, 112.2, 118.0, 119.8, 120.3, 123.5, 126.5, 126.6, 127.9, 128.5, 130.0, 132.2, 134.3, 136.0. IR (neat) $\tilde{\nu}$ 3409, 3281, 3081, 3054, 3026, 2967, 2920, 1640, 1602, 1492, 1456, 1445, 1320, 1247, 1186, 1075, 1045, 1016, 902, 878, 773, 745, 700 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{16}$H$_{14}$N$^+$ (M+H)$^+$ requires 220.1121, Found: 220.1118.

1H NMR spectrum of 2u:
Characterization and spectra charts for 4

7-methyl-1-tosyl-3-vinyl-1H-indole 4b

A faint yellow solid, 51% yield (48 mg). M.p.: 88-90 °C. 1H NMR (CDCl₃, TMS, 400 MHz) δ 2.36 (s, 3H), 2.53 (s, 3H), 5.36 (dd, J = 1.2 Hz, 11.6 Hz, 1H), 5.80 (dd, J = 1.2 Hz, 17.6 Hz, 1H), 6.80 (dd, J = 11.6 Hz, 17.6 Hz, 1H), 7.03 (d, J = 7.2 Hz, 1H), 7.14-7.22 (m, 3H), 7.53-7.60 (m, 3H), 7.85 (s, 1H). 13C NMR (CDCl₃, 100 MHz, TMS) δ 21.6, 21.8, 115.3, 117.8, 120.1, 123.9, 125.0, 126.4, 127.21, 127.23, 128.5, 129.9, 131.2, 135.4, 136.8, 144.6. IR (neat) ν 3134, 3090, 3065, 3048, 2970, 2926, 2870, 2854, 1763, 1721, 1682, 1641, 1596, 1491, 1457, 1359, 1272, 1213, 1188, 1171, 1123, 1087, 1038, 1019, 979, 888, 812, 786, 746, 703, 669 cm⁻¹. HRMS (APCI) Calcd. for C₁₈H₁₈NO₂S⁺ (M+H)⁺ requires 312.1053, Found: 312.1052.
1H NMR spectrum of 4b:

13C NMR spectrum of 4b:
6-chloro-1-tosyl-3-vinyl-1H-indole 4c

A white solid, 46% yield (46 mg). M.p.: 137-140 °C. \(^1\)H NMR (CDCl\(_3\), TMS, 400 MHz) \(\delta\) 2.36 (s, 3H), 5.35 (dd, \(J = 1.2\) Hz, 11.2 Hz, 1H), 5.75 (dd, \(J = 1.2\) Hz, 17.6 Hz, 1H), 6.72 (dd, \(J = 11.2\) Hz, 17.6 Hz, 1H), 7.22-7.27 (m, 3H), 7.58 (s, 1H), 7.63 (d, \(J = 8.4\) Hz, 1H), 7.75-7.79 (m, 2H), 8.01 (d, \(J = 1.6\) Hz, 1H). \(^{13}\)C NMR (CDCl\(_3\), 100 MHz, TMS) \(\delta\) 21.6, 113.9, 115.8, 120.6, 121.2, 124.1, 124.4, 126.8, 127.1, 127.4, 130.1, 130.9, 134.8, 135.7, 145.4. IR (neat) \(\nu\) 3054, 3026, 2940, 2856, 1598, 1460, 1424, 1375, 1272, 1213, 1189, 1173, 1141, 1089, 1024, 970, 811, 669 cm\(^{-1}\). HRMS (APCI) Calcd. for C\(_{17}\)H\(_{15}\)ClN\(_2\)O\(_2\)S requires 332.0507, Found: 332.0503.

\(^1\)H NMR spectrum of 4c:
13C NMR spectrum of 4c:

5-methyl-1-tosyl-3-vinyl-1H-indole 4e

A yellow solid, 58% yield (54 mg). M.p.: 83-85 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.31 (s, 3H), 2.41 (s, 3H), 5.32 (dd, $J = 1.2$ Hz, 11.2 Hz, 1H), 5.77 (dd, $J = 1.2$ Hz, 17.6 Hz, 1H), 6.74 (dd, $J = 11.2$ Hz, 17.6 Hz, 1H), 7.14 (dd, $J = 0.8$ Hz, 8.4 Hz, 1H), 7.18 (d, $J = 8.8$ Hz, 2H), 7.51 (d, $J = 0.8$ Hz, 1H), 7.55 (s, 1H), 7.72-7.76 (m, 2H), 7.86 (d, $J = 8.4$ Hz, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.4, 21.5, 113.3, 115.1, 120.3, 120.7, 124.2, 126.2, 126.8, 127.6, 129.2, 129.8, 133.1, 133.7, 135.0, 144.9. IR (neat) $\tilde{\nu}$ 3123, 3070, 3034, 2923, 2859, 1752, 1718, 1680, 1635, 1596, 1544, 1469, 1453, 1369, 1292, 1268, 1188, 1171, 1152, 1124, 1092, 1022, 975, 866, 801, 703, 667 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{18}$H$_{18}$NO$_2$S$^+$(M+H)$^+$ requires 312.1053, Found: 312.1057.
1H NMR spectrum of 4e:

![H NMR spectrum of 4e](image)

13C NMR spectrum of 4e:

![C NMR spectrum of 4e](image)
4-methoxy-1-tosyl-3-vinyl-1H-indole 4f

A faint yellow solid, 40% yield (39 mg). M.p.: 84-87 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.33 (s, 3H), 3.87 (s, 3H), 5.20 (dd, J = 1.6 Hz, 10.8 Hz, 1H), 5.65 (dd, J = 1.6 Hz, 17.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 7.14-7.23 (m, 4H), 7.57 (d, J = 8.4 Hz, 1H), 7.60 (s, 1H), 7.74-7.78 (m, 2H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 21.6, 55.3, 104.0, 106.5, 114.2, 119.0, 120.3, 121.8, 125.6, 126.8, 129.1, 129.8, 135.0, 136.5, 144.9, 154.6. IR (neat) ν 2962, 2942, 2923, 2837, 1596, 1557, 1492, 1460, 1427, 1366, 1266, 1251, 1189, 1177, 1106, 1038, 991, 911, 889, 877, 813, 784, 745, 703, 667 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{18}$H$_{18}$NO$_3$S$^+$ (M+H)$^+$ requires 328.1002, Found: 328.1005.

1H NMR spectrum of 4f:
6,7-dimethyl-1-tosyl-3-vinyl-1H-indole 4g

An orange solid, 42% yield (39 mg). M.p.: 159-161 °C. 1H NMR (CDCl$_3$, TMS, 400 MHz) δ 2.33 (s, 3H), 2.35 (s, 3H), 2.46 (s, 3H), 5.33 (dd, $J = 1.2$ Hz, 11.2 Hz, 1H), 5.76 (dd, $J = 1.2$ Hz, 17.6 Hz, 1H), 6.73 (dd, $J = 11.2$ Hz, 17.6 Hz, 1H), 7.10 (d, $J = 8.0$ Hz, 1H), 7.18 (d, $J = 8.4$ Hz, 2H), 7.42 (d, $J = 8.0$ Hz, 1H), 7.49-7.53 (m, 2H), 7.71 (s, 1H). 13C NMR (CDCl$_3$, 100 MHz, TMS) δ 17.1, 20.9, 21.6, 115.3, 117.0, 121.2, 124.5, 126.5, 126.7, 127.3, 127.6, 129.6, 129.8, 134.6, 136.1, 137.1, 144.5. IR (neat) $\tilde{\nu}$ 2954, 2924, 2856, 1760, 1724, 1680, 1638, 1596, 1450, 1358, 1188, 1168, 1090, 1070, 1017, 987, 888, 811, 703, 673 cm$^{-1}$. HRMS (APCI) Calcd. for C$_{19}$H$_{20}$NO$_2$S$^{+}$ (M+H)$^+$ requires 326.1209, Found: 326.1216.
1H NMR spectrum of 4g:

13C NMR spectrum of 4g:
1-((2,4-dimethoxyphenyl)sulfonyl)-3-vinyl-1H-indole 4i

A white solid, 48% yield (34 mg). M.p.: 150-152 °C. ¹H NMR (CDCl₃, TMS, 400 MHz) δ 3.84 (s, 3H), 3.85 (s, 3H), 5.34 (d, J = 11.6 Hz, 1H), 5.79 (d, J = 17.6 Hz, 1H), 6.77 (dd, J = 11.6 Hz, 17.6 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 7.25-7.29 (m, 2H), 7.32-7.36 (m, 1H), 7.52 (dd, J = 2.0 Hz, 8.4 Hz, 1H), 7.59 (s, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, TMS) δ 56.1, 56.2, 109.0, 110.6, 113.7, 115.3, 120.4, 120.9, 121.1, 123.5, 124.1, 124.8, 127.5, 129.0, 129.5, 135.5, 149.0, 153.5. IR (neat) ν 3123, 3084, 3009, 2956, 2924, 2854, 1730, 1716, 1632, 1586, 1509, 1463, 1446, 1407, 1371, 1264, 1240, 1216, 1185, 1168, 1141, 1123, 1092, 1019, 962, 891, 850, 808, 765, 747, 670 cm⁻¹. HRMS (APCI) Calcd. for C₁₈H₁₈N₂O₄S⁺ (M+H)⁺ requires 344.0951, Found: 344.0945.

¹H NMR spectrum of 4i:
13C NMR spectrum of 4i:

8. General procedure for synthesis of 5 and its and spectra chart

To a solution of O1 (10.0 mmol) and pyridine (1.0 mL, 12.0 mmol) in DCM (30 mL) was added a solution of p-TsCl (2.3 g, 12.0 mmol) in DCM (10 mL), and the mixture was stirred at rt for 3 hours. Upon completion monitored by TLC, 10 mL of saturated sodium bicarbonate was added to the reaction mixture. The aqueous phase was extracted with CH$_2$Cl$_2$ (3×15 mL), and the combined organic phases were washed with H$_2$O (1×20 mL), and brine (1×20 mL) respectively. The organic phase was separated and dried over anhydrous Na$_2$SO$_4$. The residue was purified by a silica gel flash chromatography (eluent: petroleum ether / ethyl acetate = 10 / 1) to afford the product O2 in 96% yield as a white solid.
To a solution of O2 (2 mmol, 1.0 eq) in dry THF was added dropwise into a solution of LiAlD4 (4 mmol, 2.0 eq) in THF while the temperature was maintained at 0 °C. The resulting mixture was allowed to warm to room temperature and was stirred for 2 hours. Then the mixture was hydrolyzed by addition of H2O (2.5 mL) and 5% NaOH (7.5 mL). The resulting suspension was filtered, and the precipitate was washed with ethyl acetate. Next, the combined organic collection was evaporated. After concentration, the resulting solid was added to a suspension of PCC (2.4 mmol, 1.2 eq) in DCM (20 mL). After being stirred at rt for 2 h, the mixture was filtered and concentrated. The residue was purified by a silica gel flash chromatography (elucent: petroleum ether / ethyl acetate = 8 / 1) to afford the product O3 in 57% yield as a white solid.

A solution of 3-bromopropyltriphenylphosphonium bromide (2.63 mmol, 3.0 eq), NaH (2.63 mmol, 3.0 eq) and [D]-7 (0.88 mmol, 1.0 eq) in THF (8 mL) was stirred at 70 °C for 12 h. Then the solvent was removed under reduced pressure and the residue was purified by a silica gel flash chromatography (elucent: petroleum ether / ethyl acetate = 20 / 1) to afford the product [D]-8 in 65% yield as a white solid.

\[
\text{\textbf{Compound 8}}
\]

\[\text{1H NMR (CDCl}_3, \text{TMS, 400 MHz) } \delta \text{ 2.33 (s, 3H), 5.35 (dd, } J = 0.8 \text{ Hz, 11.2 Hz, 1H), 5.79 (dd, } J = 0.8 \text{ Hz, 17.6 Hz, 1H), 6.77 (dd, } J = 11.2 \text{ Hz, 17.6 Hz, 1H), 7.21 (d, } J = 8.0 \text{ Hz, 2H), 7.24-7.29 (m, 1H), 7.31-7.36 (m, 1H), 7.60 (s, 0.34H), 7.73-7.78 (m, 3H), 7.99 (d, } J = 8.4 \text{ Hz, 1H).}\]

\[\text{1H NMR spectrum of 8:}\]
9. Proposed mechanism

Scheme SI-3. Alternative Proposed Mechanism for the Synthesis of 2 and 3-Vinylindoles

On the basis of previous reports and on our control experiments, a plausible mechanism for this reaction is outlined in Scheme SI-3. First, electrophilic Pd(II) species coordinated with the nitrogen atom of the substrate activates the double bond of the ACPs to form A, that undergoes an intramolecular aminopalladation reaction to generate intermediate B. Then following a β-carbon elimination, the Pd-alkyl intermediate C is obtained. If R ≠ H, C could undergo a β-hydride elimination to form the product 2. The reduced Pd catalyst was then oxidized directly by molecular oxygen to regenerate the Pd(II) catalyst. However, if R = H, intermediate B would directly undergo a ring-expansion to yield D. Following again a β-hydride elimination, the intermediate E would be formed and could re-insert into the in-situ generated HPdX to provide the Pd-alkyl intermediate F. The latter could either undergo a β-carbon elimination to give G to finally generate 4 after a last β-hydride elimination reaction. On the other hand, F could initiate a β-hydride elimination to form intermediate G', which would undergo a [2+2] retro-electrocyclization to furnish product 4.
The crystal data of 2f have been deposited in CCDC with number 1491285. Empirical Formula: C$_{23}$H$_{18}$BrNO$_2$S; Formula Weight: 452.35; Crystal Color, Habit: colorless, Crystal Dimensions: 0.35 x 0.3 x 0.25 mm3; Crystal System: Triclinic; Lattice Parameters: a = 9.1381(12)Å, b = 10.1764(13)Å, c = 10.7753(14)Å, α = 99.900(2)$^\circ$, β = 92.142(2)$^\circ$, γ = 100.863(2)$^\circ$, V = 966.9(2)Å3; Space group: P -1; Z = 2; D$_{calc}$ = 1.554 g/cm3; F$_{000}$ = 460; Final R indices [I>2σ(I)] R1 = 0.0403, wR2 = 0.1024.
11. References
