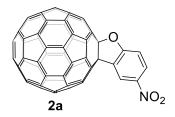
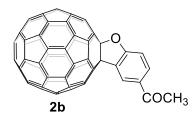
Palladium-catalyzed synthesis of [60]fullerene-fused benzofurans via heteroannulation of phenols

Fei Li,^{ab} Jun-Jie Wang^a and Guan-Wu Wang^{*,ac}


 ^aCAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
^bDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, P. R. China
^cState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

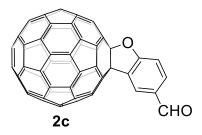
gwang@ustc.edu.cn

Table of Contents

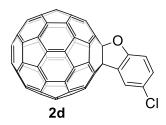

Synthesis and spectral data of products 2a-i and 3h	S2-S8
¹ H NMR, ¹³ C NMR and UV-vis spectra of products 2a–i and 3h	S9-S 34
CV of 2h	S34
Raman spectrum of 2a	S35
XPS spectrum and peak table of 2a	S35

Synthesis and spectral data of product 2a

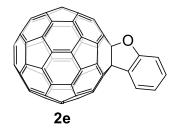
C₆₀ (36.2 mg, 0.05 mmol), 4-nitrophenol (35.1 mg, 0.25 mmol), K₂S₂O₈ (67.5 mg, 0.25 mmol), NaOAc (12.0 mg, 0.15 mmol), 1,10-phenanthroline (3.8 mg, 0.02 mmol), and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in o-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 10 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was separated by a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} (3.1 mg, 9%), subsequently with carbon disulfide/dichloromethane (5:1 v/v) to afford **2a** (27.3 mg, 63%). ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 8.77 (d, J = 2.4 Hz, 1H), 8.46 (dd, J = 8.8, 2.4 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CS₂/DMSO-d₆ with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 161.76 (1C, aryl C), 148.62, 147.30 (1C), 146.55 (1C), 145.52, 145.47, 145.36, 145.23, 145.15, 144.66, 144.45, 144.36, 144.25, 144.06, 143.72, 143.54, 143.40, 142.94, 142.62 (1C, aryl C), 142.05, 141.93, 141.88, 141.64, 141.45, 141.42, 141.33, 141.04, 140.71, 140.05, 139.02, 136.73, 134.99, 127.61 (1C, aryl C), 126.79 (1C, aryl C), 121.42 (1C, aryl C), 111.38 (1C, aryl C), 103.98 (1C, sp³-C of C₆₀), 68.95 (1C, sp³-C of C₆₀); FT-IR (KBr) v1591, 1515, 1470, 1334, 1269, 1187, 1126, 1070, 951, 918, 825, 743, 701, 564, 528 cm⁻¹; UV–vis (CHCl₃) λ_{max} (log ε) 256 (4.59), 318 (4.27), 430 (2.85) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₆₆H₃NO₃ [M]⁻ 857.0113, found 857.0126.


Synthesis and spectral data of product 2b

C₆₀ (36.0 mg, 0.05 mmol), 4-hydroxyacetophenone (34.5 mg, 0.25 mmol), K₂S₂O₈ (67.9 mg, 0.25 mmol), NaOAc (12.7 mg, 0.15 mmol), 1,10-phenanthroline (4.0 mg, 0.02 mmol), and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in *o*-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was separated a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (5.3 mg, 15%), subsequently with carbon disulfide/dichloromethane (1:1 v/v) to afford **2b** (27.1 mg, 63%). ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 8.47 (d, *J* = 1.8 Hz, 1H), 8.15 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.43 (d, *J* =

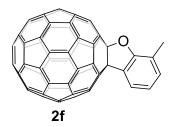

8.6 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 191.95 (1C, *C*=O), 160.20 (1C, aryl *C*), 149.28, 147.07 (1C), 146.32 (1C), 145.28, 145.21, 145.12, 145.00, 144.92, 144.35, 144.34, 144.14 (4C), 144.01, 143.74, 143.58, 143.38, 143.24, 141.85, 141.70, 141.65, 141.58, 141.25, 141.21, 141.13, 140.82, 140.61, 139.80, 138.77, 136.51, 134.64, 131.80 (1C, aryl *C*), 131.40 (1C, aryl *C*), 126.39 (1C, aryl *C*), 125.46 (1C, aryl *C*), 110.79 (1C, aryl *C*), 102.87 (1C, sp³-*C* of C₆₀), 69.34 (1C, sp³-*C* of C₆₀), 25.45 (1C, CH₃); FT-IR (KBr) ν 1677, 1593, 1510, 1482, 1424, 1351, 1264, 1184, 971, 918, 815, 769, 568, 528 cm⁻¹; UV–vis (CHCl₃) λ_{max} (log ε) 257 (4.46), 317 (4.00), 428 (2.30) nm; HRMS (MALDI-TOF-MS, negative mode), *m*/*z* calcd for C₆₈H₆O₂ [M]⁻ 854.0368, found 854.0385.

Synthesis and spectral data of product 2c

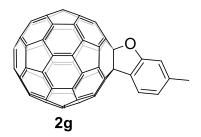

 C_{60} (36.0 mg, 0.05 mmol), 4-hydroxybenzaldehyde (30.4 mg, 0.25 mmol), $K_2S_2O_8$ (69.4 mg, 0.25 mmol), NaOAc (12.5 mg, 0.15 mmol), 1,10-phenanthroline (4.1 mg, 0.02 mmol), and Pd(OAc)₂ (1.0 mg, 0.005 mmol) were dissolved in o-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 10 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was separated by a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} (12.3 mg, 34%), subsequently with carbon disulfide/dichloromethane (5:1 v/v) to afford 2c (24.5 mg, 58%). ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 9.99 (s, 1H), 8.44 (d, J = 1.6 Hz, 1H), 8.07 (dd, J = 8.3, 1.6 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 186.99 (1C, C=O), 161.43 (1C, aryl C), 149.22, 147.21 (1C), 146.46 (1C), 145.43, 145.37, 145.26, 145.15, 145.06, 144.50, 144.46, 144.28, 144.16, 144.13, 143.83, 143.51, 143.45, 143.37, 141.99, 141.85, 141.80, 141.69, 141.39, 141.36, 141.27, 140.96, 140.72, 139.99, 138.92, 136.67, 134.81, 133.10 (1C, aryl C), 131.70 (1C, aryl C), 127.31 (1C, aryl C), 126.27 (1C, aryl C), 111.53 (1C, aryl C), 103.21 (1C, sp³-C of C₆₀), 69.17 (1C, sp³-C of C₆₀); FT-IR (KBr) v 1691, 1594, 1482, 1433, 1267, 1180, 1143, 923, 817, 530 cm⁻¹; UV-vis (CHCl₃) λ_{max} (log ε) 256 (4.55), 315 (4.13), 428 (2.60) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₆₇H₄O₂ [M]⁻ 840.0211, found 840.0225.

Synthesis and spectral data of product 2d

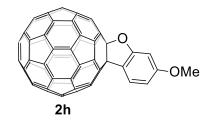
C₆₀ (36.4 mg, 0.05 mmol), *p*-chlorophenol (32.7 mg, 0.25 mmol), K₂S₂O₈ (68.9 mg, 0.25 mmol), NaOAc (12.0 mg, 0.15 mmol), 1,10-phenanthroline (3.9 mg, 0.02 mmol), and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in o-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was dissolved in toluene and subjected to semi-preparative HPLC equipped with a Buckyprep column (eluent: toluene) to give unreacted C_{60} (2.7 mg, 7%) and **2d** (24.9 mg, 58%). ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 7.85 (d, J = 2.0Hz, 1H), 7.46 (dd, J = 8.7, 2.0 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 155.21 (1C, aryl C), 149.00, 147.14 (1C), 146.40 (1C), 145.32, 145.26, 145.19, 145.07, 144.97, 144.43, 144.41, 144.19, 144.10, 144.00, 143.96, 143.83, 143.42, 143.35, 141.92, 141.75, 141.72, 141.62, 141.32, 141.29, 141.17, 140.83, 140.74, 139.88, 138.84, 136.43, 134.88, 129.92 (1C, aryl C), 127.32 (1C, aryl C), 126.53 (1C, aryl C), 124.89 (1C, aryl C), 112.19 (1C, aryl C), 102.40 (1C, sp³-C of C₆₀), 69.72 (1C, sp³-C of C₆₀); FT-IR (KBr) v 1592, 1495, 1291, 1193, 1155, 1085, 1027, 987, 957, 820, 526 cm⁻¹; UV–vis (CHCl₃) λ_{max} (log ε) 258 (4.55), 328 (4.05), 428 (2.92) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₆₆H₃ClO [M]⁻ 845.9872, found 845.9885.


Synthesis and spectral data of product 2e

C₆₀ (36.3 mg, 0.05 mmol), phenol (24.3 mg, 0.25 mmol), K₂S₂O₈ (68.2 mg, 0.25 mmol), NaOAc (12.0 mg, 0.15 mmol), 1,10-phenanthroline (4.1 mg, 0.02 mmol), and Pd(OAc)₂ (1.2 mg, 0.005 mmol) were dissolved in *o*-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was dissolved in toluene and subjected to semi-preparative HPLC equipped with a Buckyprep column (eluent: toluene) to give unreacted C₆₀ (11.4 mg, 31%) and **2e** (18.5 mg, 43%). ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 7.85 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CS₂/DMSO-*d*₆ with Cr(acac)₃ as relaxation reagent) (all 2C unless)

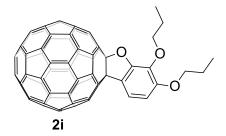

indicated) δ 156.55 (1C, aryl *C*), 149.74, 147.13 (1C), 146.40 (1C), 145.32, 145.24, 145.18, 145.07, 144.96, 144.53 (4C), 144.31, 144.23, 144.20, 144.08, 144.04, 143.47, 143.40, 142.08, 141.95, 141.76 (4C), 141.72, 141.35, 141.32, 141.19, 140.83 (4C), 139.85, 138.84, 136.49, 134.78, 129.97 (1C, aryl *C*), 125.28 (1C, aryl *C*), 124.81 (1C, aryl *C*), 121.79 (1C, aryl *C*), 111.23 (1C, aryl *C*), 101.74 (1C, sp³-*C* of C₆₀), 70.19 (1C, sp³-*C* of C₆₀); FT-IR (KBr) *v* 1463, 1424, 1210, 1106, 1077, 948, 928, 861, 762, 650, 564, 526 cm⁻¹; UV–vis (CHCl₃) λ_{max} (log ε) 255 (4.60), 315 (4.16), 426 (3.18) nm; HRMS (MALDI-TOF-MS, negative mode) *m*/*z* calcd for C₆₆H₄O [M]⁻ 862.0262, found 862.0276.

Synthesis and spectral data of product 2f

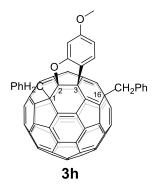

C₆₀ (35.8 mg, 0.05 mmol), o-cresol (26 µL, 0.25 mmol), K₂S₂O₈ (69.0 mg, 0.25 mmol), NaOAc (12.3 mg, 0.15 mmol), 1,10-phenanthroline (4.3 mg, 0.02 mmol), and $Pd(OAc)_2$ (1.2 mg, 0.005 mmol) were dissolved in *o*-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was dissolved in toluene and subjected to semi-preparative HPLC equipped with a Buckyprep column (eluent: toluene) to give unreacted C_{60} (5.8 mg, 16%) and **2f** (22.9 mg, 56%). ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 7.67-7.64 (m, 1H), 7.30-7.26 (m, 1H), 7.11 (t, J = 7.4 Hz, 1H), 2.61 (s, 3H); ¹³C NMR (100 MHz, $CS_2/DMSO-d_6$ with $Cr(acac)_3$ as relaxation reagent) (all 2C unless indicated) δ 154.83 (1C, aryl C), 149.85, 147.12 (1C), 146.37 (1C), 145.30, 145.21, 145.14, 145.04, 144.94, 144.74, 144.51, 144.27, 144.26, 144.18, 144.06 (4C), 143.47, 143.39, 141.94, 141.77, 141.73, 141.70, 141.34, 141.30, 141.17, 140.84, 140.81, 139.85, 138.80, 136.47, 134.69, 130.97 (1C, aryl C), 124.41 (1C, aryl C), 122.20 (1C, aryl C), 121.93 (1C, aryl C), 121.30 (1C, aryl C), 101.44 (1C, sp³-C of C₆₀), 70.55 (1C, sp³-C of C₆₀), 15.31 (1C, CH₃); FT-IR (KBr) v 1558, 1506, 1463, 1262, 1210, 1106, 948, 927, 861, 760, 648, 594, 562, 526 cm⁻¹; UV-vis (CHCl₃) λ_{max} (log ε) 255 (4.59), 315 (4.12), 426 (2.94) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₆₇H₆O [M]⁻ 826.0419, found 826.0432.

Synthesis and spectral data of product 2g

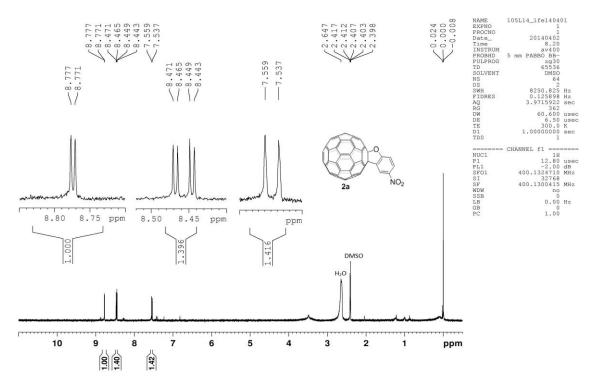
C₆₀ (35.8 mg, 0.05 mmol), m-cresol (27 µL, 0.25 mmol), K₂S₂O₈ (67.6 mg, 0.25 mmol), NaOAc (13.4 mg, 0.15 mmol), 1,10-phenanthroline (4.0 mg, 0.02 mmol), and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in o-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was dissolved in toluene and subjected to semi-preparative HPLC equipped with a Buckyprep column (eluent: toluene) to give unreacted C_{60} (20.4 mg, 57%) and **2g** (13.3 mg, 32%). ¹H NMR (400 MHz, CS₂/DMSO- d_6) δ 7.78 (d, J = 7.6 Hz, 1H),7.23 (s, 1H), 7.11 (d, J = 7.6 Hz, 1H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CS₂/DMSO- d_6 with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 156.78 (1C, aryl C), 149.92, 147.11 (1C), 146.37 (1C), 145.29, 145.20, 145.13, 145.04, 144.93, 144.69, 144.52, 144.25, 144.21, 144.17, 144.04, 144.03, 143.46, 143.37, 141.92, 141.79, 141.72, 141.69, 141.32, 141.28, 141.15, 140.80 (4C), 140.06 (1C, aryl C), 139.81, 138.78, 136.47, 134.65, 124.33 (1C, aryl C), 122.61 (1C, aryl C), 122.52 (1C, aryl C), 111.66 (1C, aryl C), 101.97 (1C, sp³-C of C₆₀), 70.05 (1C, sp³-C of C₆₀), 21.19 (1C, CH₃); FT-IR (KBr) v 1558, 1506, 1452, 1273, 1139, 1085, 985, 951, 949, 883, 802, 782, 622, 594, 525 cm⁻¹; UV-vis (CHCl₃) λ_{max} (log ε) 255 (4.52), 315 (4.05), 428 (2.80) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₆₇H₆O [M]⁻ 826.0419, found 826.0435.


Synthesis and spectral data of product 2h

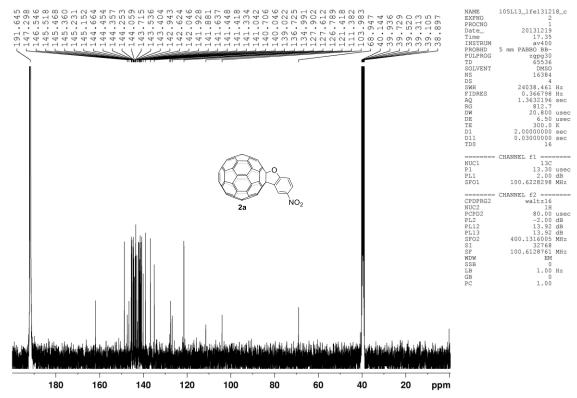
C₆₀ (36.1 mg, 0.05 mmol), 3-methoxyphenol (35 μL, 0.25 mmol), K₂S₂O₈ (67.4 mg, 0.25 mmol), NaOAc (12.4 mg, 0.15 mmol), 1,10-phenanthroline (4.4 mg, 0.02 mmol) and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in *o*-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 12 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was separated by a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (5.8 mg, 16%), subsequent elution with carbon disulfide/dichloromethane (5:1 v/v) affording **2h** (21.2 mg, 50%). ¹H NMR (400 MHz, CS₂/DMSO-*d*₆) δ 7.69 (d, *J* = 8.3 Hz, 1H), 6.88 (d, *J* = 2.0 Hz, 1H), 6.74 (dd, *J* = 8.3, 2.0 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CS₂/DMSO-*d*₆ with Cr(acac)₃ as

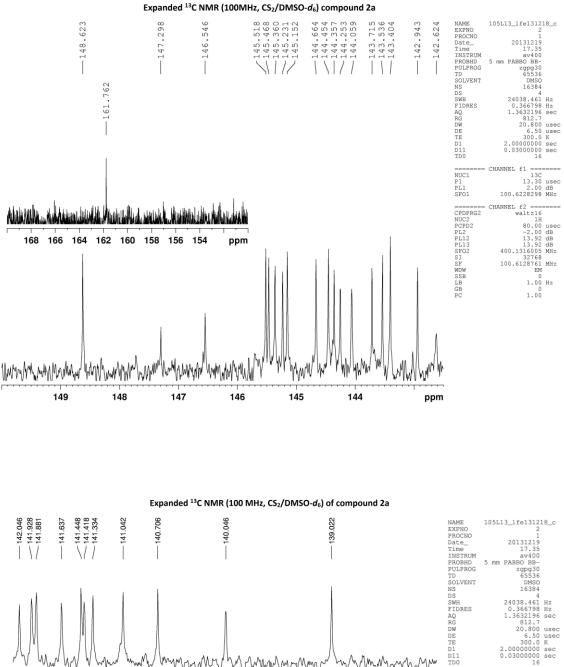

relaxation reagent) (all 2C unless indicated) δ 161.13 (1C, aryl *C*), 157.83 (1C, aryl *C*), 149.86, 147.05 (1C), 146.32 (1C), 145.24, 145.14, 145.05, 144.98, 144.87, 144.59, 144.47, 144.17, 144.11, 144.09, 143.96, 143.92, 143.42, 143.31, 141.86, 141.80, 141.66, 141.63, 141.27, 141.23, 141.08, 140.76, 140.71, 139.74, 138.69, 136.54, 134.49, 124.79 (1C, aryl *C*), 116.98 (1C, aryl *C*), 108.20 (1C, aryl *C*), 102.53 (1C, aryl *C*), 96.85 (1C, sp³-*C* of C₆₀), 69.67 (1C, sp³-*C* of C₆₀), 54.79 (1C, *C*H₃); FT-IR (KBr) *v* 1619, 1589, 1499, 1431, 1287, 1194, 1152, 1084, 1028, 989, 954, 879, 819, 623, 564, 524 cm⁻¹; UV–vis (CHCl₃) λ_{max} (log ε) 255 (4.56), 315 (4.07), 428 (2.34) nm; HRMS (MALDI-TOF-MS, negative mode) *m/z* calcd for C₆₇H₆O₂ [M]⁻ 842.0368, found 842.0381.

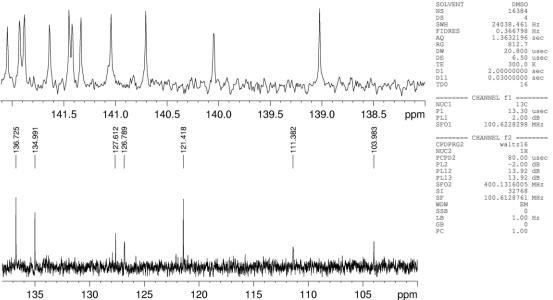
Synthesis and spectral data of product 2i


 C_{60} (36.1 mg, 0.05 mmol), 2,3-proposyphenol (53.6 mg, 0.25 mmol), K₂S₂O₈ (67.6 mg, 0.25 mmol), NaOAc (12.3 mg, 0.15 mmol), 1,10-phenanthroline (4.2 mg, 0.02 mmol) and Pd(OAc)₂ (1.1 mg, 0.005 mmol) were dissolved in o-dichlorobenzene (3 mL). The reaction mixture was stirred at 140 °C for 15 h and then was filtered through a silica gel plug in order to remove the insoluble material. After evaporation in vacuo, the residue was separated by a silica gel column with carbon disulfide as the eluent to give unreacted C_{60} (13.3 mg, 37%), subsequently with carbon disulfide/dichloromethane (5:1 v/v) to afford **2i** (21.7 mg, 44%). ¹H NMR (400 MHz, $CS_2/CDCl_3$) δ 7.46 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 4.39 (t, J = 6.6 Hz, 2H), 4.10 (t, J = 6.4 Hz, 2H), 1.88-2.03 (m, 4H), 1.18 (t, J = 7.4 Hz, 3H), 1.15 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CS₂/CDCl₃ with Cr(acac)₃ as relaxation reagent) (all 2C unless indicated) δ 153.97 (1C, aryl C), 151.00, 150.28 (1C, aryl C), 148.26 (1C), 147.51 (1C), 146.42, 146.35, 146.23, 146.15, 146.03, 145.85, 145.64, 145.30, 145.28, 145.23, 145.20, 145.13, 144.56, 144.48, 142.98, 142.89, 142.80, 142.78, 142.44, 142.40, 142.22, 141.88, 141.81, 140.86, 139.79, 137.83, 135.72, 134.29 (1C, aryl C), 120.78 (1C, aryl C), 119.16 (1C, aryl C), 108.46 (1C, aryl C), 103.93 (1C, sp³-C of C₆₀), 75.28 (1C, CH₂), 71.44 (1C, CH₂), 71.01 (1C, sp³-C of C₆₀), 23.78 (1C, CH₂), 23.00 (1C, CH₂), 10.82 (1C, CH₃), 10.74 (1C, CH₃); FT-IR (KBr) v 1592, 1496, 1455, 1385, 1325, 1281, 1255, 1233, 1182, 1161, 1108, 1081, 1038, 1023, 964, 948, 920, 848, 779, 639, 576, 526 cm⁻¹; UV-vis (CHCl₃) λ_{max} (log ε) 255 (4.57), 315 (4.18), 428 (3.08) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₇₅H₂₂O₄ [M]⁻ 986.1518, found 986.1529.

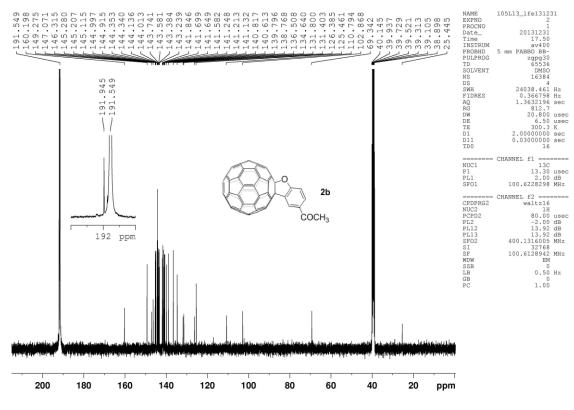
Synthesis and spectral data of product 3h

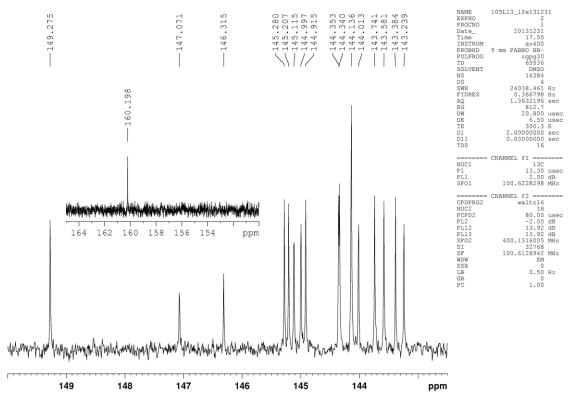


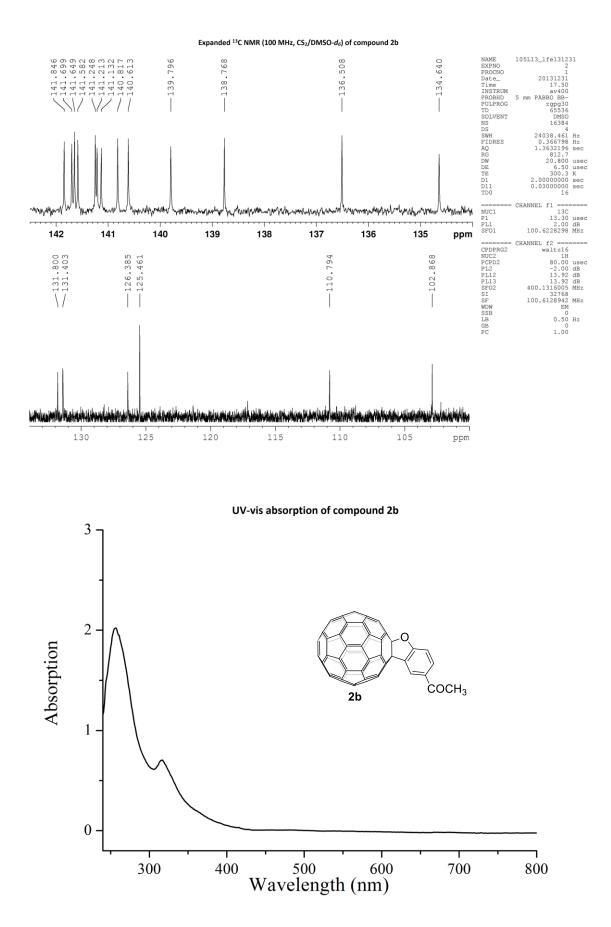

25.3 mg (0.030 mmol) of 2h was electroreduced at -1.0V vs SCE in 30 mL of ODCB containing 0.1M TBAP under argon atmosphere at room temperature. The electrolysis was terminated when the theoretical number of coulombs required for a full conversion of 2h to $2h^{2}$ was reached. Then, the dianionic 2h was reacted with benzyl bromide (72.0 µL, 0.60 mmol) in the presence of NaH (23.9 mg, 0.60 mmol) at 25 °C for 2 h and the reaction mixture was filtered through a silica gel flash chromatography to remove the electrolyte. After evaporation in vacuo, the residue was separated by a silica gel column with carbon disulfide as the eluent to give unreacted 2h (7.5 mg, 30%), subsequently with carbon disulfide/dichloromethane (3:1 v/v) to afford **3h** (9.4) mg, 31%). ¹H NMR (400 MHz, CS₂/acetone- d_6) δ 7.09 (d, J = 8.2 Hz, 1H), 6.65 (dd, J = 7.6, 1.6 Hz, 2H), 6.57-6.49 (m, 3H), 6.41-6.33 (m, 5H), 6.11 (dd, J = 8.2, 2.4 Hz, 1H), 6.06 (d, J = 2.4 Hz, 1H), 3.81 (d, J = 12.8 Hz, 1H), 3.59 (d, J = 12.8 Hz, 1H), 3.38 (d, J = 12.8 Hz, 1H), 3.23 (s, 3H), 3.20 (d, J = 12.8 Hz, 1H); ¹³C NMR (100 MHz, CS₂/acetone-d₆, all 1C unless indicated) δ 162.46, 161.96, 156.21, 154.97, 152.46, 151.11, 150.43, 150.34, 148.99, 148.82, 148.46, 148.42, 148.26, 148.25, 147.47, 147.36, 147.08, 147.02, 146.92, 146.89 (2C), 146.77, 146.54, 146.30, 146.11, 146.08, 145.77, 145.67, 145.64 (2C), 145.17, 145.12, 144.78 (3C), 144.71, 144.66, 144.63, 144.23, 143.85, 143.69, 143.61, 143.41, 142.95, 142.59, 142.50, 141.65, 141.53, 141.43, 141.17, 141.12, 140.01, 138.97, 138.91, 138.74, 137.80, 136.50, 135.75, 134.51, 133.73, 132.00 (2C), 130.86 (2C), 128.75 (2C), 128.33 (2C), 127.80, 127.39, 125.47, 120.86, 109.21, 102.86 (sp³-C of C₆₀), 97.46, 64.92 (sp³-C of C₆₀), 62.89 (sp³-C of C₆₀), 59.19 (sp³-C of C₆₀), 55.71, 50.24, 46.24; FT-IR (KBr) v 2922, 2850, 1624, 1498, 1444, 1157, 1025, 947, 700, 530 cm⁻¹; UV-vis (CHCl₃) λ_{max} (log ε) 252 (4.93), 315 (4.52), 403.5 (3.87), 703.5 (2.30) nm; HRMS (MALDI-TOF-MS, negative mode) m/z calcd for C₈₁H₂₀O₂ [M]⁻ 1024.1463, found 1024.1472.


¹H NMR (400 MHz, CS₂/DMSO-d₆) of compound 2a

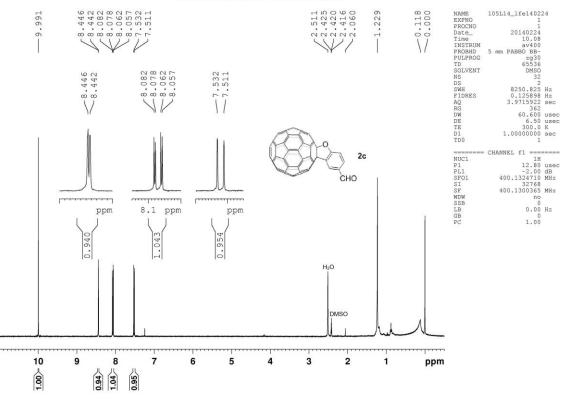

¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2a



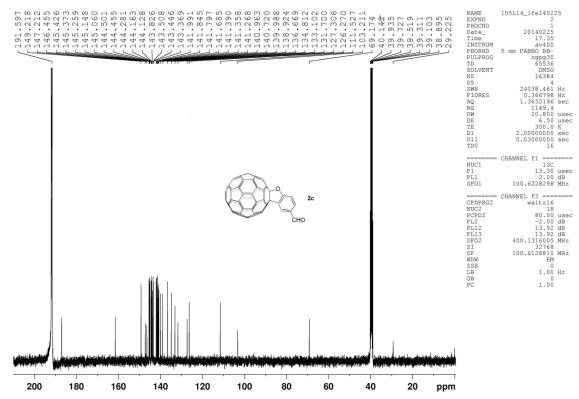

UV-vis absorption of compound 2a

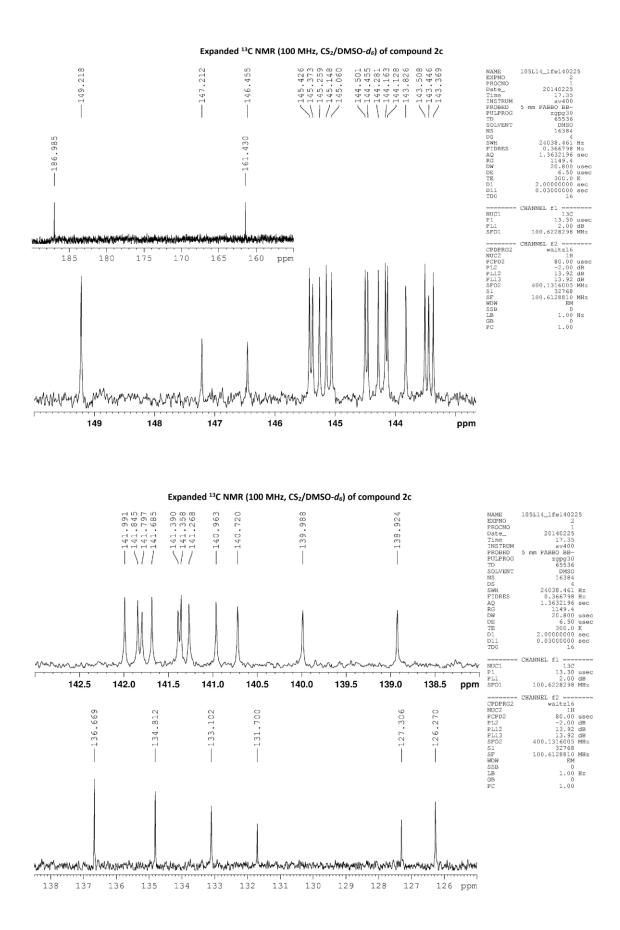


¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2b

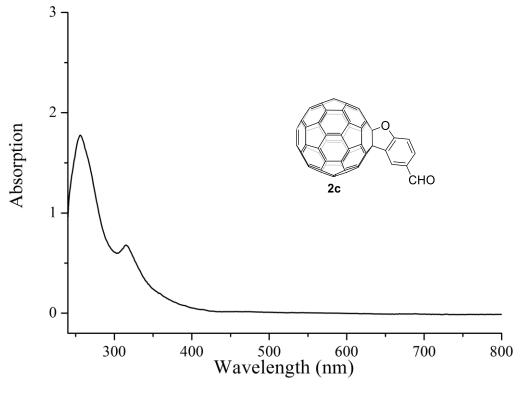


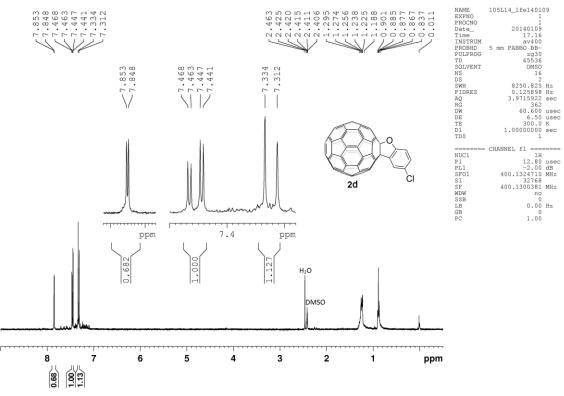
Expanded ¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2b



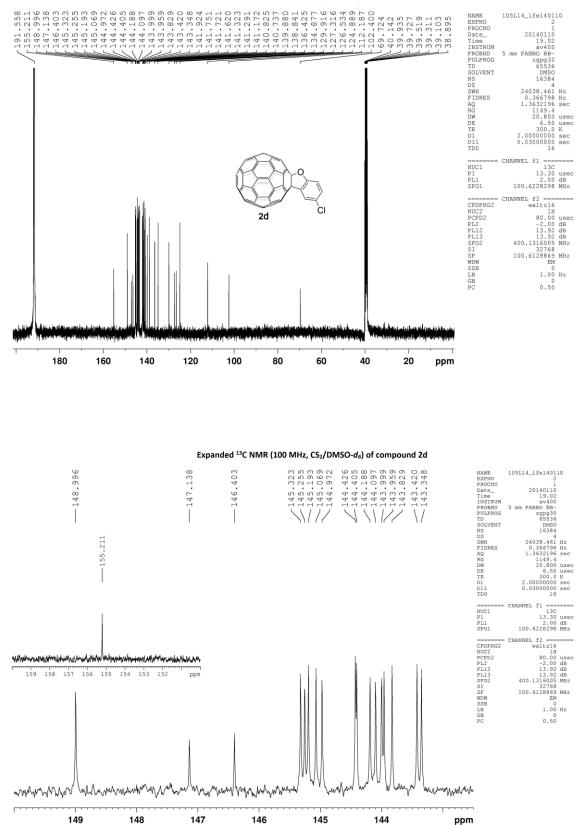


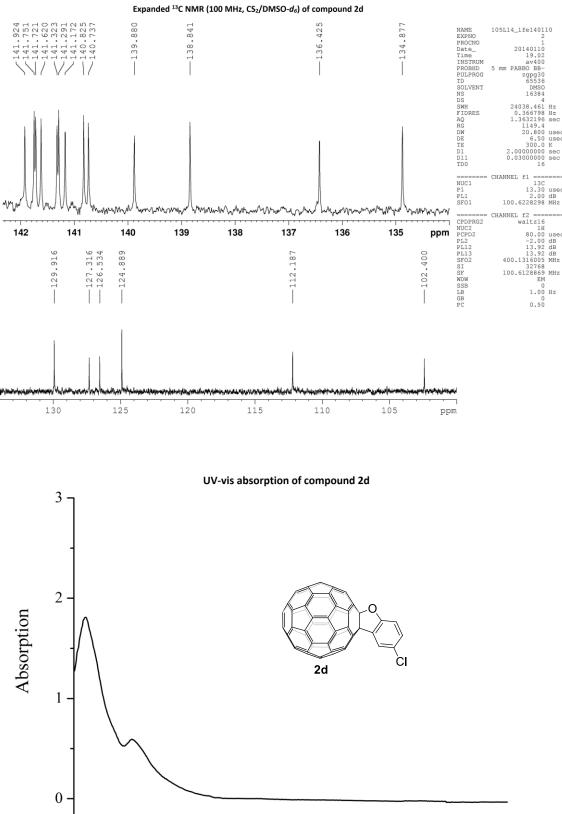
¹H NMR (400 MHz, CS₂/DMSO-d₆) of compound 2c

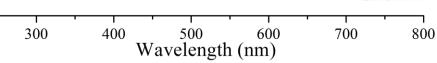

¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2c

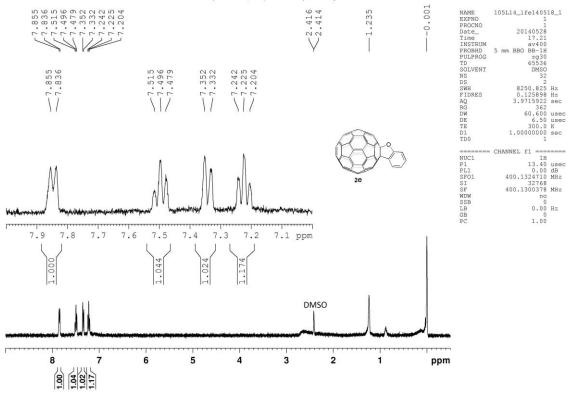


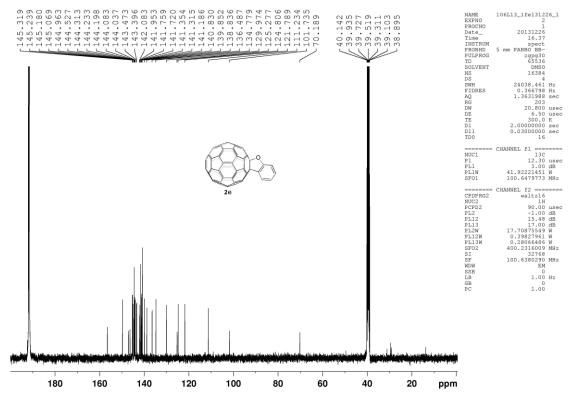
S15

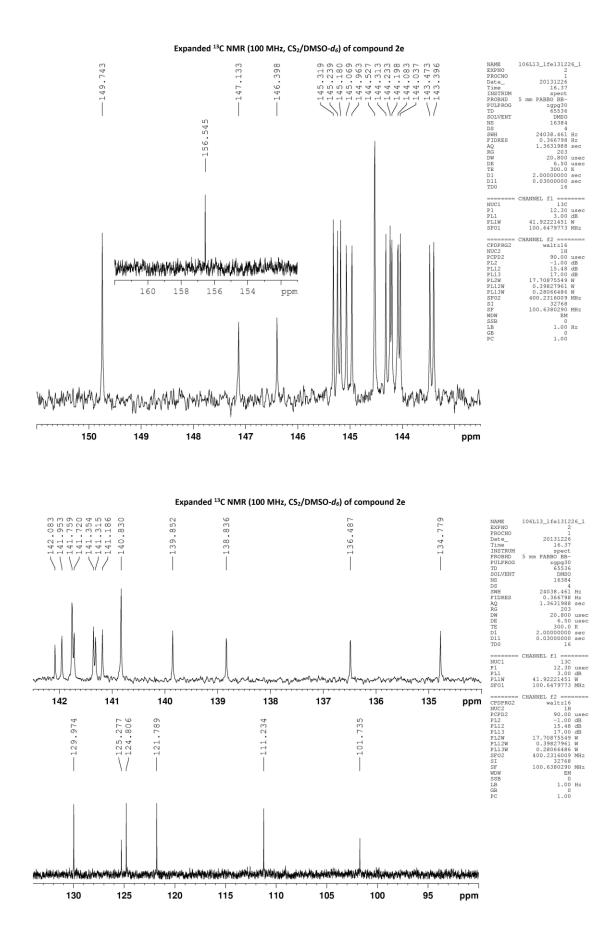

UV-vis absorption of compound 2c

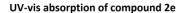


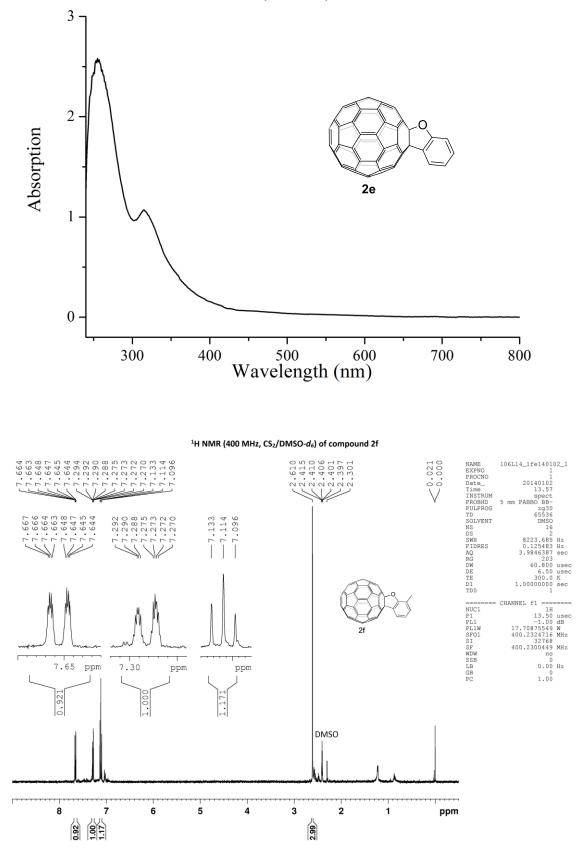

¹H NMR (400 MHz, CS₂/DMSO-*d*₆) of compound 2d


¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2d

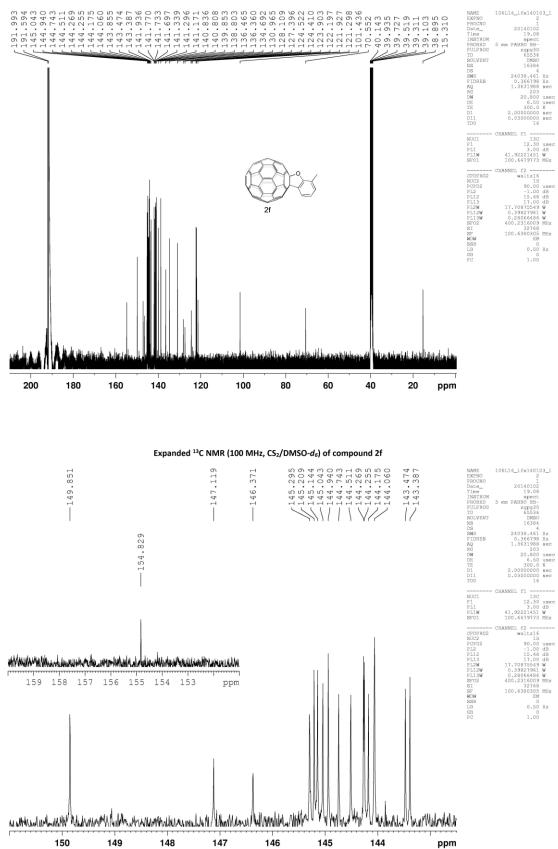


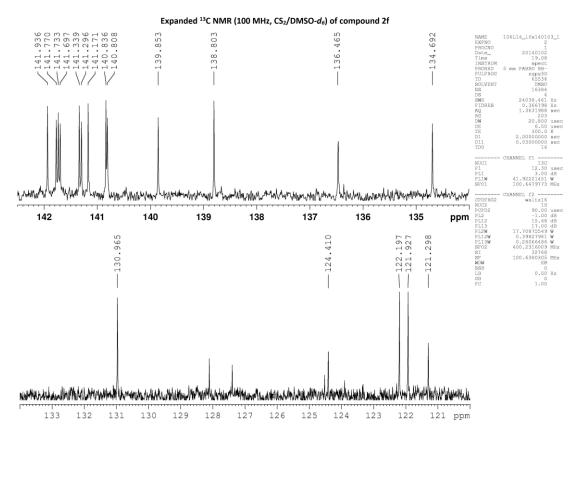


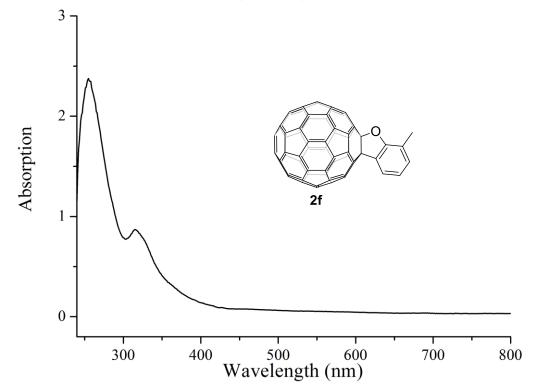

¹H NMR (400 MHz, CS₂/DMSO-d₆) of compound 2e



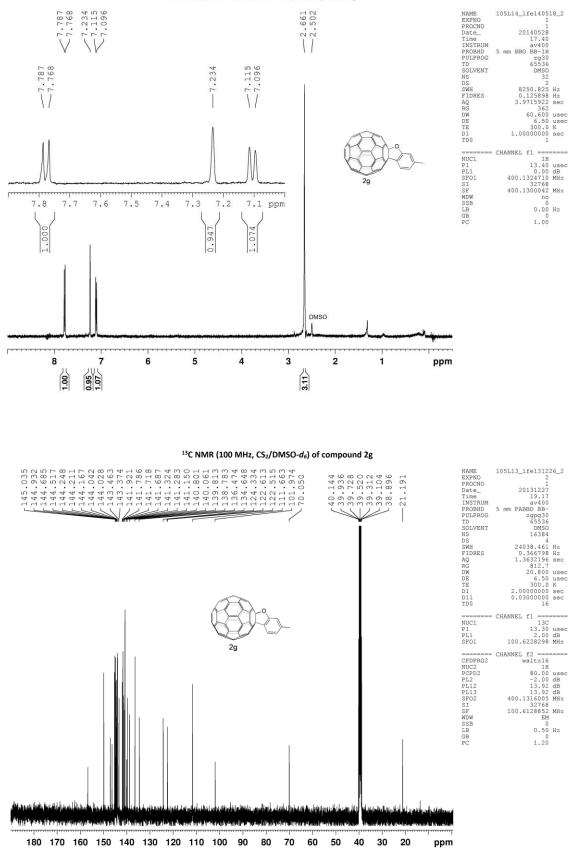
¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2e

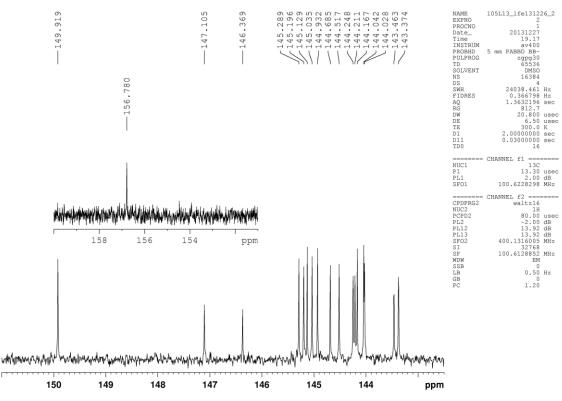


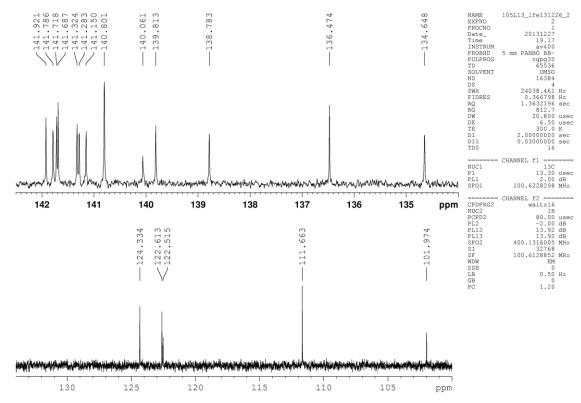




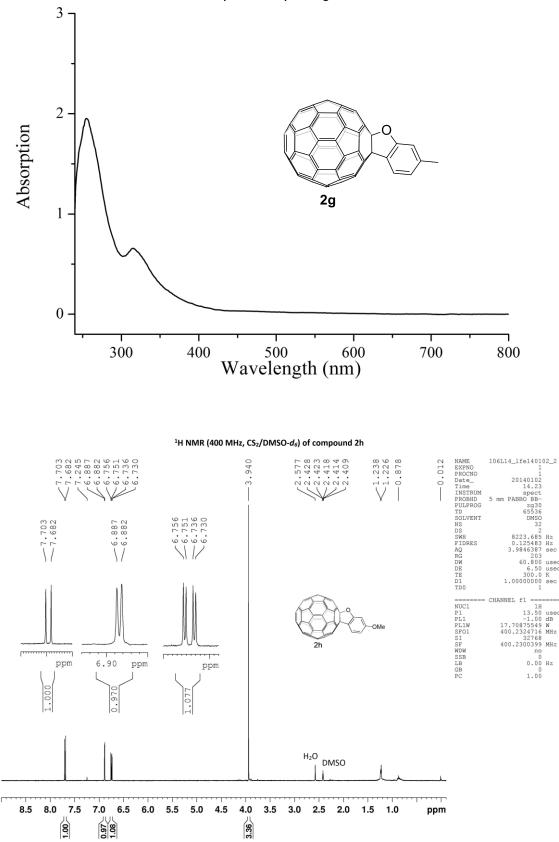
¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2f



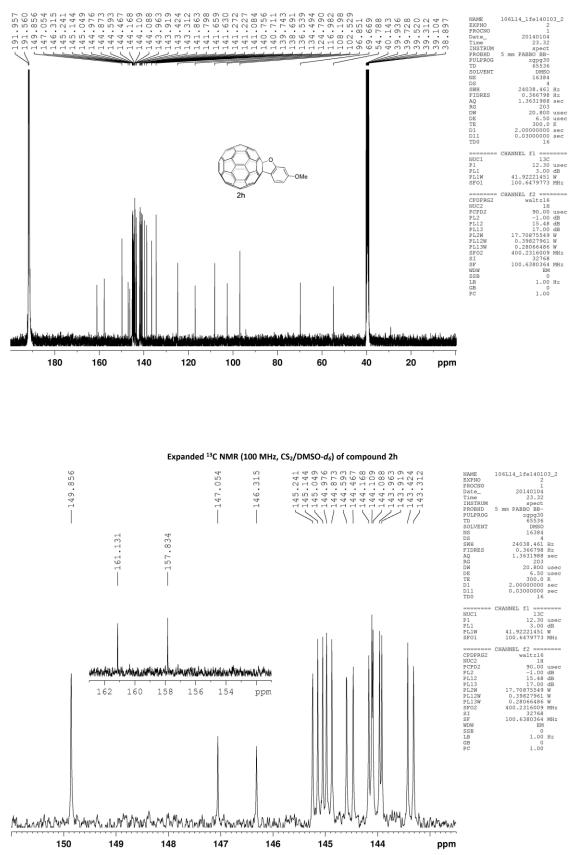

UV-vis absorption of compound 2f

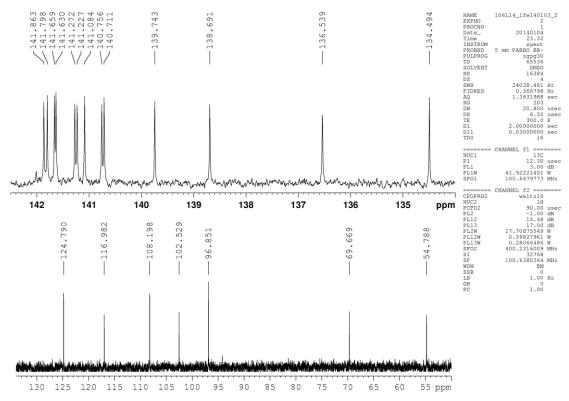


Expanded ¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2g

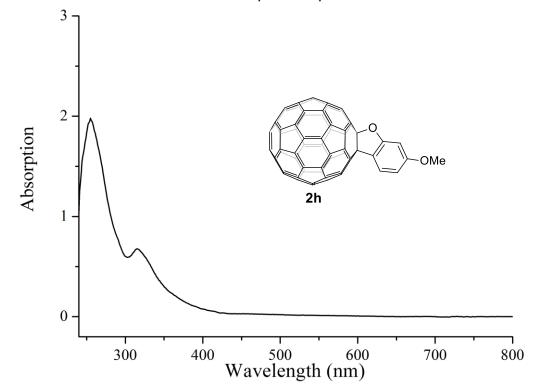


Expanded ¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2g

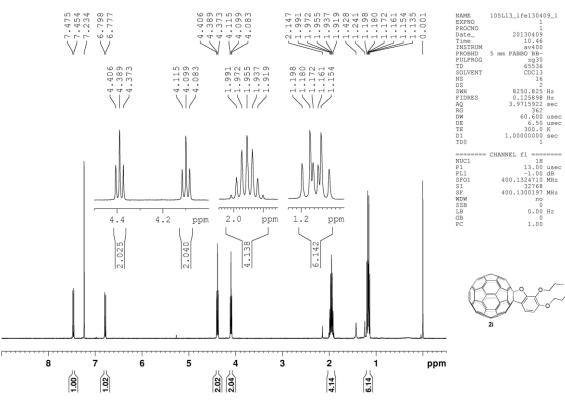

Г

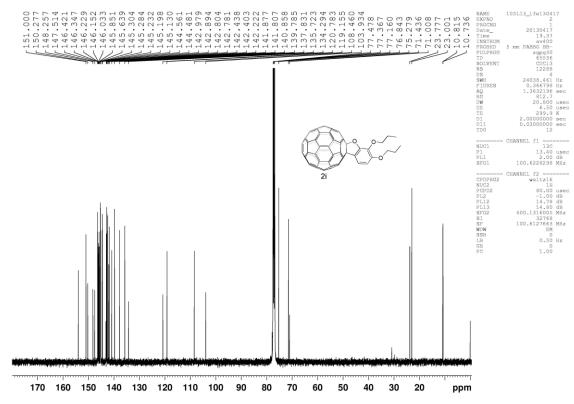


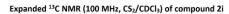
¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2h

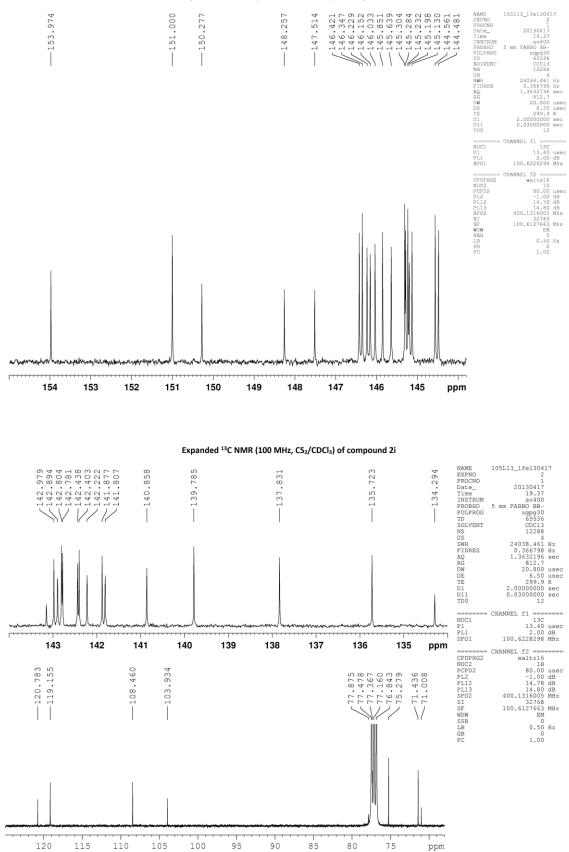


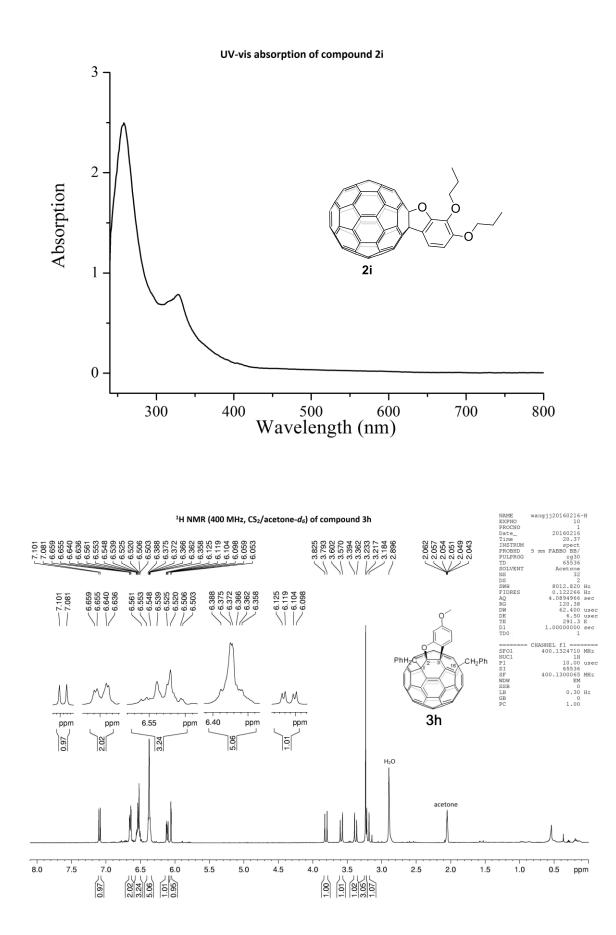
S27

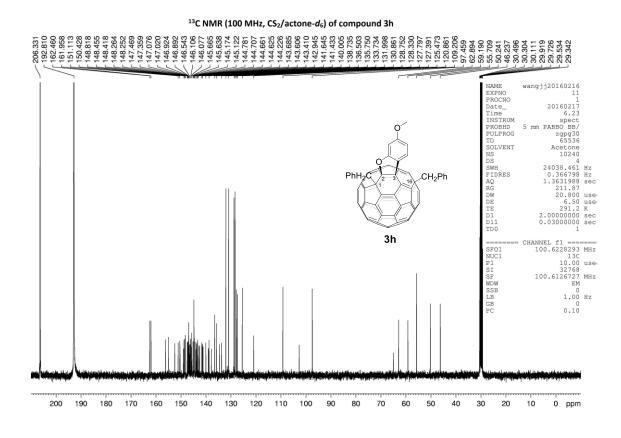

Expanded ¹³C NMR (100 MHz, CS₂/DMSO-d₆) of compound 2h

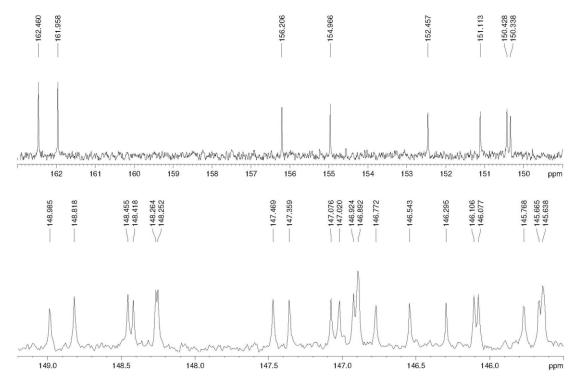

UV-vis absorption of compound 2h

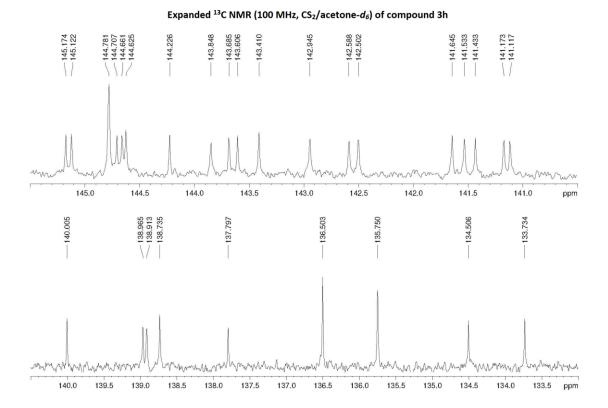




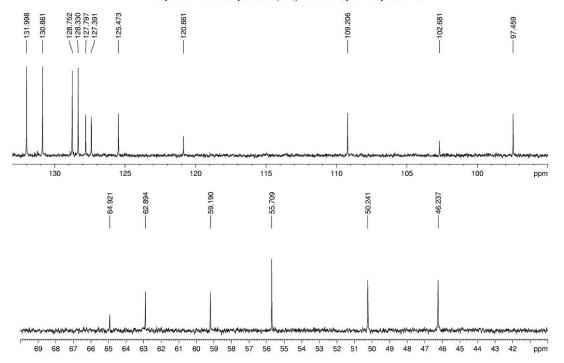

¹³C NMR (100 MHz, CS₂/CDCl₃) of compound 2i



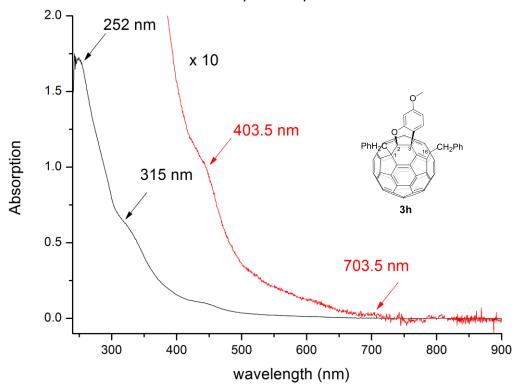

S30



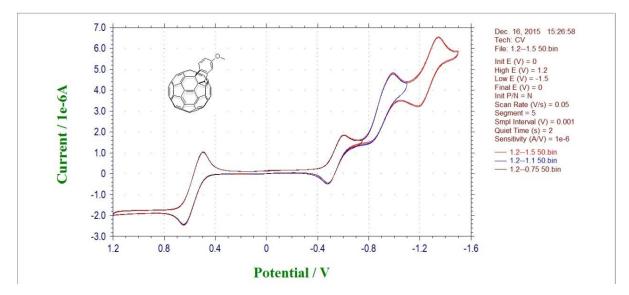
S31



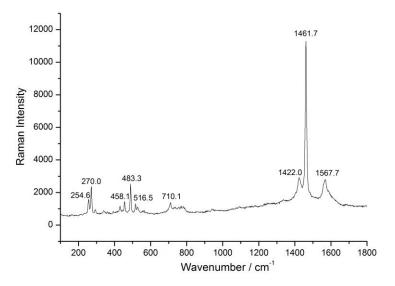
Expanded ¹³C NMR (100 MHz, CS₂/acetone-d₆) of compound 3h

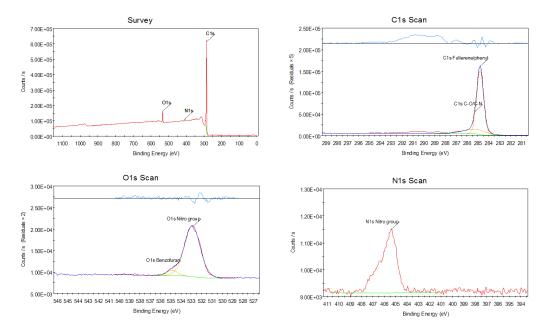


Expanded ¹³C NMR (100 MHz, CS_2 /acetone- d_6) of compound 3h



S33


UV-vis absorption of compound 3h


 $CV \ of \ 2h$

Raman spectrum of 2a

XPS spectrum and peak table of 2a

Peak Table						
Name	Start BE	Peak BE	End BE	Height CPS	FWHM eV	Area (P) CPS.eV
C1s Fullerene/phenyl	299.37	284.8	280.37	149649.58	0.73	117714.71
C1s C–O/C–N	299.37	285.32	280.37	11103.09	2.4	28832.24
N1s Nitro group	410.8	405.4	401.15	2292.96	1.62	4356.84
O1s Nitro group	540.4	532.89	528.55	11921.59	1.78	22943.62
O1s Benzofuran	540.4	534.85	528.55	1233.78	1.17	1566.9