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Enhancing low-energy absorption band and charge mobility of antiaromatic Ni' norcorroles

Instrumentation and Materials

'H NMR (500 MHz), *C NMR (126 MHz) and '°F NMR (470 MHz) spectra were recorded on a Bruker
AVANCE III HD spectrometer. Chemical shifts were reported as the delta scale in ppm relative to CDCl; (0
= 7.26 ppm) for '"H NMR and CDCl; (6 = 77.16 ppm) for *C NMR and hexafluorobenzene (§ = —164.90
ppm, external standard) for '’F NMR. UV/vis/NIR absorption spectra were recorded on a JASCO V670
spectrometer. Mass spectra were recorded on a Bruker microTOF using ESI-TOF method for acetonitrile
solutions. X-ray data were taken on a Bruker D8 QUEST X-ray diffractometer equipped with PHOTON 100
CMOS active pixel sensor detector and IuS microfocus source using Mo-Ka radiation (A = 0.71073 A) or a
Rigaku CCD diffractometer (Saturn 724 with MicroMax-007) with Varimax Mo optics using graphite
monochromated Mo-Ka radiation (A = 0.71075 A). Redox potentials were measured by cyclic voltammetry
method on an ALS electrochemical analyzer model 612C. Unless otherwise noted, materials obtained from

commercial suppliers were used without further purification.

General Procedures

a,a'-Dibromodipyrrins 4a—4f (Scheme S1a) were used for the synthesis of dissymmetric o,0’-dibromo-
dipyrrin Ni" complexes 3e-3i (Scheme S1b). Dipyrrins 4c—4f were synthesized according to modified
literature procedures.'
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Scheme S1. (a) Structures of a,a'-dibromodipyrrins 4a—4f and (b) synthesis of dissymmetric Ni'' complexes
3e-3i.
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meso-4-Dimethylaminophenyl-a,a'-dibromodipyrrin 4a

A two-necked flask containing meso-4-dimethylaminophenyl-dipyrromethane’ (1.04 g, 3.92 mmol) was
evacuated and then refilled with N,. To the flask, dry THF (55 mL) was added and the solution was cooled to
—78 °C. After N-bromosuccinimide (1.40 g, 7.87 mmol) was added to the solution in two portions at a 30
min interval, the mixture was stirred for 1 h. Then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 891
mg, 3.93 mmol) was added in three portions every 15 min. The resulting mixture was stirred at =78 °C for 10
min and then warmed to room temperature. After stirring for additional 1 h, the reaction mixture was filtered
through a short pad of alumina column (CH,Cl; as an eluent) and then evaporated. Purification by silica-gel
column chromatography (CH,Cl, as an eluent) afforded the title compound 4a in 50% (825 mg, 1.96 mmol)

as a red solid.

meso-4-Cyanonophenyl-o.,0'-dibromodipyrrin 4b

A two-necked flask containing meso-4-cyanophenyl-dipyrromethane® (1.24 g, 5.01 mmol) was
evacuated and then refilled with N,. To the flask, dry THF (70 mL) was added and the solution was cooled to
—78 °C. After N-bromosuccinimide (1.78 g, 10.0 mmol) was added to the solution in two portions at a 30
min interval, the mixture was stirred for 1 h. Then 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1.14 g,
5.02 mmol) was added in two portion at a 30 min interval. The resulting mixture was stirred at —78 °C for 10
min then warmed to room temperature. After stirring for additional 1 h, the reaction mixture was filtered
through a short pad of alumina column (CH,Cl; as an eluent) and then evaporated. Purification by silica-gel
column chromatography (CH,Cly/hexane = 1/1 as an eluent) afforded the title compound 4b in 80% (1.61 mg,

3.99 mmol) as an orange solid.

Dissymmetric «,0'-dibromodipyrrin Ni'! complex 3e

Ni" acetate tetrahydrate (175 mg, 0.703 mmol) dissolved in CH,Cl,/MeOH (10 mL/10 mL) was slowly
added to a CH,Cl/MeOH (40 mL/10 mL) solution of 4a (295 mg, 0.700 mmol) and 4e’ (294 mg, 0.700
mmol) and the mixture was stirred for 1 h at room temperature. After the solvent was removed, silica-gel
column chromatography (CH,Cl,/hexane = 2/3 as an eluent) was performed to collect the second eluting
band. The residue after evaporation was washed with MeOH and the title compound 3e was obtained in 35%

(222 mg, 0.247 mmol) as a green solid.

Dissymmetric «,o'-dibromodipyrrin Ni" complex 3f

Ni" acetate tetrahydrate (125 mg, 0.502 mmol) dissolved in CH,Cl,/MeOH (7 mL/7 mL) was slowly
added to a CH,Cl,/MeOH (30 mL/7 mL) solution of 4a (211 mg, 0.501 mmol) and 4f* (189 mg, 0.500 mmol)
and the mixture was stirred for 1 h at room temperature. After the solvent was removed, silica-gel column
chromatography (CH,Cl,/hexane = 1/1 as an eluent) was performed to collect the second eluting band. The
residue after evaporation was washed with MeOH, and the title compound 3f was obtained in 29% (124 mg,

0.145 mmol) as a green solid.
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Dissymmetric «,0'-dibromodipyrrin Ni'! complex 3g

Ni" acetate tetrahydrate (125 mg, 0.502 mmol) dissolved in CH,Cl,/MeOH (7 mL/7 mL) was slowly
added to a CH,Cl,/MeOH (30 mL/7 mL) solution of 4a (211 mg, 0.501 mmol) and 4b (202 mg, 0.501 mmol),
and the mixture was stirred for 1 h at room temperature. After the solvent was removed, silica-gel column
chromatography (CH,Cl,/hexane = 2/1 as an eluent) was performed to collect the second eluting band. The
residue after evaporation was washed with MeOH, and the title compound 3g was obtained in 40% (177 mg,

0.201 mmol) as a green solid.

Dissymmetric «,0'-dibromodipyrrin Ni"! complex 3h

Ni" acetate tetrahydrate (187 mg, 0.751 mmol) dissolved in CH,Cl,/MeOH (11 mL/11 mL) was slowly
added to a CH,Cl/MeOH (54 mL/16 mL) solution of 4a (316 mg, 0.750 mmol) and 4¢' (386 mg, 0.751
mmol), and the mixture was stirred for 1 h at room temperature. After the solvent was removed, silica-gel
column chromatography (CH,Cly/hexane = 1/1 as an eluent) was performed to collect the second eluting
band. The residue after evaporation was washed with MeOH, and the title compound 3h was obtained in
37% (274 mg, 0.276 mmol) as a green solid.

Dissymmetric «,o'-dibromodipyrrin Ni" complex 3i

Ni" acetate tetrahydrate (175 mg, 0.703 mmol) dissolved in CH,Cl,/MeOH (10 mL/10 mL) was slowly
added to a CH,Cl,/MeOH (40 mL/10 mL) solution of 4a (295 mg, 0.700 mmol) and 4d* (328 mg, 0.701
mmol), and the mixture was stirred for 1 h at room temperature. After the solvent was removed, silica-gel
column chromatography (CH,Cl,/hexane = 1/1 as an eluent) was performed to collect the second eluting
band. The residue after evaporation was washed with MeOH, and the title compound 3i was obtained in 38%

(254 mg, 0.269 mmol) as a green solid.

Dissymmetric norcorrole 2e

Dipyrrin complex 3e (89.8 mg, 0.100 mmol), bis(1,5-cyclooctadiene)nickel (68.8 mg, 0.250 mmol) and
2,2’-bipyridyl (39.0 mg, 0.250 mmol) were dissolved in dehydrated THF (8 mL) and the solution was stirred
for 2 h at room temperature inside a glove box. After taking out the flask of the glove box, the reaction
mixture was filtered through a short pad of alumina column (CH,Cl, as an eluent) immediately and then
evaporated. The residue was purified by silica-gel column chromatography (CH,Cl,/hexane = 1/1 as an
eluent) and the collected blue band was concentrated and washed with hexane. Recrystallization from

CH,Cl,/acetonitrile afforded the title compound 2e in 35% (20.5 mg, 35.4 pmol) as a dark purple solid.

Dissymmetric norcorrole 2f

Dipyrrin complex 3f (85.6 mg, 0.100 mmol), bis(1,5-cyclooctadiene)nickel (68.8 mg, 0.250 mmol) and
2,2’-bipyridyl (39.0 mg, 0.250 mmol) were dissolved in dehydrated THF (8 mL) and the solution was stirred
for 2 h at room temperature inside a glove box. After taking out the flask of the glove box, the reaction

mixture was filtered through a short pad of alumina column (CH,Cl, as an eluent) immediately and then
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evaporated. The residue was purified by silica-gel column chromatography (CH,Cl,/hexane = 1/1 as an
eluent) and the collected blue band was concentrated and washed with hexane. Recrystallization from

CH,Cl,/acetonitrile afforded the title compound 2f in 45% (24.4 mg, 45.5 pmol) as a dark purple solid.

Dissymmetric norcorrole 2g

Dipyrrin complex 3g (88.1 mg, 0.100 mmol), bis(1,5-cyclooctadiene)nickel (68.8 mg, 0.250 mmol) and
2,2’-bipyridyl (39.0 mg, 0.250 mmol) were dissolved in dehydrated THF (8 mL) and the solution was stirred
for 2 h at room temperature inside a glove box. After taking out the flask of the glove box, the reaction
mixture was filtered through a short pad of alumina column (CH,Cl, as an eluent) immediately and then
evaporated. The residue was purified by silica-gel column chromatography (CH,Cl,/hexane = 4/1 as an
eluent) and the collected blue band was concentrated and washed with hexane and a small amount of CH,Cl,.

The title compound 2g was obtained in 29% (16.1 mg, 28.7 umol) as a dark purple solid.

Dissymmetric norcorrole 2h

Dipyrrin complex 3h (99.2 mg, 0.100 mmol), bis(1,5-cyclooctadiene)nickel (68.8 mg, 0.250 mmol) and
2,2’-bipyridyl (39.0 mg, 0.250 mmol) were dissolved in dehydrated THF (8 mL) and the solution was stirred
for 2 h at room temperature inside a glove box. After taking out the flask of the glove box, the reaction
mixture was filtered through a short pad of alumina column (CH,Cl, as an eluent) immediately and then
evaporated. The residue was purified by silica-gel column chromatography (CH,Cl,/hexane = 1/2 as an
eluent) and the collected green band was concentrated and washed with hexane. Recrystallization from

CH,Cl,/acetonitrile afforded the title compound 3h in 25% (16.5 mg, 24.5 umol) as a dark purple solid.

Dissymmetric norcorrole 2i

Dipyrrin complex 3i (94.6 mg, 0.100 mmol), bis(1,5-cyclooctadiene)nickel (68.8 mg, 0.250 mmol) and
2,2’-bipyridyl (39.0 mg, 0.250 mmol) were dissolved in dehydrated THF (8 mL) and the solution was stirred
for 2 h at room temperature inside a glove box. After taking out the flask of the glove box, the reaction
mixture was filtered through a short pad of alumina column (CH,Cl, as an eluent) immediately and then
evaporated. The residue was purified by silica-gel column chromatography (CH,Cl,/hexane = 2/1 as an
eluent) and the collected green band was concentrated and washed with hexane. Recrystallization from

CH,Cl,/hexane afforded the title compound 2i in 15% (15.3 mg, 15.3 pmol) as a dark purple solid.

Compounds Data

meso-4-Dimethylaminophenyl-a,a'-dibromodipyrrin 4a

'H NMR (500 MHz, CDCl,): 6 12.54 (brs, 'H, NH), 7.37 (d, J = 8.9 Hz, 2H, aryl), 6.74 (d, J = 8.9 Hz, 2H,
aryl), 6.63 (d,J=4.2 Hz, 2H, 3-H), 6.35 (d, J = 4.2 Hz, 2H, 5-H), 3.05 (s, 6H, NMe,) ppm.

C NMR (126 MHz, CDCl,): 6 151.6, 141.3,140.3,133.1,130.3, 128.1,123.2,119.8, 111.2, 404 ppm.
HR-MS (ESI-MS): m/z = 421.9686, calcd for (C;;H,(Br,N;)" = 421.9686 [(M + H)"].
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meso-4-Cyanonophenyl-o.,0'-dibromodipyrrin 4b

'H NMR (500 MHz, CDCly): 6 12.37 (brs, 1H, NH), 7.76 (d, J = 8.5 Hz, 2H, aryl), 7.56 (d, J = 8.5 Hz, 2H,
aryl), 6.36 (d,J =4.3 Hz, 2H, 5-H), 6.35 (d, J = 4.3 Hz, 2H, 3-H) ppm.

C NMR (126 MHz, CDCl5): 6 140.3,139.9,136.5,131.9,131.4,130.8,129.7,121.3,118.3, 113.4 ppm.
HR-MS (ESI-MS): m/z = 403.9204, calcd for (C,(H,;(Br,N;)" = 403.9216 [(M + H)"].

Dissymmetric «,0'-dibromodipyrrin Ni'! complex 3e
HR-MS (ESI-MS): m/z = 897.8537, caled for (CssHsBr,NsNi)* = 867.8540 [(M + H)*].

Dissymmetric «,o'-dibromodipyrrin Ni" complex 3f
HR-MS (ESI-MS): m/z = 855.8057, calcd for (Cy,H,,Br,NsNi)* = 855.8070 [(M + H)"].

Dissymmetric «,0'-dibromodipyrrin Ni"! complex 3g
HR-MS (ESI-MS): m/z = 880.8031, caled for (Cy;H,3Br,N Ni)* = 880.8023 [(M + H)*].

Dissymmetric «,0'-dibromodipyrrin Ni"! complex 3h
HR-MS (ESI-MS): m/z = 991.7821, caled for (C,H,,Br,FNsNi)* = 991.7818 [(M + H)*].

Dissymmetric a,a'-dibromodipyrrin Ni" complex 3i

HR-MS (ESI-MS): m/z = 945.7604, calcd for (C1,H,,Br,FsNsNi)* = 945.7599 [(M + H)"].

Dissymmetric norcorrole 2e

'H NMR (500 MHz, CDCl,): 6 6.35 (s, 2H, Mes), 6.09 (d, J = 9.0 Hz, 2H, aryl), 5.95 (d, J = 9.0 Hz, 2H,
aryl), 2.79 (s, 6H), 2.78 (s, 6H), 2.76 (d, J = 4.2 Hz, 2H, $-H), 2.26-2.25 (m, 4H, -H), 2.17 (d, J = 4.2 Hz,
2H, 5-H), 1.89 (s, 3H, ortho-Me) ppm.

"C NMR (126 MHz, CDCly): 6 167.2, 164.7, 159.5, 156.4, 154.0, 146.0, 145.2, 136.9, 134.1, 130.5, 129 4,
128.1,126.9,1229,1194,114.3,113.7,109.1,40.0,20.8, 18.1 ppm.

UV/vis/NIR (CH,Cl,): Ay (6 [M 'em ™']) = 262 (34000), 426 (40000), 623 (34000) nm.

HR-MS (ESI-MS): m/z = 577.1790, calcd for (C3sH,0NsNi)" = 577.1771 [(M)™].

Single crystals were obtained by vapor diffusion of acetonitrile into a chlorobenzene solution of 2e.
CssHyNsNi, M,, = 578.34, monoclinic, P2,/c, a = 11.547(4) A, b = 7327(2) A, ¢ = 32.08109) A, B =
96.234(5)°, V' =2698.4(14) A>, Z=4, R = 0.0320 (I > 2.0 o(])), R, = 0.0917 (all data), GOF = 1.077.

Dissymmetric norcorrole 2f

'H NMR (500 MHz, CDCL,): 6 6.96 (t,J = 7.4 Hz, 1H, Ph), 6.77 (m, 2H, Ph), 6.18 (dd, J = 1.3, 8.4 Hz, 2H,
Ph), 6.13 (d, J = 9.1 Hz, 2H, aryl), 5.96 (d, J = 9.1 Hz, 2H, aryl), 2.87 (d, J = 4.2 Hz, 2H, 5-H), 2.79 (s, 6H,
NMe,), 2.68 (d,J =42 Hz,2H, 5-H),2.37 (d,J = 4.2 Hz, 2H, 3-H), 2.35 (d, J = 4.2 Hz, 2H, 5-H) ppm.

C NMR (126 MHz, CDCly): 6 167.3, 164.5,159.3, 156.9, 154.0, 145.8, 145.0, 131.9, 131.5, 130.9, 130.2,
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1279,123.2,121.8,119.4,114.3,113.6, 109.1, 40.0 ppm.

UV/Vis/NIR (CH,CL): Ay (6 [M'em™']) = 261 (32000), 426 (39000), 628 (36000) nm. HR-MS (ESI-MS):
m/z = 535.1295, calcd for (C;,H,;NsNi)* = 535.1301 [(M)*].

Single crystals were obtained by pouring hexane into a chloroform solution of 2f. C;,H,;NsNi, M,, = 536.26,
monoclinic, P2,/n, a = 14.9222(10) A, b = 10.1071(7) A, ¢ = 16.9856(11) A, B=111.902(2)°, V = 2376.9(3)
A’,Z=4,R=0.0301 (I > 2.0 a(])), R, = 0.0819 (all data), GOF = 1.092.

Dissymmetric norcorrole 2g

'H NMR (500 MHz, CDCl,): 6 7.05 (d, J = 8.6 Hz, 2H, aryl), 6.22 (d, J = 8.6 Hz, 2H, aryl), 6.04 (d, J = 9.1

Hz, 2H, aryl), 5.89 (d, J = 9.1 Hz, 2H, aryl), 2.76 (s, 6H, NMe,), 2.65 (d, J = 4.0 Hz, 2H, -H),2.32 (d, J =

42 Hz,2H, §-H),2.14 (d,J =4.0 Hz, 2H, 8-H), 2.10 (d, J = 4.2 Hz, 2H, 3-H) ppm.

UV/Vis/NIR (CH,Cl,): Ay (6 [M 'em ™']) = 259 (32000), 430 (35000), 645 (35000) nm.

HR-MS (ESI-MS): m/z = 560.1250, calcd for (C;3H,,NNi)* = 560.1254 [(M)*].

Single crystals were obtained by vapor diffusion of methanol into a chloroform solution of 2g. C,4sH;;NsNi,3,
M,, = 280.64, monoclinic, C2/c,a = 10.7913(16) A, b = 23.085(4) A, c = 9.7956(12) A, B=98.370(14)°, V =
2414.3(6) A, Z=8, R =0.0902 (I > 2.0 a(])), R, = 0.2609 (all data), GOF = 1.070.

Dissymmetric norcorrole 2h

'H NMR (500 MHz, CDCl,): 6 7.41 (s, 1H, aryl), 6.65 (s, 2H, aryl), 6.11 (d, J = 9.1 Hz, 2H, aryl), 591 (d, J
= 9.1 Hz, 2H, aryl), 2.89 (d, J = 4.2 Hz, 2H, $-H), 2.56 (d, J = 4.3 Hz, 2H, -H), 2.39-2.37 (m, 4H, 5-H)
ppm.

F NMR (470 MHz, CDCl,): 6 —66.6 ppm. UV/vis/NIR (CH,CL): 4., (¢ [M 'ecm™]) = 260 (29000), 430
(33000), 649 (32000) nm.

HR-MS (ESI-MS): m/z = 671.1056, calcd for (C;,H, FsNsNi)* = 671.1049 [(M)*].

Single crystals were obtained by vapor diffusion of hexane into a 1,2-dichloroethane solution of 2h.
CsH;, sFoN; sNi, 5, M, = 1008.40, monoclinic, P2,/c,a = 17.128(4) A, b = 11.539(2) A, c =21.492(4) A, B =
94.759(4)°, V=4233.1(14) A’, Z=4, R = 0.0695 (I > 2.0 o(])), R, = 0.1885 (all data), GOF = 1.083.

Dissymmetric norcorrole 2i

'H NMR (500 MHz, CDCly): 6 591 (d, J = 9.1 Hz, 2H, aryl), 5.83 (d, J = 9.1 Hz, 2H, aryl), 2.75 (s, 6H,
NMe,),2.28 (d,J =4.2,2H, f-H), 1.84 (d,J = 4.3 Hz, 2H, 5-H), 1.75 (d, J = 4.2 Hz, 2H, §-H), 1.71 (d, J =
4.3 Hz, 2H, -H) ppm.

"F NMR (470 MHz, CDCl,): 6 —140.1,-156.7,-163.0 ppm.

UV/Vis/NIR (CH,CL,): A, (€ [M'em ™']) = 261 (31000), 433 (39000), 645 (33000) nm.

HR-MS (ESI-MS): m/z = 625.0842, calcd for (C;,H,sFsNsNi)™ = 625.0830 [(M)*].

Single crystals were obtained by vapor diffusion of hexane into a dichloromethane solution of 2i.
C,H,sCLFN;Ni, M,, = 697.12, monoclinic, P2,/c,a = 16.003(2) A, b =10.6329(14) A, c = 17.070Q2) A, B =
100.125(4)°, V' =2859.4(7) A>, Z=4, R = 0.0694 (I > 2.0 o(I)), Ry, = 0.1479 (all data), GOF = 1.078.
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Figure S1. 'H NMR (500 MHz) spectrum of 4a in CDCl;.
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Figure S2. C NMR (126 MHz) spectrum of 4a in CDCl;.
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Figure S4. C NMR (126 MHz) spectrum of 4b in CDCls.
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Figure S5. 'H NMR (500 MHz) spectrum of 2e in CDCl;.
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Absorption Spectra in Various Solvents
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Figure S15. UV-vis-NIR absorption spectra of 2e in various solvents.
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Figure S16. Spectral change of 2h (left) and 2e (right) in CH,Cl, during electrochemical oxidation upon
applying 0 V to 0.6 V (blue line to red line). analyte: 0.3 mM, electrolyte: 0.1 M of tetrabutylammonium
tetrafluoroborate, working electrode: Pt, counter electrode: Pt, reference electrode: Ag'/Ag. See also Figure
S17.
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Cyclic Voltammograms

Cyclic voltammograms of 2e—2i were recorded on ALS electrochemical analyzer 612C. Measurements
were performed in freshly distilled dichloromethane with 0.1 M tetrabutylammonium hexafluorophosphate
as electrolyte. A three-electrode system was used and consisted of a grassy carbon working electrode, a

platinum wire and Ag/AgClO, as the reference electrode. All potentials are referenced to the potential of

ferrocene/ferrocenium cation couple.
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Figure S17. Cyclic voltammograms (0.1 Vss™') of 1 and 2e-2i in CH,Cl, (0. M TBAPF,). Working
electrode: grass carbon, counter electrode: Pt, reference electrode: Ag/AgClO4. The data for 1 was taken

. 7
from our previous paper.
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Flash-Photolysis Time-Resolved Microwave Conductivity Measurements®

Transient photoconductivity was measured by flash-photolysis time-resolved microwave conductivity
(FP-TRMC) method. A resonant cavity was used to obtain a high degree of sensitivity in the measurement
of conductivity. The resonant frequency and the microwave power were set at ~9.1 GHz and 3 mW,
respectively, so that the electric field of the microwave was sufficiently small not to disturb the motion of
charge carriers. The value of conductivity is converted to the product of the quantum yield ¢ and the sum of
charge carrier mobilities Zu, by ¢p2Zu = Ao (eIOthht)‘l, where e, I, Fz,, and Ao are the unit charge of a
single electron, incident photon density of excitation laser (photons/m?), a correction (or filling) factor (/m),
and a transient photoconductivity, respectively. The sample was set at the highest electric field in a
resonant cavity. FP-TRMC experiments were performed at room temperature. The charge carriers were
injected into the samples via photo-ionization by direct excitation with a third harmonic generation (4 = 355
nm) light pulses from a Nd: YAG laser (spectra Physics, INDI-HG). The excitation density was tuned at 9.1

x 10" cm™ photons per pulse.
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Figure S18. Time-resolved microwave conductivities 2e—2i. Crystalline samples were used for measurement

of 2e, 2f, 2h and 2i, and a powder sample was used for measurement of 2g.
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Theoretical Calculations

All calculations were carried out using the Gaussian 09 program.’ Initial geometries of 2e and 2i were
obtained from their X-ray structures. Full optimizations were performed with Becke’s three-parameter hybrid
exchange functional and the Lee—Yang—Parr correlation functional (B3LYP)'’and a basis set consisting of
SDD'' for Ni and 6-31G(d) for the rest (denoted as 631SDD). The calculated absorption wavelengths and
oscillator strengths were obtained with the TD-DFT method at the B3LYP/631SDD level.
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Figure S19. MO diagrams for norcorroles 1, 2e and 2i calculated at the BALYP/631SDD level.
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Figure S20. Theoretical and experimental absorption spectra of norcorroles 2e and 2i calculated at the

B3LYP/631SDD level.

Table S1. Calculated exited wavelengths (A) and oscillator strengths (f) of selected transitions of 2e and 2i.

Compound A (nm) f Composition (%) Assignment

2e 1424 0.0000 HOMO—=>LUMO (100%) forbidden transition
542 0.5200 HOMO-3—>LUMO (94%) CT

2i 1573 0.0003 HOMO—=>LUMO (100%) forbidden transition
570 0.5113 HOMO-3—>LUMO (92%) CT
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Structural Analysis of X-ray Structures

Table S2. Dihedral angles between norcorrole cores and Ar' or Ar” in the X-ray structures of 2e-2i.

Norcorrole—Ar' Norcorrole—Ar’

(4-dimethylaminophenyl)

2e 38.3 78.9
2f 345 433
2g 49.8 47.8
2h (centre) 38.5 38.5
2h (edges) 47.0 49.0
2i 40.5 69.6
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