Supplementary

Robust Synthesis of Free-Standing and Thickness Controllable Conjugated Microporous Polymers Nanofilms

Zhen Chen, Min Chen, Yanlei Yu and Limin Wu*

1. Materials

All materials were used as received without further purification. Copper(I) iodide (≥99.5%), triphenylphosphine (≥99.0%), 1,4-diiodobenzene (≥98.0%), tris(4-iodophenyl)amine (≥98.0%), triethylamine (≥99.5%), 1,3,5-tribromobenzene (≥98.0%) and trimethylsilylacetylene (≥98.0%) were purchased from Aladdin Chemical Reagent Co., Ltd. (China). 4,4’-Diiodobiphenyl (≥98.0%), 1,4-diaminobenzene (≥99.0%) and tris(4-iodophenyl)amine (≥98.0%) were purchased from J&K Chemical CO., Ltd. (China). Xylene (AR), acetonitrile (AR), ethanol (≥99.7%) and potassium carbonate (≥99.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. 1,3,5-Triformylbenzene (97.0%) was purchased from Sigma-Aldrich Co., LLC.. Tetraphenylethylene (98.0%) was purchased from Alfa Aesar Chemical Co., Ltd.. bis(triphenylphosphine)palladium(II) dichloride (Pd, 15.2%) was purchased from Adamas Reagent Co., Ltd.(China).

2. Synthesis methods

Synthesis of 1,3,5-[(trimethylsilyl)ethynyl]benzene:

1,3,5-Tribromobenzene (4.84 g, 15.35 mmol), Pd(PPh$_3$)$_2$Cl$_2$ (0.2 g, 0.285 mmol) and CuI (0.025 g, 0.13 mmol) were dissolved in 150 mL degassed toluene and 50 mL degassed Et$_3$N, the above mixture was added into a 250 mL three-necked flask, then
(trimethylsilyl)acetylene (5.43 g, 55.3 mmol) was dropwise added into the mixture under N₂. The reaction mixture was stirred at 80°C for 24 h under N₂. After cooled to room temperature, the solid was filtered and washed with diethyl ether. The solvent was removed in vacuum and the residue was purified by flash chromatography on silica gel (hexanes) to afford 1,3,5-[(trimethylsilyl)ethynyl]benzene (5.3 g, 93.4%).

\(^1\)H NMR (CDCl₃, 400 MHz): \(\delta = 7.49\) (s, 3H), 0.24 (s, 27H) ppm. IR (KBr): \(\nu = 2959, 2899, 2163, 1579, 1411, 1251, 844, 760, 700, 679\) cm\(^{-1}\).

Synthesis of 1,3,5-triethynylbenzene (TEB):

1,3,5-[(Trimethylsilyl)ethynyl]benzene (6.25 g, 30 mmol) was dissolved in 100 mL methanol, potassium carbonate (12.45 g, 90 mmol) was added to the solution. The reaction mixture was stirred at room temperature for 6 h before poured into water. The aqueous layer was extracted with dichloromethane then the solvent was removed in vacuum and the residue was purified by flash chromatography on silica gel (petroleum ether) to afford TEB (4.0 g, 96%).

\(^1\)H NMR (CDCl₃, 400 MHz): \(\delta = 7.57\) (s, 3H), 3.11 (s, 3H) ppm. \(^{13}\)C NMR (CDCl₃, 400 MHz,): \(\delta = 135.64, 122.92, 81.60, 78.68\) ppm. IR (KBr): \(\nu = 3278, 3061, 2109, 1787, 1578, 1412, 1259, 930, 883, 670\) cm\(^{-1}\).

Synthesis of tetra(p-iodophenyl)ethylene (TIPE):

Tetraphenylethylene (0.22 g, 0.66 mmol), I₂ (0.46 g, 1.60 mmol) and PhI(OAc)₂ (0.62 g, 1.60 mmol) were dissolved in dry CHCl₃ (15 mL), and stirred at room temperature in the dark for 72 h. The solid was filtered and washed with petroleum ether. The residue was recrystallized from dichloromethane to afford TIPE (0.43 g, 78%).

\(^1\)H NMR (CDCl₃, 400 MHz): \(\delta = 7.47\) (d, J = 8.4 Hz, 8 H), 6.71 (d, J = 8.4 Hz, 8 H) ppm. \(^{13}\)C NMR (CDCl₃, 400 MHz): \(\delta = 142.0, 139.8, 137.2, 133.0, 93.0\) ppm. IR (KBr): \(\nu = 1575, 1479, 1385, 1099, 1054, 1003, 863, 823, 783, 723, 621\) cm\(^{-1}\).
Synthesis of CMP1-4 and Imine-CMP powders

CMP1-4 powders were synthesized according to the previous literature1. Imine-CMP powder was synthesized according to a modified procedure as follows: 1,3,5-triformylbenzene (24 mg, 0.15 mmol) and 1,4-diaminobenzene (24 mg, 0.225 mmol) were dissolved in the mixture of xylene (10 mL) and acetic acid (1.0 mL), then degassed by three evacuate-refill cycles and stirred at 90 °C for 24 h under a nitrogen atmosphere. The precipitate was collected by filtration and washed three times with water, chloroform, and acetone and then further washed by Soxhlet extractions for 24 h with dichloromethane, methanol and THF, respectively. The product was dried under vacuum at 90 °C for 24 h. (Yield, 80 %).

Synthesis of CMP nanofilms by oil-water interfacial polymerization from Sonogashira-Hagihara reaction: Typically, an aqueous phase consisting of Et\textsubscript{3}N (20 mL) and CuI (1.5 mmol\%) in 40 mL water was first charged into a 250 mL three-necked round-bottomed flask and degassed by three evacuate-refill cycles under N\textsubscript{2}. Then an organic phase consisting of 1,3,5-triethynylbenzene (TEB) (0.35 mM), with 1,4-diiodobenzene (DIB) (0.5 mM), or 4,4'-diiodobiphenyl (0.5 mM), or tris(4-iodophenyl)amine(TIPA) (0.35 mM), or tetra(p-iodophenyl)ethylene (TIPE) (0.26 mM), and Pd(PPh\textsubscript{3})\textsubscript{2}Cl\textsubscript{2} (1.5 mmol\%) in 40 mL xylene was slowly added into the above three-necked round-bottomed flask, and degassed by three evacuate-refill cycles under N\textsubscript{2}, and heated to 70°C. These mixtures were held still at that temperature without any stirring for 24 h under a nitrogen atmosphere. The films formed at the oil-water interface were transferred to an ethyl acetate reservoir to rinse the unreacted monomers from the surfaces and denoted as CMP-1-nanofilm, CMP-2-nanofilm, CMP-3-nanofilm and CMP-4-nanofilm, respectively.

Synthesis of Imine-CMP-nanofilm by oil-water interfacial polymerization from
Schiff-base reaction: An aqueous phase consisting of acetic acid (1.0 mL) in 40 mL water was charged into a 250 mL three-necked round-bottomed flask and degassed by three evacuate-refill cycles under N$_2$. Then an organic phase consisting of 1,3,5-triformylbenzene (TFB) (0.66 mM) and 1,4-diaminobenzene (DAB) (0.99 mM) in 40 mL xylene was added into the above three-necked round-bottomed flask slowly. This mixture was degassed by three evacuate-refill cycles under N$_2$, and heated to 90 °C and held still at that temperature without any stirring for 72 h under a nitrogen atmosphere. The film formed at the oil-water interface was transferred to an ethyl acetate reservoir to rinse unreacted monomers from the surface.

3. Characterization

FT-IR spectra were recorded on a Nicolet Nexus 470 spectrometer using spectroscopic grade KBr. 1H and 13C NMR measurements were recorded with a Bruker Advance 400 spectrometer, and chemical shifts (δ in ppm) were determined with a residual proton of the solvent as standard. Solid-State 13C CP/MAS NMR spectra were recorded on Bruker AVANCE III 400 WB spectrometer at ambient temperature with a magic angle spinning rate of 12.0 kHz. Powder X-ray diffraction patterns were recorded on D8 ADVANCE X-Ray Diffractometer. UV–Vis absorption spectra were recorded at room temperature on the Hitachi U-4100 UV-Vis spectrophotometer. Energy dispersive X-ray absorption spectroscopy (EDS) analysis and Field-emission scanning electron microscopy (FE-SEM) measurements were conducted on Carl Zeiss Ultra 55 equipped with an Oxford energy dispersive X-ray system. High-resolution transmission electron microscopy (HR-TEM) measurements were performed on FEI Tecnai G2 F20 S-Twin. Atomic force microscopy (AFM) measurements were performed on Bruker MultiMode 8 microscope under a tapping mode and ambient conditions. Kr sorption isotherm measurements were conducted on Quantachrome Autosorb-iQ3-XR, the mass of CMP-
1-4- and Imine-CMP-nanofilms used in this measurement were 11.4 mg, 6.3 mg, 11.4 mg, 7.5 mg and 2.8 mg, respectively. N$_2$ sorption isotherm measurements were conducted on Quantachrome Autosorb-iQ, the mass of CMP-1-4 and Imine-CMP bulk powders used in this measurement were 135 mg, 106 mg, 102 mg, 91 mg and 71 mg, respectively. UV–Vis transmission spectra were recorded on the Hitachi U-4100 UV-Vis spectrophotometer (nanofilms were coated on glass plate, thicknesses are around 130 nm). Water contact angle (WCA) of nanofilm was characterized by OCA15 contact angle analyzer (Dataphysics, Germany) averaged over 3 fresh spots using 3 µL deionized water. Fluorescence experiments were carried out on PTI QM40 Fluorescence Lifetime Spectrometers, the CMP nanofilm was first adhered to one side of quartz plate (0.9*4.0 cm) and then put into a quartz cuvette (1.0*1.0*4.0 cm) filled with 3 mL acetonitrile, the corrected fluorescence spectra were recorded after the addition of small aliquots of nitroaromatic solution (30 mM) into the quartz cuvette2.
Figure S1. (a-e) Syntheses of CMP-1- to CMP-4 nanofilms and Imine-CMP-nanofilm. Through 1,3,5-triethynylbenzene with (a) 1,4-diiodobenzene, (b) 4,4’-diiodobiphenyl, (c) tris(4-iodophenyl)amine and (d) tetra(p-iodophenyl)ethylene; or (e) 1,3,5-triformylbenzene with 1,4-diaminobenzene.

Figure S2. Solid-state 13C CP/MAS NMR spectra of CMP-1 and CMP-2 powders (signals with asterisks are rotational sidebands).
Figure S3. Solid-state 13C CP/MAS NMR spectra of CMP-3 and CMP-4 powders (signals with asterisks are rotational sidebands).

Figure S4. Solid-state 13C CP/MAS NMR spectra of Imine-CMP powders (signals with asterisks are rotational sidebands).
Figure S5. FT-IR spectra of TEB, CMP-1 powder and CMP-1-nanofilm.

Figure S6. FT-IR spectra of TEB, CMP-2 powder and CMP-2-nanofilm.
Figure S7. FT-IR spectra of TEB, CMP-3 powder and CMP-3-nanofilm.

Figure S8. FT-IR spectra of TEB, CMP-4 powder and CMP-4-nanofilm.
Figure S9. FT-IR spectra of TFB, Imine-CMP powder and Imine-CMP-nanofilm.
Figure S10. EDS sum spectra of CMP nanofilms, inserts show quantification in wt. %. A small amount of iodine element in CMP-1-4 nanofilms and a considerable amount of oxygen element in Imine-CMP-nanofilm can be attributed to the residual terminal iodine and aldehyde in the structure of monomers. The high silicon content can be ascribed to the silicon wafer (in EDS measurements, all of nanofilms were coated on the silicon wafer).
Figure S11. EDS element maps of CMP-1-nanofilm. There is no any large, aggregated Pd and Cu species in the nanofilm.

Figure S12. a) Kr sorption isotherms for Imine-CMP-nanofilm measured at 77 K (solid rhombuses: adsorption, open rhombuses: desorption). b) Kr sorption isotherm for the Imine-CMP-nanofilm measured at 87 K (solid rhombuses: adsorption).
Figure S13. a) N$_2$ sorption isotherms for CMP-1 powder measured at 77 K (solid circles: adsorption, open circles: desorption). b) Pore size distribution profile of CMP-1 powder.

Figure S14. a) N$_2$ sorption isotherms for CMP-2 powder measured at 77 K (solid circles: adsorption, open circles: desorption). b) Pore size distribution profile of CMP-2 powder.
Figure S15. a) N$_2$ sorption isotherms for CMP-3 powder measured at 77 K (solid circles: adsorption, open circles: desorption). b) Pore size distribution profile of CMP-3 powder.

Figure S16. a) N$_2$ sorption isotherms for CMP-4 powder measured at 77 K (solid circles: adsorption, open circles: desorption). b) Pore size distribution profile of CMP-4 powder.
Figure S17. a) N$_2$ sorption isotherms for Imine-CMP powder measured at 77 K (solid circles: adsorption, open circles: desorption). b) Pore size distribution profile of Imine-CMP powder.

Figure S18. a-b) Pore size distribution profiles of CMP nanofilms.
Figure S19. SEM images of CMP-1-4 and Imine-CMP powders. a) CMP-1 powders. b) CMP-2 powders. c) CMP-3 powders. d) CMP-4 powders. e) Imine-CMP powders.
Figure S20. Surface SEM image of Imine-CMP nanofilm, insert: cross section of nanofilm.

Figure S21. FE-SEM image of the CMP-1-nanofilm (thickness is around 30 nm). The inset is optical image of the nanofilm immersed in the ethanol phase. The holes and cracks can be seen in the thinner nanofilms, probably because that the monomer concentrations is too low at the phase boundary to form homogeneous nanofilms.
Figure S22. Photo images of the free-standing CMP-1-nanofilm.

Figure S23. Photo images of CMP-1-nanofilm. a) On silicon wafer plate. b) On quartz plate. c) On aluminum flake. d) The bending status of c).
Figure S24. Water contact angle (WCA) of CMP nanofilms. a) CMP-1-nanofilm. b) CMP-2-nanofilm. c) CMP-3-nanofilm. d) CMP-4-nanofilm. e) Imine-CMP-nanofilm.

Figure S25. UV–Vis transmission spectra of CMP nanofilms and bare glass plate.
Figure S26. a) Photo images of nanofilms on quartz plates. b) The corresponding photo images of a) under hand-held UV lamp at 254 nm.
Figure S27. a-c) Corrected emission spectra illustrate the fluorescence quenching of CMP-4-nanofilm (thickness is around 180nm) with increasing nitroaromatics concentrations, a) DNT, b) 1-Cl-3-NB, c) p-NT. d) Fluorescence quenching of CMP-4-nanofilm (thickness is around 100nm) with increasing PA concentrations.
Figure S28. (a-d) The Stern-Volmer plots obtained from titration of the CMP-4-naofilms (thickness is around 180 nm) with nitroaromatics: a) PA, $K_{sv} = 1.90 \times 10^3$ M$^{-1}$; b) p-NT, $K_{sv} = 0.53 \times 10^3$ M$^{-1}$; c) DNT, $K_{sv} = 0.34 \times 10^3$ M$^{-1}$; d) 1-Cl-3-NB, $K_{sv} = 0.24 \times 10^3$ M$^{-1}$. e) The Stern-Volmer plots obtained from titration of the CMP-4-naofilms (thickness is around 100 nm) with PA, $K_{sv} = 2.38 \times 10^3$ M$^{-1}$.
Table S1. BET surface areas and pore diameters of CMP nanofilms and CMP bulk powders.

<table>
<thead>
<tr>
<th>Polymer network</th>
<th>Nanofilm (S_{\text{BET}}) (m(^2)/g)[^{[a]}]</th>
<th>Pore diameter (nm)[^{[b]}]</th>
<th>Bulk powder (S_{\text{BET}}) (m(^2)/g)[^{[a]}]</th>
<th>Pore diameter (nm)[^{[b]}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP-1</td>
<td>750</td>
<td>0.52</td>
<td>687</td>
<td>0.72</td>
</tr>
<tr>
<td>CMP-2</td>
<td>759</td>
<td>0.58</td>
<td>553</td>
<td>0.60</td>
</tr>
<tr>
<td>CMP-3</td>
<td>1038</td>
<td>1.80</td>
<td>685</td>
<td>0.51</td>
</tr>
<tr>
<td>CMP-4</td>
<td>680</td>
<td>1.40</td>
<td>236</td>
<td>0.61</td>
</tr>
<tr>
<td>Imine-CMP</td>
<td>22</td>
<td>1.30</td>
<td>17</td>
<td>3.30</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Surface areas of CMP nanofilms and CMP bulk powders calculated from Kr adsorption isotherm (77K) and N\(_2\) adsorption isotherm (77K) using the Brunauer–Emmett–Teller method, respectively.

\[^{[b]}\] Pore diameter corresponding to the maximum of the pore size distribution (DFT model).
<table>
<thead>
<tr>
<th>Materials</th>
<th>Synthesis methods</th>
<th>Solutions</th>
<th>Explosives</th>
<th>Quenching constant (M⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP-4-nanofilm (around 180 nm/100 nm) [This work]</td>
<td>Interfacial polymerization</td>
<td>Acetonitrile</td>
<td>PA</td>
<td>1.9×10³/2.38×10³</td>
</tr>
<tr>
<td>TPE-based conjugated polymer film[S2]</td>
<td>Spin-coating</td>
<td>Water</td>
<td>PA</td>
<td>1.8×10³</td>
</tr>
<tr>
<td>PolyTPECz porous film[S3]</td>
<td>Electropolymerization</td>
<td>Acetonitrile</td>
<td>PA</td>
<td>6.4×10⁴</td>
</tr>
<tr>
<td>Sn–porphyrin porous film[S4]</td>
<td>Synthesized on TLC plates</td>
<td>Water</td>
<td>PA</td>
<td>1.0×10⁴</td>
</tr>
<tr>
<td>Tetraphenyl-5,5-dioctylicyclopentadiene(TPDC) based porous polymer nanoparticle[S5]</td>
<td></td>
<td>THF</td>
<td>PA</td>
<td>2.1×10³</td>
</tr>
<tr>
<td>3D porous MOF[S6]</td>
<td></td>
<td>Acetonitrile</td>
<td>PA</td>
<td>3.5×10⁴</td>
</tr>
<tr>
<td>Porous hyperbranched conjugated polymer nanoparticle[S7]</td>
<td></td>
<td>THF</td>
<td>TNT</td>
<td>1.38×10³</td>
</tr>
<tr>
<td>2D porous covalent organic nanosheets[S8]</td>
<td>Solvothermal protocol</td>
<td>Isopropyl alcohol</td>
<td>PA</td>
<td>2.6×10⁴</td>
</tr>
<tr>
<td>Dual-functional MOF[S9]</td>
<td></td>
<td>Ethanol</td>
<td>PA</td>
<td>7.34×10⁴</td>
</tr>
<tr>
<td>Two luminescent Cd(II) MOF[S10]</td>
<td></td>
<td>DMF</td>
<td>PA</td>
<td>1.41×10⁴</td>
</tr>
</tbody>
</table>
Supporting References

