Electronic Supplementary Information

Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitor

Chaohai Wang, Chao Liu, Jiansheng Li*, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China.

Materials and Methods:

Materials: Zn (NO$_3$)$_2$·6H$_2$O, 2-methylimidazole (2-MeIM), Polyacrylonitrile (PAN, MW=150000) were obtained from Sigma-Aldrich. N,N-dimethylformamide (DMF, ≥99.9%), anhydrous ethanol were all purchased from Nanjing Chemical Reagent Co., Ltd. and used without further purification. Deionized (DI) water was used in all experiments.

Synthesis of ZIF-8 cubic nanocrystals. ZIF-8 cubic nanocrystals were synthesized according to the previous reported method with modifications.41 10.8 g 2-MeIM was dissolved in 100 mL of DI water; 5.0 mL of 0.01 M CTAB was added into the 2-MeIM solution with stirring for 5 min. Then Zn (NO$_3$)$_2$·6H$_2$O (0.7g) in 100 mL of water was added into the above solution with stirring for another 5 min. The mixture was let at room temperature for 3 h. The white product was collected by centrifugation (8000 r/min, 10 min) and washed thoroughly with water and anhydrous ethanol for three times. Finally, the powder was dried under vacuum for 4 h at 80 °C.

Synthesis of NCPF. In a typical synthesis, 0.6 g ZIF-8 powder was added into 5 mL DMF with sonication until it was well dispersed. Then, 0.8 g PAN was added into the solution with stirring at 65 °C for 4h to obtain the electrospinning precursor. The electrospinning process was carried out by applying a high positive voltage (10.4 kV) with a collecting distance 15 cm. The injection speed was fixed at 0.08 mm min$^{-1}$. The obtained fibers were peeled off from the collector directly to the following heat-treatment. It was first stabilized at 240 °C for 1 h and then carbonized and at 800
°C for 3 h in N₂ atmosphere with a ramp rate of 5 °C min⁻¹.

Synthesis of PAN-C and ZIF-8-NPC. ZIF-8-NPC was prepared from directly carbonized ZIF-8 powder. PAN fibers were prepared without adding ZIF-8 in the precursor solution, following with same and pyrolysis as above.

Characterization: The morphology of the samples was investigated by STEM (Tecnai G2 F30 S-TWIN), TEM (FEI T20), SEM (FEI 250). The XPS (X-ray photoelectron spectroscopy) spectra were obtained by using a PHI Quantera II ESCA System with Al Kα radiation at 1486.8 V. N₂ adsorption and desorption isotherms were measured using Micromeritics ASAP-2020 at liquid nitrogen temperature (77 K). The composition was examined by XRD instrument (BRUKER D8, Cu Kα) at 40 kV and 40 mA (λ=1.5418 Å). The conductivities of ZIF-8-derived NPC, PAN-C, and NPCF were investigated by four-probe method with the help of a SDT-4 digital electrometer (Guangzhou, China.).

Electrochemical measurements: All the electrochemical measurements were carried out using a Chenhua electrochemical workstation (CHI660E, Shanghai, China). The three electrode method was applied with 1 M H₂SO₄ as the electrolyte solution, platinum wire as the counter electrode, Ag/AgCl as the reference electrode, glassy carbon as the working electrode. The working electrodes were prepared as follows: 5 mg samples was mixed with 0.5 mL DI water and isopropanol. Then 10 μL suspension solution was dropped onto the glass carbon electrode with a diameter of 3 mm. After drying, a Nafion solution (0.5 wt % in isopropanol) was coated on the sample as the binder. The CV (cyclic voltammetry) and GCD (galvanostatic charge-discharge) tests were measured at various scan rates and current densities. The EIS (electrochemistry impedance) measurements were carried out in the frequency range from 0.05 Hz to 100 kHz with 5 mV ac amplitude.

Fig. S1 (a) ZIF-8 NPs/PAN/DMF solution (right) and ZIF-8 NPs DMF solution (left); (b) A digital pictures of ZIF-8/PAN and NPCF films.

Fig. S2 (a) XRD patterns of ZIF-8, ZIF-8/PAN; (b) IR spectra of ZIF-8, PAN, ZIF-8/PAN.

Fig. S3 SEM images of PAN and PAN-C
Fig. S4 N₂ sorption isotherms of (a) ZIF-8-NPC, (b) NPCF.

Table S1 Textural parameters and proportion of carbon, nitrogen, oxide calculated by XPS of the samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>BET surface Area (m² g⁻¹)</th>
<th>Pore volume (cm³ g⁻¹)</th>
<th>C content (%)</th>
<th>N content (%)</th>
<th>O content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZIF-8-NPC</td>
<td>989.0</td>
<td>0.39</td>
<td>76.6</td>
<td>18.6</td>
<td>4.8</td>
</tr>
<tr>
<td>NPCF</td>
<td>314.7</td>
<td>0.33</td>
<td>86.7</td>
<td>8.3</td>
<td>5.0</td>
</tr>
<tr>
<td>PAN-C</td>
<td>183.1</td>
<td>0.25</td>
<td>85.9</td>
<td>10.8</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Fig. S5 TG curves of ZIF-8, PAN/ZIF-8, PAN.
Fig. S6 (a) XPS survey spectrum; (b) High resolution N 1s of NPCF.

Fig. S7 CV curves and galvanostatic charge-discharge curves of (a and b) PAN-C, (c and d) ZIF-8-NPC
Figure S8 Equivalent circuit of ZIF-NPC, PAN-C and NPCF.

R1 is the equivalent internal resistance, including resistance of the electrolyte and the internal resistance of the electrode. C2 is double-layer capacitance, Ws is the finite-length Warburg diffusion element, R2 is charge transfer resistance, and C1 is the faradic capacitance.S2

Fig. S9 TEM of (a) NPCF-0.2 and (b) NPCF-0.4

Fig. S10 galvanostatic charge-discharge curves of NPCF-0.2, NPCF-0.4, NPCF-0.6 at 1 A g⁻¹