Palladium-Catalyzed Domino Heck / Intermolecular Cross-Coupling: Efficient Synthesis of 4-Alkylated Isoquinoline Derivatives

Tuanli Yao*, Tao Liu and Changhui Zhang

College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, 6 Xuefu Road, Weiyang District, Xi’an, Shaanxi, 710021, China

Table of Contents

General Information 1

Experimental Procedures and Data 1

References 15

Single Crystallographic Data of 3a 16

1H and 13C NMR Spectra 18
General Information:

1H and 13C NMR spectra were recorded on a Bruker AM 400 spectrometer (operating at 400 and 101 MHz respectively) in CDCl$_3$ (residual internal standard CHCl$_3$ = δ 7.26), DMSO-d6 (residual internal standard CD$_3$SOCD$_2$H = δ 2.50). HPLC/MS analysis was carried out with gradient elution (5% CH$_3$CN to 100% CH$_3$CN) on an Agilent 1200 RRLC with a photodiode array UV detector and an Agilent 6224 TOF mass spectrometer (also used to produce high resolution mass spectra). Melting points were determined on a Stanford Research Systems OptiMelt apparatus. The infrared (IR) spectra were acquired as thin films using a universal ATR sampling accessory on a Bruker Vertex 80 FT-IR spectrometer and the absorption frequencies are reported in cm$^{-1}$. Flash chromatography separations were carried out using silica gel columns. The new compounds were characterized by 1H NMR, 13C NMR, HRMS and IR. The structure of known compounds were further confirmed by comparing their 1H NMR and 13C NMR data with those of literature. All reagents and solvents were used as received from commercial sources without further purification. Compounds 1a,1 1o,2 1p,1 1q,1 1r,3 1s,1 1t,1 1u,4 1v,1 1w,5 1x,4 2a,6 2b,7 2c,6 2d,7 2e,8 2f,8 2g,6 2h,6 2i,8 2j,8 2k,7 2l,8 2m,8 2n6 were prepared by following literature procedure.

Experimental Procedures

General Procedure for Preparation of Imine 1.8

A mixture of the aldehyde (0.6 mmol) and t-BuNH$_2$ (20 equiv) was stirred at room temperature for 20 h. The progress of the reaction was monitored by NMR. The completed reaction was diluted with ethyl acetate, washed with H$_2$O, dried (MgSO$_4$) and filtered. Removal of the solvent under reduced pressure afforded desired imine, which was used without further purification.
Ethyl (E)-4-((2-((tert-butylimino)methyl)phenyl)ethynyl)benzoate (1e).
This product was obtained as yellow oil (0.1778 g, 89%). \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 8.84 (s, 1H), 8.05 – 7.96 (m, 3H), 7.75 – 7.68 (m, 2H), 7.68 – 7.63 (m, 1H), 7.55 – 7.47 (m, 2H), 4.33 (q, \(J = 7.1\) Hz, 2H), 1.33 (t, \(J = 7.1\) Hz, 3H), 1.29 (s, 9H); \(^{13}\)C NMR (101 MHz, DMSO) \(\delta\) 165.1, 152.7, 137.2, 132.5, 131.6, 130.4, 129.9, 129.5, 126.6, 125.8, 122.3, 93.9, 89.2, 61.0, 57.7, 29.5, 14.1 (one carbon missing due to overlap); IR (neat) 1647, 1524, 1369, 1319 cm\(^{-1}\); HRMS calcd for C\(_{22}\)H\(_{24}\)NO\(_2\) [M+H\(^+\)]: 334.1802, found 334.1809.

(E)-N-tert-Butyl-1-(2-((trimethylsilyl)ethynyl)phenyl)methanimine (1i). This product was obtained as a brown oil (0.1266 g, 82%); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.81 (s, 1H), 8.06 – 7.98 (m, 1H), 7.45 (dd, \(J = 7.4, 1.4\) Hz, 1H), 7.36-7.25 (m, 2H), 1.29 (s, 9H), 0.25 (s, 9H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.5, 138.4, 132.5, 129.8, 129.0, 126.0, 123.9, 102.4, 100.3, 58.0, 29.9, 0.2; IR (neat) 1592,1387, 1351 cm\(^{-1}\); HRMS calcd for C\(_{16}\)H\(_{24}\)NSi [M+H\(^+\)]: 258.1673, found 258.1675.

(E)-N-tert-Butyl-1-(4-methyl-2-(phenylethynyl)phenyl)methanimine (1j). This product was obtained as a yellow solid (0.1454 g, 88%): mp 59-60 °C; \(^1\)H NMR (400 MHz, DMSO) \(\delta\) 8.80 (s, 1H), 7.88 (d, \(J = 8.0\) Hz, 1H), 7.59 – 7.52
(m, 2H), 7.52 – 7.38 (m, 4H), 7.27 (d, J = 8.0 Hz, 1H), 2.34 (s, 3H), 1.26 (d, J = 1.2 Hz, 9H); ^{13}C NMR (101 MHz, DMSO) δ 152.6, 140.2, 134.5, 132.4, 131.2, 129.9, 129.1, 128.9, 125.6, 122.9, 122.1, 94.5, 86.5, 57.5, 29.5, 20.7; IR (neat) 1649, 1545, 1370, 1329 cm^{-1}; HRMS calcd for C_{20}H_{22}N [M+H]^+: 276.1747, found 276.1754.

![Structural formula](image)

(E)-N-tert-Butyl-1-(2-(phenylethynyl)-4-(trifluoromethyl)phenyl)methanimine (1I). This product was obtained as a yellow solid (0.1798 g, 91%): mp 65-66 °C; ^{1}H NMR (400 MHz, DMSO) δ 8.86 (s, 1H), 8.16 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.66-7.55 (m, 2H), 7.54 – 7.43 (m, 3H), 1.30 (s, 9H); ^{13}C NMR (101 MHz, DMSO) δ 152.0, 140.3, 131.5, 130.5 (q, J = 32.3 Hz), 129.6, 129.0, 126.9, 125.5, 125.2(q, J = 4.0 Hz), 123.8, 122.3, 121.4, 96.4, 84.9, 58.2, 29.3; IR (neat) 1639, 1368, 1337, 1170, 1131 cm^{-1}; HRMS calcd for C_{20}H_{19}F_{3}N [M+H]^+: 330.1464, found 330.1469.

General Procedure for Preparation of compound 2

![General Procedure](image)

To a solution of 2-iodophenol (1.8 mmol) and oven-dried K_{2}CO_{3} (3.0 equiv) in acetone (18 mL), 3-chloro-2-methylprop-1-ene (2.0 equiv) were added. The resulting mixture was stirred at 60 °C overnight. The reaction was concentrated in vacuo, diluted with brine and extracted with EtOAc (3x). The combined organic layers were dried (MgSO_{4}), filtered, and concentrated. The crude product was purification by column chromatography (Silica Gel, petroleum ether / EtOAc) to afford compound 2.
1-Iodo-4-methoxy-2-((2-methylallyl)oxy)benzene (2o). This product was obtained as a colorless oil (0.3936 g, 72%). 1H NMR (400 MHz, CDCl$_3$) δ 7.60 (d, $J = 8.6$ Hz, 1H), 6.39 (d, $J = 2.7$ Hz, 1H), 6.30 (dd, $J = 8.6, 2.7$ Hz, 1H), 5.18 (dd, $J = 1.4, 0.8$ Hz, 1H), 5.05 – 4.97 (m, 1H), 4.43 (s, 2H), 3.76 (s, 3H), 1.85 (d, $J = 0.4$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 161.4, 158.0, 140.3, 139.3, 113.2, 107.4, 100.5, 75.5, 72.6, 55.7, 19.7; IR (neat) 1590, 1480, 1353, 1200, 1167 cm$^{-1}$; HRMS calcd for C$_{11}$H$_{14}$IO$_2$ [M+H]$^+$: 305.0033, found 305.0029.

4-Fluoro-2-iodo-1-((2-methylallyl)oxy)benzene (2q). This product was obtained as a yellow oil (0.2471 g, 47%). 1H NMR (400 MHz, CDCl$_3$) δ 7.48 (dd, $J = 7.6, 3.0$ Hz, 1H), 6.98 (ddd, $J = 9.0, 7.8, 3.0$ Hz, 1H), 6.71 (dd, $J = 9.0, 4.6$ Hz, 1H), 5.16 (s, 1H), 5.03 – 4.97 (m, 1H), 4.42 (s, 2H), 1.84 (d, $J = 0.5$ Hz, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 157.0 (d, $J = 244.4$ Hz), 154.0 (d, $J = 3.0$ Hz), 140.3, 126.3 (d, $J = 25.3$ Hz), 115.7 (d, $J = 22.2$ Hz), 113.3, 112.6 (d, $J = 8.1$ Hz), 86.1 (d, $J = 8.1$ Hz), 73.5, 19.7; IR (neat) 1591, 1483, 1351, 1190 cm$^{-1}$; HRMS calcd for C$_{10}$H$_{11}$FIO [M+H]$^+$: 292.9833, found 292.9831.

General procedure for the Synthesis of 4-Alkylated Isoquinoline Derivatives:

To a solution of aryl halides (0.2 mmol), Pd(PPh$_3$)$_4$ (0.05 equiv), and oven-dried K$_2$CO$_3$ (3.0 equiv) in DMF (5mL), imine (1.2 equiv) was added. The resulting reaction mixture was heated at 100 °C under argon for 6h. The reaction were monitored by TLC to establish completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (35mL), washed with water (3×15mL) and brine (15mL), dried (MgSO$_4$) and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether / EtOAc) to afford product 3.
4-((3-Methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3a). This product was obtained as a yellow solid (0.0461 g, 71%): mp 138-139 °C; 1H NMR (400 MHz, CDCl$_3$) δ 9.21 (s, 1H), 8.01 – 7.89 (m, 1H), 7.63 (s, 1H), 7.56-7.42 (m, 6H), 7.39 (dd, $J = 8.4, 6.0$ Hz, 1H), 7.00 (t, $J = 7.7$ Hz, 1H), 6.67 (d, $J = 8.0$ Hz, 1H), 6.52 (s, 1H), 6.32 (s, 1H), 4.22 (d, $J = 8.7$ Hz, 1H), 3.82 (d, $J = 8.6$ Hz, 1H), 3.74-3.62 (m, 2H), 0.96 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 153.9, 150.6, 141.8, 137.1, 134.7, 130.4, 130.1, 128.6, 128.3, 128.1, 127.9, 127.3, 126.7, 125.0, 124.3, 123.5, 120.6, 109.9, 83.2, 48.0, 36.3, 24.2; IR (neat) 1677, 1592, 1478, 1351, 973, 752, 704 cm$^{-1}$; HRMS calcd for C$_{25}$H$_{22}$NO [M+H]$^+$: 352.1696, 352.1701.

4-((3-Methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-(p-tolyl)isoquinoline (3b). This product was obtained as a white solid (0.0562 g, 77%): mp 133-135 °C; 1H NMR (400 MHz, CDCl$_3$) δ 9.20 (s, 1H), 7.97 – 7.87 (m, 1H), 7.60 (s, 1H), 7.53 – 7.37 (m, 4H), 7.26 (d, $J = 7.8$ Hz, 2H), 6.99 (td, $J = 7.9, 1.2$ Hz, 1H), 6.67 (d, $J = 8.0$ Hz, 1H), 6.51 (s, 1H), 6.33 (d, $J = 5.6$ Hz, 1H), 4.21 (d, $J = 8.7$ Hz, 1H), 3.82 (d, $J = 8.6$ Hz, 1H), 3.74-3.63 (m, 2H), 2.42 (s, 3H), 0.97 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 153.7, 150.4, 138.6, 137.7, 137.3, 134.8, 130.24, 130.17, 129.4, 128.3, 128.2, 127.2, 126.7, 125.1, 124.3, 123.6, 120.6, 109.9, 83.3, 48.0, 36.3, 24.2, 21.5; IR (neat) 1592, 1385, 1350, 764 cm$^{-1}$; HRMS calcd for C$_{26}$H$_{24}$NO [M+H]$^+$: 366.1852, found 366.1862.
3-(4-Methoxyphenyl)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)isoquinoline (3c). This product was obtained as a white solid (0.0534 g, 70%): mp 123-125 °C; 1H NMR (400 MHz, CDCl$_3$) δ 9.17 (s, 1H), 7.96 – 7.82 (m, 1H), 7.63 (s, 1H), 7.54-7.31 (m, 4H), 7.05-6.85 (m, 3H), 6.67 (d, $J = 7.9$ Hz, 1H), 6.53 (s, 1H), 6.35 (s, 1H), 4.21 (d, $J = 8.7$ Hz, 1H), 3.86 (s, 3H), 3.81 (d, $J = 8.6$ Hz, 1H), 3.71 (d, $J = 14.1$ Hz, 1H), 3.68-3.58 (m, 1H), 0.98 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 159.3, 153.8, 150.5, 137.2, 134.8, 134.5, 131.6, 129.9, 128.3, 128.0, 127.2, 126.5, 124.8, 124.2, 123.5, 120.5, 114.0, 109.8, 83.1, 55.5, 48.0, 36.3, 24.3; IR (neat) 1650, 1613, 1513, 1476, 1371, 1327, 751 cm$^{-1}$; HRMS calcd for C$_{26}$H$_{24}$NO$_2$ [M+H]$^+$: 382.1802, found 382.1808.

3-(4-Fluorophenyl)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)isoquinoline (3d). This product was obtained as a yellow solid (0.0456 g, 62%): mp 146-148 °C; 1H NMR (400 MHz, CDCl$_3$) δ 9.20 (s, 1H), 7.94 (d, $J = 7.3$ Hz, 1H), 7.65 (s, 1H), 7.58-7.38 (m, 4H), 7.20-7.06 (m, 2H), 6.99 (t, $J = 7.5$ Hz, 1H), 6.66 (d, $J = 7.7$ Hz, 1H), 6.52 (s, 1H), 6.27 (s, 1H), 4.22 (d, $J = 8.5$ Hz, 1H), 3.83 (d, $J = 8.3$ Hz, 1H), 3.70-3.58 (m, 2H), 1.00 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 162.6(d, $J = 248.5$ Hz), 159.6, 152.7, 150.5, 137.6, 137.3, 134.4, 132.1(d, $J = 8.1$ Hz), 130.4, 128.5, 128.3, 127.4, 127.0, 125.3, 124.4, 123.5, 120.7, 115.6(d, $J = 22.2$ Hz), 110.0, 83.2, 48.1, 36.5, 24.4; IR (neat) 166, 1563, 1510, 1477, 1371, 1331, 749 cm$^{-1}$; HRMS calcd for C$_{25}$H$_{21}$FNO [M+H]$^+$: 370.1602, found 370.1607.
3-Butyl-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)isoquinoline (3g). This product was obtained as a yellow oil (0.0654 g, 66%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 9.10 (s, 1H), 7.89 – 7.83 (m, 1H), 7.68 (dd, \(J = 7.0, 4.3\) Hz, 1H), 7.55-7.38 (m, 2H), 7.09 (td, \(J = 8.0, 1.2\) Hz, 1H), 6.79 (d, \(J = 7.9\) Hz, 1H), 6.65 (t, \(J = 6.6\) Hz, 1H), 6.49 (d, \(J = 7.2\) Hz, 1H), 4.51 (d, \(J = 8.7\) Hz, 1H), 4.06 (d, \(J = 8.7\) Hz, 1H), 3.45-3.35 (m, 2H), 2.63 (s, 2H), 1.55 (dt, \(J = 9.3, 7.0\) Hz, 2H), 1.38 (s, 3H), 1.27 (dt, \(J = 14.9, 7.4\) Hz, 2H), 0.86 (t, \(J = 7.3\) Hz, 3H); \(^1^3\)C NMR (101 MHz, CDCl\(_3\)) δ 159.6, 155.4, 150.8, 136.9, 134.6, 129.9, 128.6, 128.2, 127.0, 125.9, 123.9, 123.80, 123.78, 120.7, 110.0, 83.3, 47.7, 36.3, 35.0, 32.4, 24.4, 23.0, 14.1; IR (neat) 1592, 1476, 1379, 1350, 974, 751 cm\(^{-1}\); HRMS calcd for C\(_{23}\)H\(_{26}\)NO [M+H]\(^+\): 332.2009, found 332.2022.

3-(Cyclohex-1-en-1-yl)-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)isoquinoline (3h). This product was obtained as a brown oil (0.0286 g, 40%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 9.08 (s, 1H), 7.85 (dd, \(J = 5.2, 4.1\) Hz, 1H), 7.58 (s, 1H), 7.50-7.36 (m, 2H), 7.12 – 6.98 (m, 1H), 6.75 (d, \(J = 8.0\) Hz, 1H), 6.70 – 6.48 (m, 2H), 5.74 (s, 1H), 4.43 (d, \(J = 8.7\) Hz, 1H), 3.98 (d, \(J = 8.6\) Hz, 1H), 3.64 (s, 2H), 2.48 (s, 1H), 2.39 (s, 1H), 2.25 – 2.15 (m, 2H), 1.81 (dt, \(J = 5.7, 5.0\) Hz, 2H), 1.72 (dt, \(J = 10.7, 4.6\) Hz, 2H), 1.31 (s, 3H); \(^1^3\)C NMR (101 MHz, CDCl\(_3\)) δ 159.6, 156.7, 150.5, 138.9, 137.2, 135.4, 129.68, 129.65, 128.3, 128.0, 127.1, 126.1, 124.4, 123.7, 123.6, 120.7, 110.0, 83.3, 47.3, 36.7, 29.4, 25.7, 25.2, 23.2, 22.2; IR (neat) 2929, 1588, 1479, 1384, 1349, 974, 750 cm\(^{-1}\); HRMS calcd for C\(_{25}\)H\(_{26}\)NO [M+H]\(^+\): 356.2009, found 356.2016.
6-Methyl-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3j). This product was obtained as a yellow solid (0.0498 g, 68%): mp 128-131°C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.23 (s, 1H), 7.86 (d, \(J = 8.3\) Hz, 1H), 7.62-7.52 (m, 2H), 7.52-7.45 (m, 2H), 7.43 (ddd, \(J = 7.2, 3.6, 1.3\) Hz, 1H), 7.36 (d, \(J = 8.2\) Hz, 1H), 7.30-7.10 (m, 1H), 6.96 (td, \(J = 8.0, 1.2\) Hz, 1H), 6.68 (d, \(J = 7.6\) Hz, 1H), 6.44 (s, 1H), 6.18 (s, 1H), 4.25 (d, \(J = 8.7\) Hz, 1H), 3.87 (d, \(J = 8.4\) Hz, 1H), 3.72-3.59 (m, 2H), 2.33 (s, 3H), 0.96 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.7, 151.1, 148.7, 142.5, 139.3, 138.1, 134.1, 130.5, 129.9, 128.9, 128.6, 128.4, 126.2, 125.3, 123.9, 123.7, 120.5, 109.8, 83.6, 47.9, 36.5, 23.8, 22.7 (one carbon missing due to overlap); IR (neat) 1662, 1569, 1478, 1454, 1371, 1331, 749, 702 cm\(^{-1}\); HRMS calcd for C\(_{26}\)H\(_{24}\)NO [M+H]\(^+\): 366.1852, found 366.1860.

6-Fluoro-4-((3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3k). This product was obtained as a yellow solid (0.0487 g, 66%): mp 146-148 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.19 (s, 1H), 7.94 (dd, \(J = 8.9, 5.8\) Hz, 1H), 7.53 (d, \(J = 7.1\) Hz, 2H), 7.47 (t, \(J = 7.3\) Hz, 2H), 7.43 - 7.37 (m, 1H), 7.26 (dt, \(J = 8.6, 2.2\) Hz, 1H), 7.09 (d, \(J = 6.3\) Hz, 1H), 6.99 (td, \(J = 8.0, 1.2\) Hz, 1H), 6.67 (d, \(J = 7.4\) Hz, 1H), 6.49 (s, 1H), 6.25 (s, 1H), 4.21 (d, \(J = 8.7\) Hz, 1H), 3.85 (d, \(J = 8.6\) Hz, 1H), 3.60 (s, 2H), 0.98 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 163.8(d, \(J = 253.5\) Hz), 159.6, 153.6, 149.7, 140.6, 139.3(d, \(J = 10.1\) Hz), 134.0, 131.2(d, \(J = 10.1\) Hz), 130.3, 128.8, 128.7, 128.4, 125.4(d, \(J = 5.1\) Hz), 124.3, 123.5, 120.5, 117.7(d, \(J = 26.3\) Hz), 110.0, 108.6(d, \(J = 23.3\) Hz), 83.3, 47.9, 36.8, 23.8; IR (neat) 1669, 1580,
4-((3-Methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenyl-6-(trifluoromethyl)isoquinoline (3l). This product was obtained as a yellow solid (0.0441 g, 53%): mp 136-138 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.28 (s, 1H), 8.01 (d, \(J = 8.5\) Hz, 1H), 7.77 – 7.53 (m, 4H), 7.49 (t, \(J = 7.4\) Hz, 2H), 7.45 – 7.38 (m, 1H), 6.93 (td, \(J = 8.0, 1.2\) Hz, 1H), 6.62 (s, 1H), 6.52-5.75 (m, 2H), 4.26 (d, \(J = 8.7\) Hz, 1H), 3.88 (d, \(J = 8.1\) Hz, 1H), 3.70 (q, \(J = 13.9\) Hz, 2H), 1.00 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.6, 155.6, 150.6, 141.7, 136.3, 133.4, 131.2 (q, \(J = 32.3\) Hz), 130.4, 129.0, 128.8, 128.2, 127.9, 125.8, 125.3, 123.7, 122.5, 122.3 (q, \(J = 3.0\) Hz), 122.2 (q, \(J = 4.5\) Hz), 120.4, 110.1, 48.0, 36.8, 23.8 (one carbon missing due to overlap); IR (neat) 1592, 1384, 1351, 764 cm\(^{-1}\); HRMS calcd for C\(_{26}\)H\(_{21}\)F\(_3\)NO [M+H]\(^+\): 420.1570, found 420.1579.

4-((3-Methyl-2,3-dihydrobenzofuran-3-yl)methyl)-7-nitro-3-phenylisoquinoline (3m). This product was obtained as a yellow solid (0.0413 g, 53%): mp 161-163 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.37 (s, 1H), 8.82 (d, \(J = 2.2\) Hz, 1H), 8.01 (s, 1H), 7.65 – 7.37 (m, 6H), 7.01 – 6.93 (m, 1H), 6.62 (s, 1H), 6.55-5.55 (m, 2H), 4.24 (d, \(J = 8.7\) Hz, 1H), 3.87 (d, \(J = 6.8\) Hz, 1H), 3.80-3.52 (m, 2H), 0.99 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 159.7, 157.2, 151.9, 145.5, 140.6, 139.9, 133.5, 130.3, 128.9, 128.8, 128.7, 126.4, 125.8, 124.5, 123.7, 122.6, 120.6, 110.1, 83.5, 48.0, 36.8, 23.5 (one carbon
8-((3-Methyl-2,3-dihydrobenzofuran-3-yl)methyl)-7-phenyl-[1,3]dioxolo[4,5-g]isoquinoline (3n). This product was obtained as a yellow solid (0.0540 g, 68%): mp 220-221°C; 1H NMR (400 MHz, CDCl$_3$) δ 8.94 (s, 1H), 7.48 (d, J = 7.1 Hz, 2H), 7.43 (t, J = 7.3 Hz, 2H), 7.40 – 7.34 (m, 1H), 7.13 (s, 1H), 7.06 – 6.97 (m, 1H), 6.86 (s, 1H), 6.68 (d, J = 7.9 Hz, 1H), 6.56 (s, 1H), 6.33 (s, 1H), 6.02 (d, J = 3.5 Hz, 2H), 4.18 (d, J = 8.7 Hz, 1H), 3.82 (d, J = 8.6 Hz, 1H), 3.66-3.40 (m, 2H), 0.95 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 152.8, 151.5, 148.0, 141.4, 136.0, 134.6, 130.3, 128.6, 128.4, 127.9, 124.9, 124.8, 123.5, 120.5, 109.9, 103.3, 101.9, 101.1, 83.2, 47.9, 37.0, 24.1 (one carbon missing due to overlap); IR (neat) 1650, 1528, 1457, 1371, 1325, 1039, 793 cm$^{-1}$; HRMS calcd for C$_{25}$H$_{21}$N$_2$O$_3$ [M+H]$^+$: 397.1547, found 397.1555.

4-((6-Methoxy-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3o). This product was obtained as a yellow oil (0.0463 g, 61%). 1H NMR (400 MHz, CDCl$_3$) δ 9.24 (s, 1H), 8.02 – 7.92 (m, 1H), 7.63 (s, 1H), 7.57 – 7.48 (m, 4H), 7.45 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 6.23 (s, 1H), 6.17-5.83 (m, 2H), 4.21 (d, J = 8.7 Hz, 1H), 3.84 (d, J = 8.4 Hz, 1H), 3.79 – 3.55 (m, 5H), 0.94 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 160.8, 160.7, 152.8, 150.0, 140.7, 137.5, 130.6, 130.4, 128.7, 128.3, 128.1, 127.1, 127.0, 126.5, 125.9, 124.5, 123.6, 106.2, 96.5, 55.7, 47.5, 36.5, 24.3 (one carbon missing due to overlap); IR (neat) 1655, 1621, 1562, 1527, 1480, 1342, 749, 700 cm$^{-1}$; HRMS calcd for C$_{26}$H$_{22}$NO$_3$ [M+H]$^+$: 396.1594, found 396.1601.
missing due to overlap); IR (neat) 1593, 1495, 1385, 1349, 765 cm\(^{-1}\); HRMS calcd for C\(_{26}\)H\(_{24}\)NO\(_2\) [M+H]\(^+\): 382.1802, found 382.1811.

\[
\text{IR (neat) 1597, 1470, 1359, 1086, 762, 703 cm}^{-1}\; ; \text{HRMS calcd for C}_{25}\text{H}_{22}\text{ClNO} [\text{M+H}]^+ : 386.1306, \text{found 386.1318.}
\]

4-((5-Chloro-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3p). This product was obtained as a yellow solid (0.0403 g, 52%): mp 155-157 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.25 (s, 1H), 8.00 – 7.93 (m, 1H), 7.80-7.53 (m, 3H), 7.53-7.49 (m, 2H), 7.49 – 7.43 (m, 2H), 7.43 – 7.36 (m, 1H), 6.92 (dd, \(J = 8.5, 2.3\) Hz, 1H), 6.54 (d, \(J = 8.4\) Hz, 1H), 6.16 (s, 1H), 4.22 (d, \(J = 8.8\) Hz, 1H), 3.85 (d, \(J = 8.6\) Hz, 1H), 3.75-3.54 (m, 2H), 0.98 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 158.2, 153.1, 150.3, 140.6, 137.3, 136.3, 130.7, 130.4, 128.8, 128.5, 128.3, 127.24, 127.18, 125.5, 125.1, 124.1, 110.8, 83.6, 48.2, 36.3, 24.2 (two carbon missing due to overlap); IR (neat) 1597, 1470, 1359, 1086, 762, 703 cm\(^{-1}\); HRMS calcd for C\(_{25}\)H\(_{21}\)ClNO [M+H]\(^+\): 386.1306, found 386.1318.

\[
\text{IR (neat) 1593, 1495, 1385, 1349, 765 cm}^{-1}\; ; \text{HRMS calcd for C}_{26}\text{H}_{24}\text{NO} [\text{M+H}]^+ : 382.1802, \text{found 382.1811.}
\]

4-((5-Fluoro-3-methyl-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3q). This product was obtained as a yellow solid (0.0480 g, 65%): mp 115-117 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.21 (s, 1H), 7.95 (dd, \(J = 5.2, 4.2\) Hz, 1H), 7.63 (d, \(J = 5.5\) Hz, 1H), 7.56 – 7.47 (m, 4H), 7.47 – 7.41 (m, 2H), 7.41 – 7.35 (m, 1H), 6.66 (td, \(J = 8.8, 2.7\) Hz, 1H), 6.54 (dd, \(J = 8.6, 4.1\) Hz, 1H), 5.96 (dd, \(J = 8.6, 3.9\) Hz, 1H), 4.21 (d, \(J = 8.8\) Hz, 1H), 3.84 (d, \(J = 8.7\) Hz, 1H), 3.78-3.55 (m, 2H), 0.97 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 157.7(d, \(J = 238.4\) Hz), 155.3(d, \(J = 1.0\) Hz), 154.0, 150.8, 141.6, 137.1, 136.1, 130.3, 130.2, 128.6, 128.3, 127.9, 127.3, 126.8, 124.5,
124.0, 114.4 (d, $J = 24.2$ Hz), 110.9(d, $J = 25.3$ Hz), 110.0(d, $J = 8.0$ Hz), 83.6, 48.2 (d, $J = 2$ Hz), 36.1, 24.2; IR (neat) 1591, 1385, 1350, 767 cm$^{-1}$; HRMS calcd for C$_{25}$H$_{21}$FNO $[M+H]^+$: 370.1602, found 370.1610.

Methyl 3-methyl-3-((3-phenylisoquinolin-4-yl)methyl)-2,3-dihydrobenzofuran-6-carboxylate (3r). This product was obtained as a yellow oil (0.0464 g, 57%). 1H NMR (400 MHz, CDCl$_3$) δ 9.27 (s, 1H), 7.98 (d, $J = 8.0$ Hz, 1H), 7.63 (s, 1H), 7.58 – 7.34 (m, 7H), 7.28 – 7.09 (m, 1H), 6.60-5.10 (m, 2H), 4.24 (d, $J = 8.9$ Hz, 1H), 3.92 – 3.78 (m, 4H), 3.78-3.61 (m, 2H), 0.99 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 166.9, 159.6, 152.3, 150.0, 139.9, 139.8, 137.4, 131.1, 130.7, 130.3, 128.8, 128.7, 128.4, 127.4, 127.1, 125.5, 124.2, 123.3, 122.7, 110.8, 83.5, 52.3, 48.0, 36.1, 24.1; IR (neat) 1718, 1591, 1384, 1350, 766, 704 cm$^{-1}$; HRMS calcd for C$_{27}$H$_{24}$NO$_3$ $[M+H]^+$: 410.1751, found 410.1762.

4-((3-(Methoxymethyl)-2,3-dihydrobenzofuran-3-yl)methyl)-3-phenylisoquinoline (3s). This product was obtained as a yellow oil (0.0402 g, 53%). 1H NMR (400 MHz, CDCl$_3$) δ 9.16 (s, 1H), 8.12 – 7.83 (m, 2H), 7.64 – 7.45 (m, 3H), 7.45-7.25 (m, 5H), 6.96 (t, $J = 7.6$ Hz, 1H), 6.56 (d, $J = 7.9$ Hz, 1H), 6.42 (s, 1H), 5.97 (d, $J = 6.9$ Hz, 1H), 4.19 (d, $J = 9.1$ Hz, 1H), 4.12 (d, $J = 9.1$ Hz, 1H), 3.94 (d, $J = 15.8$ Hz, 1H), 3.75 (d, $J = 14.2$ Hz, 1H), 3.27 (d, $J = 9.0$ Hz, 1H), 3.21 – 2.99 (m, 4H); 13C NMR (101 MHz, CDCl$_3$) δ 160.0, 150.8, 141.7, 137.3, 130.2, 130.1, 129.9, 128.7, 128.4, 128.0, 127.5, 127.2, 126.7, 124.7, 124.2, 120.3, 109.7, 80.5, 76.7, 59.0, 52.1, 31.5(two carbon missing...
due to overlap); IR (neat) 1633, 1567, 1389, 1355, 770 cm\(^{-1}\); HRMS calcd for C\(_{26}\)H\(_{24}\)NO\(_2\) [M+H]\(^+\): 382.1802, found 382.1815.

\[
\text{IR (neat) 1594, 1353, 765 cm}^{-1}; \text{HRMS calcd for C}_{27}\text{H}_{25}\text{N}_2\text{O} [\text{M+H}]^+: 393.1961, \text{found 393.1964.}
\]

1-(3-Methyl-3-((3-phenylisoquinolin-4-yl)methyl)indolin-1-yl)ethan-1-one (3t). This product was obtained as a yellow solid (0.0550 g, 70%): mp 135-137 °C; \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.19 (s, 1H), 8.03 (d, \(J = 8.0\) Hz, 1H), 7.94 (d, \(J = 7.4\) Hz, 1H), 7.61 (d, \(J = 7.3\) Hz, 1H), 7.53 (t, \(J = 6.6\) Hz, 2H), 7.50-7.42 (m, 3H), 7.42 – 7.36 (m, 1H), 7.32 (s, 1H), 7.09 (dd, \(J = 18.6, 10.9\) Hz, 1H), 6.75 (s, 1H), 6.67-6.28 (m, 1H), 3.80 – 3.46 (m, 3H), 3.30 (d, \(J = 10.6\) Hz, 1H), 1.89 (s, 3H), 0.99 (s, 3H); \(^{13}\text{C}\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 168.7, 154.1, 151.0, 142.1, 142.0, 138.8, 137.1, 130.4, 130.3, 130.1, 128.7, 128.3, 128.2, 127.9, 127.3, 126.8, 124.4, 123.9, 122.8, 117.1, 61.3, 46.1, 37.4, 25.4, 24.1; IR (neat) 1594, 1353, 765 cm\(^{-1}\); HRMS calcd for C\(_{27}\)H\(_{25}\)N\(_2\)O [M+H]\(^+\): 393.1961, found 393.1964.

4-((4-Methylisochroman-4-yl)methyl)-3-phenylisoquinoline (3u). This product was obtained as a yellow solid (0.0310 g, 42%): mp 206-209 °C; \(^1\text{H}\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.21 (s, 1H), 8.54 – 7.29 (m, 9H), 7.18-6.74 (m, 3H), 6.39 (dd, \(J = 19.4, 7.7\) Hz, 1H), 4.70 (broad, 2H), 3.98 (d, \(J = 14.1\) Hz, 1H), 3.67-3.61 (m, 2H), 3.23 (s, 1H), 0.76 (s, 3H); \(^{13}\text{C}\) NMR (101 MHz, CDCl\(_3\)) \(\delta\) 153.7, 150.0, 141.4, 137.6, 133.8, 130.5, 130.4, 128.5, 128.1, 127.8, 127.3, 126.9, 126.4, 126.2, 125.1, 124.1, 69.0, 39.7, 36.4, 22.6 (four carbon missing due to overlap); IR (neat) 1582, 1386, 1352, 1096, 763,701 cm\(^{-1}\); HRMS
calcd for C_{26}H_{24}NO [M+H]^+: 366.1852, found 366.1863.

4-((4-Methylchroman-4-yl)methyl)-3-phenylisoquinoline (3v). This product was obtained as a yellow solid (0.0904 g, 82%): mp 152-153 °C; ^{1}H NMR (400 MHz, CDCl_{3}) δ 9.22 (s, 1H), 8.11-7.89 (m, 2H), 7.69-7.53 (m, 2H), 7.53 – 7.25 (m, 5H), 6.98 (t, J = 8.3 Hz, 1H), 6.76 – 6.37 (m, 3H), 3.85-3.74 (m, 2H), 3.64 (s, 1H), 3.45 (td, J = 11.4, 1.8 Hz, 1H), 1.72 (d, J = 14.1 Hz, 1H), 1.67 – 1.48 (m, 1H), 0.97 (s, 3H); ^{13}C NMR (101 MHz, CDCl_{3}) δ 153.9, 150.2, 141.4, 137.6, 130.3, 129.5, 128.7, 128.4, 128.0, 127.6, 127.4, 126.9, 125.9, 124.9, 120.1, 117.2, 62.2, 38.2, 37.1, 36.0, 29.2(three carbon missing due to overlap); IR (neat) 1641, 1564, 1396, 1367, 1221, 751 cm^{-1}; HRMS calcd for C_{26}H_{24}NO [M+H]^+: 366.1852, found 366.1859.

4-Methyl-1-(methylsulfonyl)-4-((3-phenylisoquinolin-4-yl)methyl)-1,2,3,4-tetrahydroquinoline (3w). This product was obtained as a yellow oil (0.0709 g, 80%). ^{1}H NMR (400 MHz, CDCl_{3}) δ 9.17 (s, 1H), 8.03-7.87 (m, 2H), 7.64-7.48 (m, 3H), 7.46 – 7.27 (m, 5H), 7.06 (t, J = 7.7 Hz, 1H), 6.87 (d, J = 6.3 Hz, 2H), 3.75 (d, J = 14.0 Hz, 1H), 3.68 – 3.41 (m, 2H), 3.07 (t, J = 10.9 Hz, 1H), 2.54 (s, 3H), 1.78 – 1.63 (m, 1H), 1.45 – 1.31 (m, 1H), 0.99 (s, 3H); ^{13}C NMR (101 MHz, CDCl_{3}) δ 154.5, 150.6, 142.0, 137.1, 136.0, 135.8, 130.2, 130.0, 128.5, 128.4, 128.1, 127.7, 127.3, 126.9, 126.7, 124.8, 124.6, 124.4, 122.4, 42.3, 39.2, 38.91, 38.1, 35.0, 30.1; IR (neat) 1650, 1575, 1489, 1446, 1340, 1156, 963, 767 cm^{-1}; HRMS calcd for C_{27}H_{27}N_{2}O_{2}S [M+H]^+: 443.1788, found
2-Benzyl-4-methyl-4-((3-phenylisoquinolin-4-yl)methyl)-3,4-dihydroisoquinolin-1(2H)-one (3x). This product was obtained as a yellow oil (0.0882 g, 83 %). 1H NMR (400 MHz, CDCl$_3$) δ 9.32 (s, 1H), 8.10 (s, 1H), 7.96 (s, 1H), 7.71 – 7.26 (m, 12H), 7.22-7.15 (m, 1H), 7.11-6.69 (m, 2H), 6.06 (s, 1H), 4.88 (d, J = 13.7 Hz, 1H), 4.54 (d, J = 14.2 Hz, 1H), 3.69 (s, 1H), 3.39 (d, J = 12.4 Hz, 1H), 3.20 (d, J = 14.3 Hz, 1H), 2.94 (d, J = 12.2 Hz, 1H), 0.77 (s, 3H);

13C NMR (101 MHz, CDCl$_3$) δ 164.1, 148.2, 143.0, 138.3, 137.0, 132.4, 131.7, 130.5, 129.3, 129.1, 128.9, 128.7, 128.2, 128.1, 127.5, 126.4, 125.4, 124.4, 57.9, 50.6, 39.9, 35.4, 22.5 (six carbon missing); IR (neat) 1646, 1593, 1384, 1351, 762, 701 cm$^{-1}$; HRMS calcd for C$_{33}$H$_{30}$N$_2$O [M+H]$^+$: 469.2274, found 469.2280.

Procedure for Palladium catalyzed domino Heck / annulation of 2-alkynyl aldehyde with tert-butylamine:

A solution of 1a (0.0822 g, 0.3 mmol), 2-(phenylethynyl)benzaldehyde (5, 0.0928 g, 0.45 mmol, 1.5 equiv) and tert-butyl amine (0.0494 g, 0.68 mmol, 2.25 equiv) in DMF (5 mL) was stirred under argon at room temperature for 30 min, before Pd(PPh$_3$)$_4$ (0.0173 g, 0.015 mmol, 0.05 equiv) and oven-dried K$_2$CO$_3$ (0.1244 g, 0.9 mmol, 3.0 equiv) were added. The resulting reaction mixture was heated at 100 °C under argon for 7h. The reaction was monitored by TLC to establish completion. After cooling to room temperature, the reaction was diluted with ethyl acetate (35mL), washed with water (3×15mL) and brine (15mL), dried (MgSO$_4$) and concentrated. The residue was purified by column chromatography (Silica Gel, petroleum ether / EtOAc) to afford product 3a (0.0295 g, 28%).

References

Single Crystallographic Data of 3a

Table 1. Crystal data and structure refinement for 3a.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C25 H21 N O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>351.43</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.1675(4) Å, (\alpha = 90^\circ)</td>
</tr>
<tr>
<td></td>
<td>b = 13.1365(8) Å, (\beta = 101.0748(19)^\circ)</td>
</tr>
<tr>
<td></td>
<td>c = 10.0074(6) Å, (\gamma = 90^\circ)</td>
</tr>
<tr>
<td>Volume</td>
<td>924.71(9) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.262 Mg/m³</td>
</tr>
</tbody>
</table>
Absorption coefficient: 0.076 mm\(^{-1}\)
F(000): 372
Crystal size: 0.221 \(\times\) 0.207 \(\times\) 0.113 mm\(^3\)
Theta range for data collection: 3.101 to 27.604\(^\circ\).
Index ranges: -9 \(\leq h \leq\) 9, -17 \(\leq k \leq\) 17, -12 \(\leq l \leq\) 13
Reflections collected: 14464
Independent reflections: 4285 \([R(int) = 0.0657]\)
Completeness to theta = 25.242\(^\circ\): 99.8 \%
Absorption correction: Semi-empirical from equivalents
Max. and min. transmission: 0.991 and 0.983
Refinement method: Full-matrix least-squares on \(F^2\)
Data / restraints / parameters: 4285 / 1 / 245
Goodness-of-fit on \(F^2\): 1.072
Final R indices \([I>2\sigma(I)]\): R1 = 0.0618, \(wR^2 = 0.1104\)
R indices (all data): R1 = 0.1326, \(wR^2 = 0.1316\)
Absolute structure parameter: 0.9\(\pm\)10
Extinction coefficient: n/a
Largest diff. peak and hole: 0.210 and -0.172 e.\(\text{Å}^{-3}\)