Supporting Information

Solid-state characterization of 17β-estradiol co-crystals presenting improved dissolution and bioavailability

Jian-Rong Wang,^{a, ‡} Xiaojuan Wang,^{a, ‡} Yong Yang,^b Xiaoyan Chen, *^{,b} and Xuefeng Mei *^{,a}

[†] Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

[‡] Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
E-mail address: xychen@simm.ac.cn (X. Chen), xuefengmei@simm.ac.cn (X. Mei); fax: +86-21-50800934; Tel: +86-21-50800934

Synthon	Both groups containing hits	Synthon hits with %	
$I (OH + N_{arom})$	1771	906 (51.2%)	
II (OH + amide)	3266	1280 (39.2%)	
III (OH + acid)	1136	210 (18.5%)	
IV (OH + $1^{\circ}/2^{\circ}/3^{\circ}$ amine)	941/2095/2516	164/94/188 (8.0%)	

Table S1. CSD statistics of possible supramolecular synthons in E2 with phenolic hydroxyl group a

^{*a*} Survey constrains: intermolecular shorter than sum of VdW radii + 0.0, no disordered, no errors, no ions, and only organics.

Table S2. Results of the screening experiments for the formation of co-crystals with E2 in MeOH, ethyl acetate (EA), and tetrahydrofuran (THF).

CCF	MeOH	EA	THF	CCF	MeOH	EA	THF
N NH ₂ isonicotinamide	\checkmark	\checkmark	X	$HO \rightarrow O HO$ maleic acid	X	X	X
$ \bigvee_{N-}^{=N} \bigvee_{NH_2}^{O} $ pyrazinamide	X	X	X	но он fumaric acid	X	X	X
$N \rightarrow NH_2$ nicotinamide	X	X	X	HO O Succinic acid	X	X	X
$N \rightarrow HN-NH_2$ isoniazide	X	X	X	но о adipic acid	X	X	X
$\bigvee_{NH_2}^{O}$ picolinamide	X	X	X	HNNH piperazine	\checkmark	\checkmark	\checkmark
N OH nictinic acid	X	X	X	N	X	X	X

H bond	d(D-H)/Å	d(H…A)/Å	d(D…A) /Å	<dha th="" °<=""></dha>
co-crystal 1				
01-H1…N1	0.877	1.894	2.764	171.50
O1'-H1'A…N3	0.820	1.948	2.767	176.18
O2'-H2'A…O5	0.851	2.021	2.852	164.84
O2-H2…O6	0.820	2.047	2.811	154.98
N4-H4B…O2'	0.863	2.058	2.908	167.75
N4-H4A…O1	0.900	2.121	3.004	166.53
N2-H2A···O2	0.923	1.990	2.884	162.40
N2-H2B…O1'	0.922	2.376	3.177	145.11
co-crystal 2				
O1-H1…N1	0.820	1.910	2.721	170.06
O3-H3-O1S	0.820	2.037	2.844	167.59
O2-H2C···N2	0.820	1.901	2.712	169.54
O4-H4A…O2S	0.820	2.140	2.860	146.51
O1S-H2S…O4	0.813	2.042	2.796	154.07
N1-H6S…O1S	0.880	2.245	3.096	163.00
N2-H5S-02S	0.851	2.326	3.163	168.02
O1S-H1S-02	0.794	2.110	2.897	171.27
O2S-H4S…O1	0.797	2.290	3.044	157.90
O2S-H3S-O3	0.806	2.031	2.836	177.46

 Table S3. Hydrogen bonding distances and angles for E2 co-crystals

Figure S1. FT-IR spectroscopy of E2 co-crystals

(a)

(b)

(c)

Figure S2. TGA and DSC thermograms of E2, co-former and its co-crystals (a) TGA of co-crystal **1**, (b) TGA of co-crystal **2**, (c) DSC of co-crystal **1** and (d) DSC of co-crystal **2**

Figure S3. PXRD patterns of co-crystals 1 and 2 after slurry

Figure S4. DVS profiles of E2 co-crystals