Electronic Supplementary Information (ESI)

Shape effects of nickel phosphide nanocrystals on the hydrogen evolution reaction

Bora Seo, a,‡ Du San Baek, b,‡ Young Jin Sa, a and Sang Hoon Joo a,b,*

"Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea.

bSchool of Energy and Chemical Engineering, UNIST, Ulsan 689-798, Republic of Korea. E-mail: shjoo@unist.ac.kr

†These authors contributed equally to this work.
1. Supplementary Notes

1.1 Measurement of electrochemically active surface area (ECSA). The ECSA was determined from the double layer capacitance \(C_{dl} \) of the catalyst surface.\(^{S1,S2}\) The \(C_{dl} \) was determined by measuring cyclic voltammograms (CVs) with multiple scan rates in non-faradaic potential region. In this potential region, all measured currents are assumed to be associated with double-layer charging. The potential range typically centred at the open-circuit potential (OCP) with a potential window of 0.1 V. In this work, CVs were measured in a potential range of \((0.125-0.225 \text{ V vs. RHE})\) at the scan rates of \((v =0.01, 0.02, 0.06, 0.08, 0.10, 0.15, \text{ and } 0.20 \text{ mV s}^{-1}\)). The measured charging current \(i_c \) is equal to the product of the scan rate \(v \) and the \(C_{dl} \), as given by equation (1).

\[
 i_c = vC_{dl} \ldots \ldots (1)
\]

Therefore, the slope derived from a plot of \(i_c \) as a function of \(v \) equal to the \(C_{dl} \) (Figure S3). The ECSA of a catalyst is calculated by dividing the \(C_{dl} \) with specific capacitance of the sample according to equation (2).

\[
 ECSA = \frac{C_{dl}}{C_s} \ldots \ldots (2)
\]

Jaramillo et al suggest general specific capacitances of \(C_s \) based on typical reported values.\(^{S1}\) In this work 0.035 mF cm\(^{-2}\) of \(C_s \) was used for ECSA calculations.

1.2 Calculation of turnover frequency (TOF). The turnover frequency (TOF, s\(^{-1}\)) defined as the HER rate per active site and per time, was derived from the following equation (3).

\[
 TOF(s^{-1}) = \left\{ \frac{i \times \frac{1H_2}{2e^-} \times \frac{1e^-}{q_e}}{N_{active}} \right\} \ldots \ldots (3)
\]

Here, the current \(i \) was experimentally determined from electrochemical measurement, and \(q_e \) is the electron charge of \(1.602 \times 10^{-19} \text{ C} \). In this work, the current at \(-200 \text{ mV (vs. RHE)}\) was used for TOF calculation. \(N_{active} \) is the number of active surface atoms. For determining \(N_{active} \), the method proposed by previous works was employed.\(^{S3,S4}\) The approach use average of the atoms in the molar volume to a surface, providing a crude upper bound for TOF values. The hexagonal unit cell for Ni\(_2\)P has a molar volume of:
\[
V_m = \frac{F_w}{\rho} = \frac{148.36 \text{ g/mol}}{\frac{7.35 \text{ g/cm}^3}{1 \text{ mol}_{Ni2P}}} = \frac{20.1850 \text{ cm}^3}{1 \text{ mol}_{Ni2P}}
\]

The average surface occupancy is:

\[
\left(\frac{1 \text{ mol}_{Ni2P}}{20.1850 \text{ cm}^3} \times \frac{3 \times 6.022 \times 10^{23} \text{ atoms}}{1 \text{ mol}_{Ni2P}} \right)^2 = 2.00 \times 10^{15} \frac{\text{ atoms}}{\text{ cm}^2}
\]

The \(N_{active} \) was determined using the ECSA, which was derived from double layer capacitance measurement (See Experimental sections, and Figure S3),\(^{51} \) as described in the following equation:

\[
N_{active} = \text{ECSA (cm}^2\text{)} \times 2.00 \times 10^{15} \frac{\text{atoms}}{\text{cm}^2}
\]

Finally, the TOFs were calculated by integrating \(N_{active} \) into the Equation (2).
2. Supplementary Tables S1-S3

Table S1. The average length and diameter of Ni$_2$P NRs-S and NRs-L, and the diameter of Ni$_2$P NSs, determined by TEM images.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Diameter (nm)a</th>
<th>Length (nm)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_2$P NSs</td>
<td>7.1 ± 1.0</td>
<td>-</td>
</tr>
<tr>
<td>Ni$_2$P NRs-S</td>
<td>5.3 ± 1.1</td>
<td>41 ± 10</td>
</tr>
<tr>
<td>Ni$_2$P NRs-L</td>
<td>4.0 ± 0.4</td>
<td>137 ± 47</td>
</tr>
</tbody>
</table>

a Crystallite sizes (diameter and length) were measured on the particles in TEM images. The values were obtained by averaging the measured sizes over one hundred of particles.

Table S2. HER activity of Ni$_2$P NPs, expressed in terms of overpotentials at 10 mA cm$^{-2}$, Tafel slopes, and exchange current densities values.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Overpotential at 10 mA cm$^{-2}$ (V)</th>
<th>Tafel slopea (mV dec$^{-1}$)</th>
<th>Exchange current densityb (A cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_2$P NSs/CP</td>
<td>0.135</td>
<td>50</td>
<td>3.68 x 10$^{-5}$</td>
</tr>
<tr>
<td>Ni$_2$P NRs-L/CP</td>
<td>0.270</td>
<td>86</td>
<td>7.45 x 10$^{-6}$</td>
</tr>
</tbody>
</table>

a,b The Tafel slopes and exchange current densities were derived from the linear portion of the corresponding Tafel plots.

Table S3. Double layer capacitance, ECSA, and TOF values of Ni$_2$P-based catalysts.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Double layer capacitancea (C_{dl}, mF)</th>
<th>ECSAb (cm2)</th>
<th>TOFc (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_2$P NSs/CP</td>
<td>3.2</td>
<td>91</td>
<td>0.63</td>
</tr>
<tr>
<td>Ni$_2$P NRs-L/CP</td>
<td>1.6</td>
<td>46</td>
<td>0.05</td>
</tr>
</tbody>
</table>

a,b Double layer capacitance and ECSA were determined via previous method.S1,S2

c TOF was determined by previous method (see Experimental section in manuscript).S3,S4
Fig. S1 EDS elemental mapping images of (a) Ni$_2$P NSs, (b) Ni$_2$P NRs-S, and (c) Ni$_2$P NRs-L samples.
Fig. S2 Cycling voltammetry scans with different scan rate and corresponding linear plot for cathodic current versus scan rate for (a,b) Ni$_2$P NSs/CP and (c,d) Ni$_2$P NRs-L/CP catalysts. Double layer capacitance was determined from the linear plot.
Fig. S3 TEM images of (a) Ni$_2$P NSs/CP and (b) Ni$_2$P NRs-L/CP after the chronopotentiometry measurements.
Fig. S4 XRD patterns of (a) Ni$_2$P NSs/CP and (b) Ni$_2$P NRs-L/CP recorded before and after 1,000 CV cycles in acidic media (0.5 M H$_2$SO$_4$). Vertical bars represent the XRD pattern for Ni$_2$P standard (JCPDS No. 89-2742).
Fig. S5 (a) Ni 2p- and (b) P 2p XPS spectra for Ni$_2$P NPs/CP before and after 1,000 CV cycles in acidic media (0.5 M H$_2$SO$_4$).
Fig. S6 Polarisation curves of Ni$_2$P NSs/CP for the HER with different catalyst loadings of 1 mg cm$^{-2}$ and 3 mg cm$^{-2}$.
4. References for Supporting Information

