Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Diverse polyoxometalates-based metal-organic complexes

constructed by a tetrazole- and pyridyl-containing

asymmetric amide ligand or its *in-situ* transformed ligand †

Xiu-Li Wang*, Xing Rong, Dan-Na Liu, Hong-Yan Lin, Guo-Cheng Liu, Xiang Wang, Ge Song

Department of Chemistry, Bohai University, Jinzhou, 121000, P. R. China

Common d 1							
$C_{11}(1) N(2) \# 1$	2.036(6)	$\frac{N(3)\#1}{C_{11}(1)} \frac{N(3)}{N(3)}$	87 3(3)				
Cu(1) - N(2) = 1	2.036(6)	N(3)#1-Cu(1)-N(3) N(2)#1 Cu(1) O(1W)	89.8(2)				
Cu(1) - N(2)	2.030(0)	N(2) = Cu(1) - O(1W)	89.8(2)				
Cu(1) - N(3) # 1	2.037(0)	N(2) + Cu(1) + O(1W)	09.0(2)				
Cu(1) - N(3)	2.037(6)	N(3)#1-Cu(1)-O(1W)	90.2(2)				
Cu(1)- $O(1W)$	2.341(7)	N(3)-Cu(1)-O(1W)	90.2(2)				
N(1)-Cu(2)	2.053(6)	N(11)#2-Cu(2)-N(11)#3	179.996(1)				
Cu(2)-N(11)#2	2.024(6)	N(11)#2-Cu(2)-N(1)#4	88.1(2)				
Cu(2)-N(11)#3	2.024(6)	N(11)#3-Cu(2)-N(1)#4	91.9(2)				
Cu(2)-N(1)#4	2.053(6)	N(11)#2-Cu(2)-N(1)	91.9(2)				
Cu(2)-N(11)#2	2.024(6)	N(11)#3-Cu(2)-N(1)	88.1(2)				
N(2)#1-Cu(1)-N(2)	94.2(4)	N(1)#4-Cu(2)-N(1)	179.998(1)				
N(2)#1-Cu(1)-N(3)#1	176.6(2)	N(11)#2-Cu(2)-N(11)#3	179.996(1)				
N(2)-Cu(1)-N(3)#1	89.3(2)	N(11)#2-Cu(2)-N(1)#4	88.1(2)				
N(2)#1-Cu(1)-N(3)	89.3(2)	N(1)#4-Cu(2)-N(1)	179.998(1)				
N(2)-Cu(1)-N(3)	176.6(2)						
Symmetry code for $1: #1 - x + 1$	1, y, z; #2 x - 1/2, -y +	1, z – 1/2; #3 –x + 1, y – 1/2, –z + 3	3/2; #4 -x + 1/2, -y + 1/2,				
-z+1.							
	Co	ompound 2					
Co(1)-N(1)	2.132(5)	N(7)#1-Co(1)-N(7)	96.3(3)				
Co(1)-N(1)#1	2.132(5)	N(1)-Co(1)-O(2W)	88.99(18)				
Co(1)-O(1W)	2.135(7)	N(1)#1-Co(1)-O(2W)	88.99(18)				
Co(1)-N(7)#1	2.142(5)	O(1W)-Co(1)-O(2W)	175.6(3)				
Co(1)-N(7)	2.142(5)	N(7)#1-Co(1)-O(2W)	89.07(18)				
Co(1)-O(2W)	2.162(6)	N(7)-Co(1)-O(2W)	89.08(18)				
Co(2)-N(12)	2.125(5)	N(12)-Co(2)-N(12)#2	179.998(1)				
Co(2)-N(12)#2	2.125(5)	N(12)-Co(2)-N(6)#3	88.5(2)				
Co(2)-N(6)#3	2.131(5)	N(12)#2-Co(2)-N(6)#3	91.47(19)				
Co(2)-N(6)#4	2.131(5)	N(12)-Co(2)-N(6)#4	91.5(2)				
Co(2)-O(3W)	2.212(7)	N(12)#2-Co(2)-N(6)#4	88.5(2)				
Co(2)-O(3W)#2	2.212(7)	N(6)#3-Co(2)-N(6)#4	180.0(2)				
N(1)-Co(1)-N(1)#1	85.8(3)	N(12)-Co(2)-O(3W)	91.2(2)				
N(1)-Co(1)-O(1W)	87.8(2)	N(12)#2-Co(2)-O(3W)	88.8(2)				

Table S1 Selected bond distances (Å) and angles (°) for compounds 1-4.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Compound 4

C(17)-H(17A)···O(3)

0.93

2.41

3.169

138

oound 3	$C(15) = H(15A) \cdots O(23)$	0.93	2 25	3 100	152
	D–H…A	D–H	Н…А	D…A	D–H…
	Table S2. Selected	hydrogen–bonding	g geometry (Å, °) for compou	nds 1 and 2.	
Symmetry	code for $4 \# 1 - x + 1, -1 - y$.	,1–z.			
N(2)-Ag(1))-O(19)	115.43(7)			
O(19)-Ag(1)-O(18)	56.94(3)	O(19)-Ag(1)-O(14)#1	77.74	(2)
O(26)#2-A	g(1)-O(19)	137.95(7)	O(18)-Ag(1)-O(14)#1	134.6	1(7)
N(1)-Ag(1))-O(19)	97.59(3)	O(26)#2-Ag(1)-O(14)#1	142.5	5(7)
N(1)-Ag(1))-O(18)	93.51(3)	N(1)-Ag(1)-O(26)#2	76.62	(3)
Ag(1)-O(20	6)#2	2.873(2)	N(1)-Ag(1)-O(14)#1	89.67	(3)
Ag(1)-O(14	4)#1	2.819(2)	N(2)-Ag(1)-O(26)#2	88.61	(2)
Ag(1)-O(19	9)	2.703(2)	N(2)-Ag(1)-O(14)#1	81.63	(2)
Ag(1)-O(18	8)	2.876(2)	O(26)#2-Ag(1)-O(18)	81.59	(2)
Ag(1)-N(1))	2.22(2)	N(2)-Ag(1)-O(18)	118.1	6(3)
Ag(1)-N(2))	2.165(19)	N(2)-Ag(1)-N(1)	142.8	(7)
		Com	pound 4		
Symmetry	code for 3 #1–x, –y – 1, –z				
N(9)-Ag(1))-O(5)	87.56(3)			
N(1)-Ag(1))-O(5)	101.52(3)	N(8)#1-Ag(2)-O(41)	84.38	(2)
N(9)-Ag(1))-N(1)	170.7(3)	O(41)-Ag(2)-O(2W)	119.22	3(3)
Ag(2)-O(2	W)	2.612(8)	O(2W)-Ag(2)-O(5)	147.03	8(3)
Ag(2)-O(4	1)	2.643(8)	O(41)-Ag(2)-O(5)	91.16	(3)
Ag(2)-O(5))	2.449(8)	N(8)#1-Ag(2)-N(3)	157.3	(3)
Ag(2)-N(3))	2.343(8)	N(3)-Ag(2)-O(5)	90.2(3	3)
Ag(2)-N(8))#1	2.283(8)	N(3)-Ag(2)-O(2W)	82.95	(2)
Ag(1)-O(5))	2.819(8)	N(3)-Ag(2) -O(41)	81.23	(2)
Ag(1)-N(1))	2.153(8)	N(8)#1-Ag(2)-O(2W)	88.92	(3)
Ag(1)-N(9))	2.127(8)	N(8)#1-Ag(2)-O(5)	107.7	(3)
		Com	pound 3		
z + 1/2.			, , , , ,	, ,	<i>,</i> , ,
Symmetry	code for $2 \# 1 - x + 1$, v. z:	#2 - x + 3/2, -v + 1	3/2, -z + 1; #3 - x + 1, y + 1/2	2, -z + 1/2; #4 x +	+ $1/2, -v +$
N(1)-Co(1)	-N(7)	174.4(2)			× /
O(1W)-Co	(1)-N(7)	93.8(2)	O(3W)-Co(2)-O(3W)#2	180.0	(4)
N(1)#1-Co	(1)-N(7)	89.0(2)	N(6)#4-Co(2)-O(3W)#2	85.8(3	3)
N(1)-Co(1)	-N(7)	174.4(2)	N(6)#3-Co(2)-O(3W)#2	94.2(3	3)
O(1W)-Co	(1) - N(7) # 1	93.8(2)	N(12)#2-Co(2)-O(3W)#2	91.2(2	2)
N(1)#1-Co	(1)-N(7)#1	174 4(2)	$N(12)-C_0(2)-O(3W)#2$	88.8(2	2)
	-N(7)#1	89.0(2)	$N(6)$ #4- $C_0(2)$ - $O(3W)$	94 2(3	3)

Fig. S1 The coordination environment of the Co^{II} ions in 2. All H atoms and lattice water molecules are omitted for clarity. Symmetry code for 2 # 1 - x + 1, y, z; # 2 - x + 3/2, -y + 3/2, -z + 1; # 3 - x + 1, y + 1/2, -z + 1/2.

Fig. S3 The PXRD of compounds 1-4.

Supplementary Material (ESI) for CrystEngComm

This journal is [©] The Royal Society of Chemistry

Fig. S4. The IR spectra of compounds 1-4.

Fig. S5. The TGA curves of compounds 1-4.

Supplementary Material (ESI) for CrystEngComm

This journal is © The Royal Society of Chemistry

Fig. S6. (a) Cyclic voltammograms of the **3**–CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution at different scan rates (from inner to outer: 40, 80, 120, 160, 200, 250, 300, 350, 400, 450, 500 mVs⁻¹); (b) The dependence of anodic peak (II) and cathodic peak (II') currents on scan rates for **3**–CPE; (c) Cyclic voltammograms of **3**-CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 solution containing 0.0–12.0 mM H_2O_2 .

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S7. (a) Cyclic voltammograms of the 4–CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution at different scan rates (from inner to outer: 40, 80, 120, 160, 200, 250, 300, 350, 400, 450, 500 mVs⁻¹); (b) The dependence of anodic peak (I) and cathodic peak (I') currents on the scan rates for 4–CPE; (c) Cyclic voltammograms of 4–CPE in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 solution containing 0.0–12.0 mM H_2O_2 .

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S8. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound **2**.

Fig. S9. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound **3**.

Fig. S10. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound **4**.

Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry

Fig. S11. Emission spectra of the TAPP ligand and compounds 3-4 in the solid state at room temperature.