Supporting information

In-Situ Growth of WO$_{3-x}$ Nanowires on g-C$_3$N$_4$ Nanosheets: 1D/2D Heterostructures with Enhanced Photocatalytic Activity

Zaizhu Loua and Can Xuea,*

a. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore. Email: cxue@ntu.edu.sg

Figure S1 XPS spectrum of elements C and O of sample WO$_{3-x}$/g-C$_3$N$_4$-30.

Figure S2. MO degradation rate over g-C$_3$N$_4$ and WO$_{3-x}$/g-C$_3$N$_4$-30 under irradiation of solar light.
Figure S3. XRD of WO$_{3-x}$/g-C$_3$N$_4$-60

Figure S4. TGA of WO$_{3-x}$/g-C$_3$N$_4$-60

Figure S5. a) TEM and b) SEM of WO$_{3-x}$/g-C$_3$N$_4$-60
Figure S6. Degradation of MO over WO$_{3-x}$/g-C$_3$N$_4$-60 under irradiation of simulated solar light

Figure S7. Recycling photocatalytic reaction of MO degradation over WO$_{3-x}$/g-C$_3$N$_4$-30

Figure S8. TEM image of WO$_{3-x}$/g-C$_3$N$_4$-30 after photocatalytic reaction.
Figure S9. Photocurrent (a) and EIS (b) of g-C$_3$N$_4$ and WO$_{3-x}$/g-C$_3$N$_4$ under solar light irradiation and in dark.