Electronic Supplementary Information (ESI)

Crystallization and Relaxation Dynamics of Amorphous Loratadine under Different Quench-cooling Temperatures

Ruimiao Chang,ab Qiang Fu,a Yong Li,c Mingchan Wang,a Wei Du,a Chun Chang,a and Aiguo Zenga*

aschool of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, PR China
bCollege of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
cDepartment of Pharmacy, Shanxi Dayi Hospital, Taiyuan 030032, PR China
Theoretical Background

Non-isothermal cold crystallization kinetics

Avrami equation is used to describe the non-isothermal crystallization kinetics:

\[X_t = 1 - \exp\left(-K(t - t_0)^n\right) \]

(S1)

where \(X_t \) is the degree of crystallization, \(K \) is the crystallization rate constant depending on the nucleation and growth rate, \(t_0 \) is the induction time of crystallization and \(n \) is the Avrami exponent depending on the nucleation rate and the dimensionality of the crystallization.\(^{1-4}\)

Given the non-isothermal character of the investigated process, Jeziorny\(^4\) suggested that the rate parameter should be corrected and given by \(\log Z_t = \log K / \Phi \) where \(Z_t \) is same as \(K \) as mentioned above, meaning the crystallization rate constant.

In the DSC measurements, \(X_t \) is defined by the follow equation:

\[
X_t = \frac{\int_{t_0}^{t} \frac{dH}{dt} \, dt}{\int_{t_0}^{\infty} \frac{dH}{dt} \, dt} = \frac{A_t}{A_\infty}
\]

(S2)

where \(\frac{dH}{dt} \) is the rate of heat evolution, \(t_0 \) and \(t_\infty \) are respectively the time when crystallization starts and ends and \(A_t \) and \(A_\infty \) are the areas of partially and fully crystallized materials under normalized DSC curve, respectively.

Moreover, the non-isothermal crystallization kinetics of amorphous drugs could be analyzed through the logarithmic form of primary crystallization based on eq S2:

\[
lg[-\ln(1 - X(t))] = \log Z_t + n \log(t - t_0)\]

(S3)

Molecular dynamics

Imaginary complex permittivity could be described by Havriliak–Negami (HN)\(^5,6\), which is employed as:
\[\varepsilon^*(\omega) = \varepsilon_\infty + \sum_k \left(\frac{\Delta \varepsilon}{1 + \left(i \omega \tau_{HN_k}\right)^{a_{HN_k}} \beta_{HN_k}} \right) \]

where \(\varepsilon_\infty \) is the high frequency limit of the real part \(\varepsilon'(\omega) \), \(k \) sums over different relaxation processes (primary or secondary processes), \(\omega = 2\pi f \) is the angular frequency, \(\tau_{HN} \) is the characteristic relaxation time that is related to the frequency of maximal loss \(f_{\text{max}} \), \(\Delta \varepsilon \) is the dielectric relaxation strength of the process under investigation; \(a_{HN} \) and \(\beta_{HN} \) are fractional shape parameters (\(0 < a_{HN} \leq 1 \) and \(0 < a_{HN} \beta_{HN} \leq 1 \)) describing the symmetric and asymmetric broadening of the dielectric spectrum. And for secondary relaxation process (\(\beta \)-relaxation), when \(\beta_{HN} = 1 \) the HN function reduces to Cole–Cole distribution function.\(^7\)

Fragility parameter

Fragility parameter \((m_p)\) is calculated as:\(^8\)

\[m_p \equiv \frac{d \log \tau_\alpha}{d (T_g/T)} \bigg|_{T=T_g} \]

(S5)

This parameter is often used to predict the tendency of glass-forming liquids toward crystallization. The values of \(m_p \) for different materials typically range between \(m_p = 16 \) and about 200.\(^9\) The liquids characterized by small values of \(m_p \) are classified as strong systems \((m < 30)\), whereas large values of \(m_p \) are a feature of fragile materials \((m > 100)\).\(^{10}\) When \(m_p \) falls within the 30 < \(m_p \) < 100 range, the super-cooled liquid is classified as intermediate glass-former.\(^{11}\) The strong liquids usually have a strong thermodynamic stability and a small tendency toward crystallization near \(T_g \). In contrast with the low values found for the strong liquids, it varies rapidly at the temperature near \(T_g \) for fragile glass-formers.

In DSC test, the thermodynamic fragility could be calculated by the following equation:

\[m_p = 56 \frac{T_g \Delta C_p(T_g)}{\Delta H_m} \]

(S6)

where \(\Delta C_p(T_g) \) is the heat capacity at \(T_g \) and \(\Delta H_m \) is the enthalpy of fusion.\(^{12,13}\)
References