Electronic Supplementary Information (ESI)

Crystallization and Relaxation Dynamics of Amorphous Loratadine under Different Quench-cooling Temperatures

Ruimiao Chang,^{ab} Qiang Fu,^a Yong Li,^c Mingchan Wang,^a Wei Du,^a Chun Chang,^a and Aiguo Zeng^{a*}

^aSchool of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China

^bCollege of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China ^cDepartment of Pharmacy, Shanxi Dayi Hospital, Taiyuan 030032, PR China

Theoretical Background

Non-isothermal cold crystallization kinetics

Avrami equation is used to describe the non-isothermal crystallization kinetics:

$$X_{t} = 1 - exp(-K(t - t_{0})^{n})$$
(S1)

where X_t is the degree of crystallization, K is the crystallization rate constant depending on the nucleation and growth rate, t_0 is the induction time of crystallization and n is the Avrami exponent depending on the nucleation rate and the dimensionality of the crystallization.^{1–4}

Given the non-isothermal character of the investigated process, Jeziorny⁴ suggested that the rate parameter should be corrected and given by $\lg Z_t = lg^K / \Phi$ where Z_t is same as *K* as mentioned above, meaning the crystallization rate constant.

In the DSC measurements, X_t is defined by the follow equation:

$$X_{t} = \frac{\int_{t_{0}}^{t} \frac{dH}{dt} dt}{\int_{t_{0}}^{t_{\infty}} \frac{dH}{dt} dt} = \frac{A_{t}}{A_{\infty}}$$
(S2)

where dH/dt is the rate of heat evolution, t_0 and t_∞ are respectively the time when crystallization starts and ends and A_t and A_∞ are the areas of partially and fully crystallized materials under normalized DSC curve, respectively.

Moreover, the non-isothermal crystallization kinetics of amorphous drugs could be analyzed through the logarithmic form of primary crystallization based on eq S2:

$$lg[-ln(1 - X(t))] = lgZ_t + nlg(t - t_0)$$
(S3)

Molecular dynamics

Imaginary complex permittivity could be described by Havriliak–Negami (HN)^{5,6}, which is employed as:

$$\varepsilon^{*}(\omega) = \varepsilon_{\infty} + \sum_{k} \left(\frac{\Delta \varepsilon}{\left(1 + \left(i \omega \tau_{HN_{k}} \right)^{\alpha_{HN_{k}}} \right)^{\beta_{HN_{k}}}} \right)$$
(S4)

where ε_{∞} is the high frequency limit of the real part $\varepsilon'(\omega)$, *k* sums over different relaxation processes (primary or secondary processes), $\omega = 2\pi f$ is the angular frequency, $\tau_{\rm HN}$ is the characteristic relaxation time that is related to the frequency of maximal loss $f_{\rm max}$, $\Delta\varepsilon$ is the dielectric relaxation strength of the process under investigation; $\alpha_{\rm HN}$ and $\beta_{\rm HN}$ are fractional shape parameters ($0 < \alpha_{\rm HN} \le 1$ and $0 < \alpha_{\rm HN}\beta_{\rm HN} \le 1$) describing the symmetric and asymmetric broadening of the dielectric spectrum. And for secondary relaxation process (β -relaxation), when $\beta_{\rm HN} = 1$ the HN function reduces to Cole–Cole distribution function.⁷

Fragility parameter

Fragility parameter (m_p) is calculated as:⁸

$$m_p \equiv \left. \frac{d \log \tau_{\alpha}}{d (T_g/T)} \right|_{T = T_g}$$
(S5)

This parameter is often used to predict the tendency of glass-forming liquids toward crystallization. The values of m_p for different materials typically range between $m_p = 16$ and about 200.⁹ The liquids characterized by small values of m_p are classified as strong systems (m < 30), whereas large values of m_p are a feature of fragile materials (m > 100).¹⁰ When m_p falls within the $30 < m_p < 100$ range, the super-cooled liquid is classified as intermediate glass-former.¹¹ The strong liquids usually have a strong thermodynamic stability and a small tendency toward crystallization near T_g . In contrast with the low values found for the strong liquids, it varies rapidly at the temperature near T_g for fragile glass-formers.

In DSC test, the thermodynamic fragility could be calculated by the following equation:

$$m_p = 56 \frac{T_g \Delta C_p(T_g)}{\Delta H_m}$$
(S6)

where $\Delta C_p(T_g)$ is the heat capacity at T_g and ΔH_m is the enthalpy of fusion.^{12,13}

References

- 1 I. Avramov, K. Avramova and C. Russel, J. Cryst. Growth., 2005, 285, 394.
- 2 M. Avrami, J. Chem. Phys., 1939, 7, 1103.
- 3 M. Avrami, J. Chem. Phys., 1940, 8, 212.
- 4 A. Jeziorny, Polymer, 1978, 19, 1142.
- 5 M. Z. I. Khan, D. Raušl, R. Zanoški, S. Zidar, J. H. Mikulčić, L. Krizmanić, M. Eškinja, B. Mildner and Z. Knežević, *Biol. Pharm. Bull.*, **2004**, 27, 1630.
- 6 A. Nacsa, R. Ambrus, O. Berkesi, P. Szabo-Revesz and Z. Aigner, *J. Pharm. Biomed. Anal.*, **2008**, 48, 1020.
- 7 A. C. Rodrigues, M. T. Viciosa, F. Danède, F. Affouard and N. T. Correia, *Mol. Pharmaceutics*, **2013**, 11, 112.
- 8 C. A. Angell, Chem. Rev., 2002, 102, 2627.
- 9 C. A. Angell, J. Non-Cryst. Solids, 1988, 102, 205.
- 10 Yu, L. Adv. Drug Deliv. Rev., 2001, 48, 27.
- 11 K. Kolodziejczyk, K. Grzybowska, Z. Wojnarowska, M. Dulski, L. Hawelek and M. Paluch, *Cryst. Growth Des.*, **2014**, 14, 3199.
- 12 L. M. Wang, V. Velikov and C. A. Angell, J. Chem. Phys., 2002, 117, 10184.
- 13 L. M. Wang and C. A. Angell, J. Chem. Phys., 2003, 118, 10353.