SUPPORTING INFORMATION

Rational design of triple bridged dinuclear ZnIILnIII based complexes: A structural, magnetic and luminescent study

Andoni Zabala,a Javier Cepeda,a Itziar Oyarzabal,a Antonio Rodríguez-Diéz,b José Ángel García,c José Manuel Seco*a and Enrique Colacio*b

Index:

1. Elemental Analyses and Crystallographic Tables.
2. Experimental XRPD.
3. Continuous Shape Measurements.
5. Luminescence Properties.
1. Elemental Analyses and Crystallographic Tables.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Yield (%)</th>
<th>Formula</th>
<th>% C calc./found</th>
<th>% H calc./found</th>
<th>% N calc./found</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnY}$</td>
<td>39.82/39.66</td>
<td>4.60/4.63</td>
<td>7.74/7.87</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnPr}$</td>
<td>37.15/37.39</td>
<td>4.29/4.72</td>
<td>7.22/7.44</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnNd}$</td>
<td>37.00/37.15</td>
<td>4.27/4.22</td>
<td>7.19/7.04</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnSm}$</td>
<td>36.71/36.41</td>
<td>4.24/4.18</td>
<td>7.13/7.16</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnEu}$</td>
<td>36.63/36.96</td>
<td>4.23/4.47</td>
<td>7.12/7.33</td>
</tr>
<tr>
<td>6</td>
<td>56</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnGd}$</td>
<td>36.39/36.10</td>
<td>4.20/3.95</td>
<td>7.07/6.82</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnTb}$</td>
<td>36.31/36.33</td>
<td>4.19/4.02</td>
<td>7.06/7.25</td>
</tr>
<tr>
<td>8</td>
<td>60</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnDy}$</td>
<td>36.15/36.42</td>
<td>4.17/4.39</td>
<td>7.03/7.29</td>
</tr>
<tr>
<td>9</td>
<td>43</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnHo}$</td>
<td>36.04/35.83</td>
<td>4.16/3.88</td>
<td>7.00/7.12</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnEr}$</td>
<td>35.93/36.26</td>
<td>4.15/3.99</td>
<td>6.98/7.16</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnTm}$</td>
<td>35.86/36.01</td>
<td>4.14/4.29</td>
<td>6.97/7.21</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>$\text{C}{24}\text{H}{33}\text{N}{4}\text{O}{12}\text{ZnYb}$</td>
<td>35.68/35.54</td>
<td>4.12/3.95</td>
<td>6.93/6.72</td>
</tr>
</tbody>
</table>
Table S2.- Bond lengths (Å) and angles (°) for compounds 1, 8, 10 and 11.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>8</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(1)···Zn(1)</td>
<td>3.3164(4)</td>
<td>3.3237(5)</td>
<td>3.3100(4)</td>
<td>3.2945(5)</td>
</tr>
<tr>
<td>Ln(1)-O(1A)</td>
<td>2.2184(17)</td>
<td>2.228(2)</td>
<td>2.210(2)</td>
<td>2.185(3)</td>
</tr>
<tr>
<td>Ln(1)-O(2A)</td>
<td>2.5683(18)</td>
<td>2.581(2)</td>
<td>2.564(2)</td>
<td>2.565(3)</td>
</tr>
<tr>
<td>Ln(1)-O(3A)</td>
<td>2.3172(16)</td>
<td>2.327(2)</td>
<td>2.302(2)</td>
<td>2.291(3)</td>
</tr>
<tr>
<td>Ln(1)-O(4A)</td>
<td>2.4752(18)</td>
<td>2.491(2)</td>
<td>2.469(2)</td>
<td>2.474(3)</td>
</tr>
<tr>
<td>Ln(1)-O(2D)bridge</td>
<td>2.2995(18)</td>
<td>2.311(2)</td>
<td>2.288(2)</td>
<td>2.282(3)</td>
</tr>
<tr>
<td>Ln(1)-O(5A)nitrate</td>
<td>2.431(2)</td>
<td>2.446(3)</td>
<td>2.423(2)</td>
<td>2.421(3)</td>
</tr>
<tr>
<td>Ln(1)-O(6A)nitrate</td>
<td>2.4500(18)</td>
<td>2.465(2)</td>
<td>2.436(2)</td>
<td>2.432(3)</td>
</tr>
<tr>
<td>Ln(1)-O(8A)nitrate</td>
<td>2.4278(18)</td>
<td>2.431(2)</td>
<td>2.411(2)</td>
<td>2.401(3)</td>
</tr>
<tr>
<td>Ln(1)-O(9A)nitrate</td>
<td>2.4823(19)</td>
<td>2.491(3)</td>
<td>2.477(2)</td>
<td>2.444(3)</td>
</tr>
<tr>
<td>Zn(1)-N(1A)</td>
<td>2.101(2)</td>
<td>2.090(3)</td>
<td>2.097(2)</td>
<td>2.086(3)</td>
</tr>
<tr>
<td>Zn(1)-N(2A)</td>
<td>2.147(2)</td>
<td>2.149(3)</td>
<td>2.144(3)</td>
<td>2.148(4)</td>
</tr>
<tr>
<td>Zn(1)-O(1A)</td>
<td>2.0482(18)</td>
<td>2.054(2)</td>
<td>2.049(2)</td>
<td>2.053(3)</td>
</tr>
<tr>
<td>Zn(1)-O(3A)</td>
<td>2.0344(17)</td>
<td>2.030(2)</td>
<td>2.032(2)</td>
<td>2.028(3)</td>
</tr>
<tr>
<td>Zn(1)-O(1D)bridge</td>
<td>1.9658(18)</td>
<td>1.974(2)</td>
<td>1.967(2)</td>
<td>1.970(3)</td>
</tr>
<tr>
<td>Ln(1)-O(1A)-Zn(1)</td>
<td>101.95(8)</td>
<td>101.73(9)</td>
<td>101.94(8)</td>
<td>102.00(12)</td>
</tr>
<tr>
<td>Ln(1)-O(3A)-Zn(1)</td>
<td>99.10(7)</td>
<td>99.20(9)</td>
<td>99.41(8)</td>
<td>99.24(11)</td>
</tr>
<tr>
<td>O(1A)-Ln(1)-O(3A)</td>
<td>65.99(6)</td>
<td>65.96(8)</td>
<td>66.12(7)</td>
<td>66.43(10)</td>
</tr>
<tr>
<td>O(1A)-Ln(1)-O(2D)bridge</td>
<td>84.49(7)</td>
<td>84.38(9)</td>
<td>84.76(8)</td>
<td>84.89(11)</td>
</tr>
<tr>
<td>O(3A)-Ln(1)-O(2D)bridge</td>
<td>77.50(6)</td>
<td>77.40(9)</td>
<td>77.60(8)</td>
<td>78.03(10)</td>
</tr>
<tr>
<td>O(1A)-Zn(1)-O(3A)</td>
<td>74.50(7)</td>
<td>74.81(9)</td>
<td>74.24(8)</td>
<td>73.89(11)</td>
</tr>
<tr>
<td>O(1A)-Zn(1)-O(1D)bridge</td>
<td>103.86(8)</td>
<td>103.73(10)</td>
<td>103.71(9)</td>
<td>103.31(12)</td>
</tr>
<tr>
<td>O(3A)-Zn(1)-O(1D)bridge</td>
<td>109.89(7)</td>
<td>109.77(10)</td>
<td>109.63(9)</td>
<td>110.06(12)</td>
</tr>
<tr>
<td>N(1A)-Zn(1)-N(2A)</td>
<td>86.51(9)</td>
<td>86.38(12)</td>
<td>86.80(10)</td>
<td>86.89(14)</td>
</tr>
</tbody>
</table>
Table S3. Bond lengths (Å) and angles (°) for compounds 1, 8, 10 and 11.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>8</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln(2)···Zn(2)</td>
<td>3.3293(4)</td>
<td>3.3411(5)</td>
<td>3.3270(4)</td>
<td>3.2982(5)</td>
</tr>
<tr>
<td>Ln(2)-O(1B)</td>
<td>2.2320(17)</td>
<td>2.244(2)</td>
<td>2.226(2)</td>
<td>2.208(3)</td>
</tr>
<tr>
<td>Ln(2)-O(2B)</td>
<td>2.5383(18)</td>
<td>2.559(2)</td>
<td>2.537(2)</td>
<td>2.526(3)</td>
</tr>
<tr>
<td>Ln(2)-O(3B)</td>
<td>2.2785(17)</td>
<td>2.294(2)</td>
<td>2.272(2)</td>
<td>2.248(3)</td>
</tr>
<tr>
<td>Ln(2)-O(4B)</td>
<td>2.5622(18)</td>
<td>2.564(2)</td>
<td>2.559(2)</td>
<td>2.533(3)</td>
</tr>
<tr>
<td>Ln(2)-O(2E)bridge</td>
<td>2.2995(18)</td>
<td>2.319(2)</td>
<td>2.299(2)</td>
<td>2.269(3)</td>
</tr>
<tr>
<td>Ln(2)-O(5B)nitrates</td>
<td>2.3960(19)</td>
<td>2.483(3)</td>
<td>2.390(2)</td>
<td>2.371(3)</td>
</tr>
<tr>
<td>Ln(2)-O(6B)nitrates</td>
<td>2.468(2)</td>
<td>2.414(2)</td>
<td>2.456(2)</td>
<td>2.392(4)</td>
</tr>
<tr>
<td>Ln(2)-O(8B)nitrates</td>
<td>2.432(2)</td>
<td>2.530(3)</td>
<td>2.424(2)</td>
<td>2.300(3)</td>
</tr>
<tr>
<td>Ln(2)-O(9B)nitrates</td>
<td>2.537(2)</td>
<td>2.450(3)</td>
<td>2.534(3)</td>
<td>2.591(7)</td>
</tr>
<tr>
<td>Zn(2)-N(1B)</td>
<td>2.112(2)</td>
<td>2.109(3)</td>
<td>2.111(3)</td>
<td>2.105(3)</td>
</tr>
<tr>
<td>Zn(2)-N(2B)</td>
<td>2.134(2)</td>
<td>2.140(3)</td>
<td>2.135(3)</td>
<td>2.126(3)</td>
</tr>
<tr>
<td>Zn(2)-O(1B)</td>
<td>2.0342(18)</td>
<td>2.043(2)</td>
<td>2.035(2)</td>
<td>2.042(3)</td>
</tr>
<tr>
<td>Zn(2)-O(3B)</td>
<td>2.0378(17)</td>
<td>2.037(2)</td>
<td>2.038(2)</td>
<td>2.039(3)</td>
</tr>
<tr>
<td>Zn(2)-O(1E)bridge</td>
<td>1.9865(18)</td>
<td>1.983(2)</td>
<td>1.979(2)</td>
<td>1.981(3)</td>
</tr>
<tr>
<td>Ln(2)-O(1B)-Zn(2)</td>
<td>102.49(7)</td>
<td>102.31(10)</td>
<td>102.55(9)</td>
<td>101.72(11)</td>
</tr>
<tr>
<td>Ln(2)-O(3B)-Zn(2)</td>
<td>100.80(7)</td>
<td>100.79(9)</td>
<td>100.90(8)</td>
<td>100.48(11)</td>
</tr>
<tr>
<td>O(1B)-Ln(2)-O(3B)</td>
<td>65.36(6)</td>
<td>65.32(8)</td>
<td>65.43(7)</td>
<td>66.12(9)</td>
</tr>
<tr>
<td>O(1B)-Ln(2)-O(2E)bridge</td>
<td>83.41(6)</td>
<td>82.91(9)</td>
<td>83.56(8)</td>
<td>85.87(10)</td>
</tr>
<tr>
<td>O(3B)-Ln(2)-O(2E)bridge</td>
<td>82.20(6)</td>
<td>81.67(8)</td>
<td>82.35(8)</td>
<td>83.64(10)</td>
</tr>
<tr>
<td>O(1B)-Zn(2)-O(3B)</td>
<td>73.48(7)</td>
<td>73.79(9)</td>
<td>73.30(8)</td>
<td>73.13(11)</td>
</tr>
<tr>
<td>O(1B)-Zn(2)-O(1E)bridge</td>
<td>103.27(7)</td>
<td>103.22(10)</td>
<td>102.99(9)</td>
<td>103.02(11)</td>
</tr>
<tr>
<td>O(3B)-Zn(2)-O(1E)bridge</td>
<td>106.90(7)</td>
<td>107.46(10)</td>
<td>106.78(9)</td>
<td>105.61(11)</td>
</tr>
<tr>
<td>N(1B)-Zn(2)-N(2B)</td>
<td>86.31(9)</td>
<td>86.29(12)</td>
<td>86.21(10)</td>
<td>86.22(13)</td>
</tr>
</tbody>
</table>
1. Experimental XRPD.

Figure S1. Pattern-matching analyses and experimental XRPD for complexes 1, 8, 10 and 11 together with a simulated pattern from single-crystal X-ray diffractions.
Figure S2.- Pattern-matching analyses and experimental XRPD for complexes 2-7, 9 and 12.
2. Continuous Shape Measurements.

Table S4.- Continuous Shape Measurements for the ZnN$_2$O$_3$ coordination environment.

<table>
<thead>
<tr>
<th>Structure</th>
<th>[ML5]</th>
<th>PP-5</th>
<th>Vac-5</th>
<th>TBPY-5</th>
<th>SPY-5</th>
<th>JTBPY-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp1 (Zn1)</td>
<td></td>
<td>30.703</td>
<td>2.847</td>
<td>2.952</td>
<td>1.043</td>
<td>5.425</td>
</tr>
<tr>
<td>Comp1 (Zn2)</td>
<td></td>
<td>30.959</td>
<td>2.722</td>
<td>3.714</td>
<td>0.772</td>
<td>6.407</td>
</tr>
<tr>
<td>Comp8 (Zn1)</td>
<td></td>
<td>30.747</td>
<td>2.863</td>
<td>2.959</td>
<td>1.068</td>
<td>5.484</td>
</tr>
<tr>
<td>Comp8 (Zn2)</td>
<td></td>
<td>30.754</td>
<td>2.756</td>
<td>3.745</td>
<td>0.799</td>
<td>6.509</td>
</tr>
<tr>
<td>Comp10 (Zn1)</td>
<td></td>
<td>30.652</td>
<td>2.870</td>
<td>2.974</td>
<td>1.084</td>
<td>5.489</td>
</tr>
<tr>
<td>Comp10 (Zn2)</td>
<td></td>
<td>30.763</td>
<td>2.739</td>
<td>3.795</td>
<td>0.803</td>
<td>6.527</td>
</tr>
<tr>
<td>Comp11 (Zn1)</td>
<td></td>
<td>30.916</td>
<td>2.933</td>
<td>2.963</td>
<td>1.104</td>
<td>5.421</td>
</tr>
<tr>
<td>Comp11 (Zn2)</td>
<td></td>
<td>30.459</td>
<td>2.717</td>
<td>3.907</td>
<td>0.783</td>
<td>6.637</td>
</tr>
</tbody>
</table>
Table S5.- Continuous Shape Measurements for the LnO₉ coordination environment.

<table>
<thead>
<tr>
<th>Structure [ML9]</th>
<th>EP-9</th>
<th>OPY-9</th>
<th>HBPY-9</th>
<th>JTC-9</th>
<th>JCCU-9</th>
<th>CCU-9</th>
<th>JCSAPR-9</th>
<th>Comp1 (Y1)</th>
<th>Comp1 (Y2)</th>
<th>Comp8 (Dy1)</th>
<th>Comp8 (Dy2)</th>
<th>Comp10 (Er1)</th>
<th>Comp10 (Er2)</th>
<th>Comp11 (Tm1)</th>
<th>Comp11 (Tm2)</th>
<th>Comp1 (Y1)</th>
<th>Comp1 (Y2)</th>
<th>Comp8 (Dy1)</th>
<th>Comp8 (Dy2)</th>
<th>Comp10 (Er1)</th>
<th>Comp10 (Er2)</th>
<th>Comp11 (Tm1)</th>
<th>Comp11 (Tm2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Structure [ML9]</th>
<th>CSAPR-9</th>
<th>JTCTPR-9</th>
<th>TCTPR-9</th>
<th>JTDIC-9</th>
<th>HH-9</th>
<th>MFF-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp1 (Y1)</td>
<td>2.264</td>
<td>4.876</td>
<td>3.158</td>
<td>9.810</td>
<td>10.067</td>
<td>2.553</td>
</tr>
<tr>
<td>Comp1 (Y2)</td>
<td>3.124</td>
<td>6.061</td>
<td>3.412</td>
<td>9.863</td>
<td>7.918</td>
<td>2.831</td>
</tr>
<tr>
<td>Comp8 (Dy1)</td>
<td>2.196</td>
<td>4.743</td>
<td>3.050</td>
<td>9.966</td>
<td>10.067</td>
<td>2.510</td>
</tr>
<tr>
<td>Comp8 (Dy2)</td>
<td>3.106</td>
<td>5.859</td>
<td>3.610</td>
<td>9.786</td>
<td>7.215</td>
<td>2.640</td>
</tr>
<tr>
<td>Comp10 (Er1)</td>
<td>2.137</td>
<td>4.741</td>
<td>3.049</td>
<td>9.893</td>
<td>10.006</td>
<td>2.492</td>
</tr>
<tr>
<td>Comp10 (Er2)</td>
<td>3.080</td>
<td>5.913</td>
<td>3.509</td>
<td>9.863</td>
<td>7.360</td>
<td>2.617</td>
</tr>
<tr>
<td>Comp11 (Tm1)</td>
<td>2.119</td>
<td>4.721</td>
<td>3.033</td>
<td>9.920</td>
<td>10.184</td>
<td>2.417</td>
</tr>
<tr>
<td>Comp11 (Tm2)</td>
<td>4.513</td>
<td>6.135</td>
<td>5.142</td>
<td>10.060</td>
<td>6.361</td>
<td>3.641</td>
</tr>
</tbody>
</table>

Figure S3.- Temperature dependence of the out-of phase χ''_M susceptibility signals for complexes 3 (top), 7 (middle) and 10 (bottom) under an applied field of 1000 Oe.
Figure S4. Temperature dependence of the in phase χ_M' susceptibility signals for complexes 6 (top), 8 (middle) and 12 (bottom) under an applied field of 1000 Oe.
Figure S5.- Temperature dependence of the in phase χ_M’ susceptibility signals for complexes 3 (top), 7 (middle) and 10 (bottom) under an applied field of 1000 Oe.
Figure S6.- Cole-Cole plots under 1000 Oe field for 6 (top), 8 (middle) and 12 (bottom). Solid lines represent the best fits to the generalized Debye model.
Figure S7.- Variable-temperature frequency dependence of the χ_M'' signal under 1000 Oe applied field for 6 (top), 8 (middle) and 12 (bottom). Solid lines represent the best fitting of the experimental data to the Debye model.
Figure S8.- Temperature dependence of the $\chi_M T$ product at 1000 Oe for complex 6. Inset: M vs. H plot for 6.

4. Luminescence Properties.

Figure S9.- Excitation spectra monitored at 615 nm for 5 (top) and 543 nm for 7 (down) compounds recorded at 10 K.
Figure S10. 10 K excitation spectrum of 4 focusing on the 543 nm.

Figure S11. 10 K excitation spectrum of 8 focusing on the 572 nm.
Figure S12.- Excitation spectrum at 10 K of 6 under emission at 461 nm, together with emission spectra excited at the 434 and 462 nm maxima.

Figure S13.- Emission spectrum at 300 K of 8 excited at 326 nm.
Figure S14.- Emission spectra at 10 K of 4 excited at 305 nm.

Figure S15.- Emission spectra at 10 K of 5 excited at 368 nm.
Figure S16.- Emission spectra at 10 K of 7 excited at 327 nm.

Figure S17.- Emission spectra at 10 K of 11 excited at 325 nm.
Figure S18.- Luminescence decay curves for 4, 5, 7, and 8 compounds at 10 K.

Figure S19.- Micro-photoluminescence images taken on polycrystalline samples at room temperature.