Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

> Electronic Supplementary Information (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

Halogen ... halogen interactions in diiodo-xylenes†

Emily Albright, Jonathan Cann, Andreas Decken and Sara Eisler*

Department of Chemistry, University of New Brunswick,

Fredericton, New Brunswick, Canada E3B 5A3

(506) 238-5066

seisler@unb.ca

Table of Contents	Page
General Information	S2
Synthetic Details for Compounds 1-4	S3
¹ H and ¹³ C NMR Spectra	S9
Single-Crystal X-ray Diffraction Experiments	S17
References	S21

General Information

Commercially available reagents *p*-xylene and *m*-xylene were purchased and used as received. All reactions were performed in air unless otherwise specified. TLC analysis was performed on glass backed plates (60Å) and flash chromatography was performed on ultra-pure flash silica (230-400 mesh size). NMR spectra were recorded using a Varian Inova 300 MHz (¹H: 299.838 MHz, ¹³C: 75.402 MHz) or Varian Unity 400 MHz spectrometer (¹H: 399.945 MHz, ¹³C: 100.577 MHz) with CDCl₃ referenced at 7.26 ppm (¹H) or 77.16 ppm (¹³C). X-ray diffraction data sets for compounds **1-4** were collected on a Bruker AXS P4/SMART 1000 diffractometer. IR spectra were recorded using KBr discs on a Nicolet Nexus 470 FTIR spectrometer using Electrospray Ionization (ESI). Melting points were determined using a DigiMelt melting point apparatus.

Experimental Data

Scheme S1. Synthesis of dinitro-*p*-xylene isomers S2, S3, S4.

2,3-dinitro-*p*-xylene (S2); 2,6-dinitro-*p*-xylene (S3); 2,6-dinitro-*p*-xylene (S4)

p-Xylene **S1** (11.5 mL, 93.3 mmol) was added to a cooled solution of H_2SO_4 and kept at 0 °C for 1 minute. A 1:1 solution of H_2SO_4 (12 mL) and HNO₃ (12 mL) at 0 °C was added slowly to the *p*-xylene solution then heated to 80 °C for 30 minutes. The solution was dumped on ice then extracted with DCM (3 x 10 mL). The organic layer was washed with H_2O (3 x 10 mL) and NaHCO₃ (5 mL) then dried over MgSO₄. The solvent was removed by reduced pressure and all three isomers were obtained in a 2:2:1 (S2:S3:S4) ratio with an 80% overall yield. The 2,3-dinitro-p-xylene **S2** was obtained pure from the mixture of isomers using flash column chromatography (2:1 hexane:ethyl acetate; SiO₂) in a yield of 32% (5.86g). The 2,6-dinitro-p-xylene **S3** was then separated from 2,5-dinitro-p-xylene **S4** by sequential recrystallizations in propanol (2.00 g, 11%). The ¹H and ¹³C NMR spectra of **S2** and **S3** agreed with literature reports.¹ The 2,5-dinitro-p-xylene **S4** was not isolated pure from this reaction.

Scheme S2. Synthesis of 2,5-diiodo-*p*-xylene (1).

2,5-diiodo-*p*-xylene (1)

A mixture of *p*-xylene **S1** (0.656 g, 6.18 mmol), periodic acid (0.564 g, 2.47 mmol), iodine (1.26 g, 4.96 mmol), acetic acid (3 mL), water (0.6 mL), and concentrated H₂SO₄ (0.10 mL) were stirred at 70 °C for 4 h. The reaction mixture was poured into a saturated NaHSO₃ solution. The pink solid was filtered then washed with H₂O (3 x 10 mL) and methanol (3 x 10 mL). The filtrate was left overnight to crystallize and white crystals formed were collected (645 mg, 29%). mp 103-104 °C; R_f 0.67 (hexane); IR (film, KBr) vmax/cm⁻¹ 2974 (CH₃), 2942 (CH₃), 2911 (CH₃), 1435 (CC), 1040 (CH), 741 (CH); δ H(400 MHz, CDCl₃) 2.34 (6H, s), 7.65 (2H, s); δ C(100 MHz, CDCl₃) 27.0, 100.8, 139.4, 140.8; HRMS (ESI+) for C₈H₈I₂ [M]⁺: calcd. 357.8710, found 357.8720.

Scheme S3. Synthesis of 2,6-diiodo-*p*-xylene (2).

2,6-diamino-*p*-xylene (S5)

To a stirred solution of *m*-nitroxylene **S3** (1.185 g, 6.041 mmol) in ethanol (21 mL), was added concentrated HCl (1.8 mL) and Fe powder (2.699 g, 48.33 mmol). The mixture was refluxed for 6 hours then Na₂CO₃ (0.932 g, 8.79 mmol) was added and reflux continued for 30 minutes. Ammonia was added to the mixture to obtain a pH of approx. 10 then cooled to room temperature. The mixture was extracted with ethyl acetate (10 mL) and the organic layer washed with H₂O (3 x 10mL) then dried over MgSO₄. The solvent was removed by reduced pressure and a brown solid was obtained (301 mg, 36%). The ¹H and ¹³C NMR spectra agreed with literature reports.³

2,6-diiodo-*p*-xylene (2)

Diaminoxylene **S5** (200 mg, 1.47 mmol) and NaNO₂ (304 mg, 4.41 mmol) were added to concentrated H_2SO_4 (3.6 mL and 3.0 mL, respectively) in separate flasks. The first solution of **S5** and H_2SO_4 was added to the latter at 0 °C. H_3PO_4 (3.6 mL) was added while the temperature was kept between 0 °C and – 10 °C. The mixture was poured onto a mixture of ice and KI (1.22 g, 7.35 mmol) and allowed to stir overnight. The mixture was extracted with chloroform (3 x 10mL). The organic layer was washed with H_2O (3 x 10 mL), sodium bisulphite (5 mL), then dried over MgSO₄. The solvent was removed by

reduced pressure and a yellow solid was obtained. The crude product was purified using flash chromatography (hexane; SiO₂) which afforded a white solid (190 mg, 25%). mp 70 -71 °C; R_f 0.69 (hexane); IR (film, KBr) vmax/cm⁻¹ 3050 (CH), 2914 (CH₃), 2854 (CH₃), 1444 (CC), 1041 (CH), 845 (CH), 705 (CH); δ H(300 MHz, CDCl₃) 2.21 (3H, s), 2.70 (3H, s), 7.65 (2H, s); δ C(100 MHz, CDCl₃) 19.7, 34.5, 99.1, 139.3, 139.9, 140.3; HRMS (ESI+) for C₈H₈I₂ [M]⁺: calcd. 357.8710, found 357.8708.

Scheme S4. Synthesis of 2,3-diiodo-*p*-xylene (3).

2,3-diamino-p-xylene (S6)

To a stirred solution of *o*-nitroxylene **S2** (3.81 g, 19.4 mmol) in ethanol (50 mL) was added concentrated HCl (6 mL) and Fe powder (7.700 g, 137.9 mmol). The mixture was refluxed for 6 hours then Na₂CO₃ (2.450 g, 23.11 mmol) was added and reflux continued for 30 minutes. Ammonia was added to the mixture to obtain a pH of approx. 10 then cooled to room temperature. The mixture was extracted with ethyl acetate (10 mL) and the organic layer washed with H₂O (3 x 10mL) then dried over MgSO₄. The solvent was removed by reduced pressure and a brown solid was obtained (2.17 g, 82%). The ¹H and ¹³C NMR spectra agreed with literature reports.²

2,3-diiodo-*p*-xylene (3)

Diaminoxylene S6 (0.250 g, 1.84 mmol) and NaNO₂ (2.07 g, 30.0 mmol) were added to concentrated H₂SO₄ (4.5 mL and 3.7 mL, respectively) in separate flasks. The first solution of S6 and H₂SO₄ was added to the latter at 0 °C. H₃PO₄ (4.5 mL) was added while the temperature was kept between 0 °C and – 10 °C. The mixture was poured unto a mixture of ice and KI (1.52 g, 9.18 mmol) and allowed to stir overnight. The mixture was extracted with chloroform (3 x 10mL). The organic layer was washed with H₂O (3 x 10 mL), sodium bisulphite (5 mL), then dried over MgSO₄. The solvent was removed by reduced pressure and a yellow solid was obtained. The crude product was purified using flash chromatography (hexane; SiO₂) and a colorless liquid was obtained which solidified in the fridge (85 mg, 13%). mp 20 °C; R_f: 0.65 (hexane); IR (film, KBr) vmax/cm⁻¹ 3038 (CH), 2967 (CH₃), 2915 (CH₃), 2851 (CH₃), 1445 (CC), 1053 (CH), 803 (CH); δ H(300 MHz, CDCl₃) 2.58 (6H, s), 7.14 (2H, s); δ C(100 MHz, CDCl₃) 33.0, 116.4, 129.1, 141.8; HRMS (ESI+) for C₈H₈I₂ [M]⁺: calcd. 357.8710, found 357.8694.

Scheme S5. Synthesis of 2,4-diiodo-*m*-xylene (4).

2,4-dibromo-*m*-xylene (S8)

Compound **S8** was prepared from m-xylene **S7**, according to a literature procedure. The ¹H and ¹³C NMR spectra agreed with literature reports.⁴

2,4-diiodo-m-xylene (4)

Dibromoxylene **S8** (3.10 g, 11.8 mmol) was dissolved in 120 mL anhydrous DMF then KI (24.3 g, 147 mmol) and CuI (22.4 g, 118 mmol) were added. The solution was refluxed for 72 hours and filtered. Saturated NH₄Cl (10 mL) was added and the mixture was extracted repeatedly with ether (3 x 10 mL), dried over MgSO₄ and concentrated under reduced pressure to give a crude yellow solid. The compound was purified by column chromatography (hexane; SiO₂) followed by a recrystallization (chloroform) to give a white solid (2.19 g, 52%). mp 71 – 72 °C; R_f 0.64 (hexane); δ H(300 MHz, CDCl₃) 2.34 (6H, s) 7.11 (1H, s) 8.18 (1H, s); δ C(100 MHz, CDCl₃) 27.5, 97.9, 130.9, 141.6, 147.3; IR (film, KBr) vmax/cm⁻¹ 2977 (CH₃), 2951 (CH₃), 2916 (CH₃), 1456 (CC), 1024 (CH), 866 (CH); HRMS (ESI+) for C₈H₈I₂ [M]⁺: calcd. 357.8710, found 357.8697.

Figure S1. ¹H NMR spectrum in CDCl₃ of 2,5-diiodo-*p*-xylene (1).

Figure S2. ¹³C NMR spectrum in CDCl₃ of 2,5-diiodo-*p*-xylene (1).

Figure S3. ¹H NMR spectrum in CDCl₃ of 2,6-diiodo-*p*-xylene (2).

Figure S4. ¹³C NMR spectrum in CDCl₃ of 2,6-diiodo-*p*-xylene (2)

Figure S5. ¹H NMR spectrum in CDCl₃ of 2,3-diiodo-*p*-xylene (3)

Figure S6. ¹³C NMR spectrum in CDCl₃ of 2,3-diiodo-*p*-xylene (3).

Figure S7. ¹H NMR spectrum in CDCl₃ of 2,4-diiodo-*m*-xylene (4).

Figure S8. ¹³C NMR spectrum in CDCl₃ of 2,4-diiodo-*m*-xylene (4).

Single-Crystal X-ray Diffraction Experiments

The crystal and molecular structures of the prepared samples were determined by single crystal X-ray diffraction. X-ray diffraction data sets for compounds **1-4** were collected on a Bruker AXS P4/SMART 1000 diffractometer. Details of data collection and crystal structure refinement are listed in **Table S1**.

	1	2	3	4
molecular formula	C ₈ H ₈ I ₂			
formula weight (g mol ⁻¹)	357.94	357.94	357.94	357.95
crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
space group	C2/c	$P2_1/c$	$P2_1/n$	$Pca2_1$
a (Å)	9.572(5)	8.107(3)	7.2216(7)	8.8117(9)
b (Å)	8.414(5)	16.238(5)	22.988(2)	7.4263(8)
<i>c</i> (Å)	11.973(6)	14.621(5)	17.6581(19)	14.7072(16)
α (Å)	90	90	90	90
β(Å)	105.341(8)	93.570(4)	101.2350 (10)	90
γ (Å)	90	90	90	90
$V(Å^3)$	929.9(8)	1920.8(11)	2875.3(5)	962.41(18)
Z	4	8	12	4
ρ_{calcd} (g cm ⁻¹)	2.557	2.476	2.481	2.470
T (K)	198(1)	173(1)	213(1)	213(1)
μ (mm ⁻¹)	6.692	6.479	6.493	6.466
F(000)	648	1296	1944	648
$R_1, I > 2\sigma$ (%)	0.0341	0.0267	0.0279	0.0310
R_1 , all data (%)	0.0360	0.0310	0.0342	0.0312
$\omega R_2, I > 2\sigma$ (%)	0.0954	0.0687	0.0663	0.0846
ωR_2 , all data	0.0992	0.0710	0.0707	0.0848
no. of measured reflections	2976	12928	19591	6219
no. of independent reflections	1036	4294	6346	2159
no. of obsd reflections, $I > 2\sigma$ (I)	941	3783	5518	2132

 Table S1. Crystallographic Data for Substituted Xylenes 1-4

	Interaction	Distance (Å)	Angles	Degree (°)
1	I1…C1π	3.6120(30)	C1-I1···C1π	161.26(8)
2		3 8645(13)	<i></i>	167.83(10) (A)
2	14…13	5.8045(15)	C14-14…13	$107.83(10)(0_2)$
		-	C10-I3…I4	$97.24(10)(\theta_1)$
	I2…I4	3.8747(11)	C6-I2…I4	$174.56(10)(\theta_2)$
		-	C14-I4…I2	$95.46(10)(\theta_1)$
	I3…I1	3.9018(10)	C10-I3…I1	$171.31(10)(\theta_2)$
		-	C2-I1…I3	$96.45(10)(\theta_1)$
	I1…I2	3.9130(13)	C2-I1…I2	$169.32(10)(\theta_2)$
		-	C6-I2…I1	96.16(10) (θ ₁)
	$H7c\cdots Cg(2a)^1$	2.96	$C7-H7c\cdots Cg(2a)^1$	164.09
3	12 15	3 8956(5)	C10 12 15	$146.04(10)(\theta_{r})$
5	1315	5.0750(5)	C10-13····15	$140.04(10)(0_2)$
		-	C18-I5…I3	81.50(9) (θ ₁)
	I6…I1	3.9700(5)	C19-I6…I1	$172.31(9)(\theta_2)$
		-	C2-I1 …I6	$101.48(10)(\theta_1)$
	I4…I2	3.8780(5)	C11-I4…I2	$122.39(9)(\theta_2)$
		-	C3-I2…I4	$152.05(9)(\theta_1)$
4		2 7027(7)		00 15(15)(0)
4	I2…I1	5.1921(1)	C6-I2…I1	$\delta \delta.15(15)(\theta_1)$
		-	C4-I1…I2	$166.00(14)(\theta_2)$
	$H7c\cdots Cg(4)^2$	2.85	C7-H7c····Cg ²	141.06

Table S2. Interaction distances and angles for compounds 1 - 4

 $^{1}Cg(2a)$ is the ring centroid of compound 2, aryl ring A

 $^{2}Cg(4)$ is the ring centroid of compound 4

Figure S9. Molecular structure of 2,5-diiodo-*p*-xylene (1) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level and H atoms are shown as small spheres of arbitrary radius.

Figure S10. Molecular structure of 2,6-diiodo-*p*-xylene (**2**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level and H atoms are shown as small spheres of arbitrary radius.

Figure S11. Molecular structure of 2,3-diiodo-*p*-xylene (**3**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level and H atoms are shown as small spheres of arbitrary radius.

Figure S12. Molecular structure of 2,4-diiodo-*m*-xylene (4) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level and H atoms are shown as small spheres of arbitrary radius.

References

- 1. Liu, Y.; Zhang, T.; Zhang, J.; Guo, J.; Yu, K.; Molecules, 2005, 10, 978
- Fukuzumi, M.; Nakanishi, W.; Ishikawa, T.; Kumamoto, T.; *Helvetica Chimi ca* Acta, 2014, 97, 1453
- 3. Moron, J.; Landras, C.; Bisagni, E.; J. Heterocyclic Chem, 1992, 29, 1573
- Bonifacio, M. C.; Robertson, C. R.; Jung, J. Y.; King, B. T.; *J. Org. Chem*, 2005, 70, 8522