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Fig. S1. a) [Fe] dependence of hysteresis loops, b) Normalized hysteresis loops of IONP
dispersed in water at distinct [Fe] and under given H,¢ conditions (100 kHz and 25 kA/m).



40 T T T T T T

20 A N

M(AM’/kg)

0
0,03 -002 -001 000 001 002 003

H (MA/m)

Il Calorimetry
Il Magnetic

100

80 |-

60

40

SAR(WIg.,)

20

Fig. S2: Upper part: comparison of mass normalized AC (105 kHz) and DC magnetization
cycles from IONP dispersed in water at room temperature and 2gg./L. Lower part: Comparison
of SAR values obtained by calorimetry (red) and magnetic (black) measurements obtained at 100
kHz and 25 kA/m.
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Figure S3: Maghemite mass-normalized hysteresis loops obtained from IONP colloids in water
(blue line) and glycerol 86% (cyan line) dispersions at 2 mgg./mL under given H,c conditions
(100 kHz).
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Fig. S4: Field intensity dependence of SAR values from IONP dispersed in water at different
[Fe] under given H ¢ frequency (105 kHz).

Numerical simulations

Here, we described the methodology employed to run the simulations of hysteresis loops at given
iron content (2 mgg/mL) and different hydrodynamic sizes. As a consequence, we first
considered M; and K. as varying parameters in the simulations. In a first attempt, we fitted the
hysteresis loop with the following hypothesis: 1) with no size distribution and randomly oriented
anisotropy axis. The results are shown in Figure S5 and evidence that the distribution of
coervice fields is a crucial parameter, ii) taking into account size distribution and with randomly
oriented axis (see Figure S6). The shearing of the hysteresis loop, related to the distribution of
H¢ is better reproduced, but the fact that My is larger experimentally indicates a texturation of the
anisotropy axis in the direction of the magnetic field, ii1) with size distribution and oriented
anisotropy axis (see Figure S7), where a perfect agreement with the experimental loop is
achieved, using Ms = 24.9 Am?/kg and K. = 7200 J/m3. These parameters will then be kept
constant, iv) with the same hypothesis as in iii) but including magnetic dipolar interactions. We
have thus run a simulation with this value for ¢ and N = 2000 particles. Figure S8 illustrates
that, for such a low concentration, magnetic interactions are negligible, so the hysteresis loop is

exactly the same as the one found in iii).
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Fig. S5. Numerical simulations for IONP with Dy=20 nm. Magnetic interactions are neglected.
IONP size distribution is not included. Anisotropy axis are randomly oriented.
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Fig. S6. Numerical simulations for IONP with Dy=20 nm. Magnetic interactions are neglected.
IONP size distribution is included. Anisotropy axis are randomly oriented.
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Fig. S7. Numerical simulations for IONP with Dy=20 nm. Magnetic interactions are neglected.
IONP size distribution is included. Anisotropy axis are oriented in the direction of the field.
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Fig. S8. Numerical simulations for IONP with Dy=20 nm. Magnetic interactions are taken into
account, with N = 2000 and ¢, = 0.038%. IONP size distribution is included. Anisotropy axis are
oriented in the direction of the field.



