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Fig. S1. a) [Fe] dependence of hysteresis loops, b) Normalized hysteresis loops of  IONP 
dispersed in water at distinct [Fe] and under given HAC conditions (100 kHz and 25 kA/m).
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Figure S2

-0,03 -0,02 -0,01 0,00 0,01 0,02 0,03
-40

-20

0

20

40

 

 

M
(A

m
2 /k

g)

H (MA/m)

 AC 
 DC

0

20

40

60

80

100
 Calorimetry
 Magnetic

 

 

 

SA
R(

W
/g

Fe
)

Fig. S2: Upper part: comparison of mass normalized AC (105 kHz) and DC magnetization 
cycles from IONP dispersed in water at room temperature and 2gFe/L. Lower part: Comparison 
of SAR values obtained by calorimetry (red) and magnetic (black) measurements obtained at 100 
kHz and 25 kA/m.
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Figure S3: Maghemite mass-normalized hysteresis loops obtained from IONP colloids in water 
(blue line) and glycerol 86% (cyan line) dispersions at 2 mgFe/mL under given HAC conditions 
(100 kHz).
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Figure S3

Fig. S4: Field intensity dependence of SAR values from IONP dispersed in water at different  
[Fe] under given HAC frequency (105 kHz). 

Numerical simulations

Here, we described the methodology employed to run the simulations of hysteresis loops at given 

iron content (2 mgFe/mL) and different hydrodynamic sizes. As a consequence, we first 

considered Ms and Keff as varying parameters in the simulations. In a first attempt, we fitted the 

hysteresis loop with the following hypothesis:  i) with no size distribution and randomly oriented 

anisotropy axis. The results are shown in Figure S5 and evidence that the distribution of 

coervice fields is a crucial parameter, ii) taking into account size distribution and with randomly 

oriented axis (see Figure S6). The shearing of the hysteresis loop, related to the distribution of 

HC is better reproduced, but the fact that MR is larger experimentally indicates a texturation of the 

anisotropy axis in the direction of the magnetic field, iii) with size distribution and oriented 

anisotropy axis (see Figure S7), where a perfect agreement with the experimental loop is 

achieved, using MS = 24.9 Am2/kg and Keff = 7200 J/m3. These parameters will then be kept 

constant, iv) with the same hypothesis as in iii) but including magnetic dipolar interactions. We 

have thus run a simulation with this value for c and N = 2000 particles.  Figure S8 illustrates 

that, for such a low concentration, magnetic interactions are negligible, so the hysteresis loop is 

exactly the same as the one found in iii).
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Figure S5
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Fig. S5. Numerical simulations for IONP with DH=20 nm. Magnetic interactions are neglected. 
IONP size distribution is not included. Anisotropy axis are randomly oriented. 

Figure S6
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Fig. S6. Numerical simulations for IONP with DH=20 nm. Magnetic interactions are neglected. 
IONP size distribution is included. Anisotropy axis are randomly oriented. 
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Figure S7
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Fig. S7. Numerical simulations for IONP with DH=20 nm. Magnetic interactions are neglected. 
IONP size distribution is included. Anisotropy axis are oriented in the direction of the field. 
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Figure S8

Fig. S8. Numerical simulations for IONP with DH=20 nm. Magnetic interactions are taken into 
account, with N = 2000 and d = 0.038%. IONP size distribution is included. Anisotropy axis are 
oriented in the direction of the field. 
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