Electronic Supplementary Information

Using Ab Initio Molecular Dynamics to Examine Competitive O₂/N₂ Adsorption at Open Metal Sites of M₂(dobdc)

Marie V. Parkes, a Jeffery A. Greathouse, a David B. Hart, a Dorina F. Sava Gallis, b and Tina M. Nenoff c

a Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0754, United States.
b Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.
c Physical Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico, 87185-1415, United States.

Contents

Figure ESI-1 Average M-O₂ bond distances .. 2
Figure ESI-2 Average M-N₂ bond distances .. 3
Figure ESI-3 Average M-O-O angles .. 4
Figure ESI-4 Average M-N-N angles .. 5
Figure ESI-5 Time evolution of adsorption for Fe₂(dobdc)/4:6 O₂:N₂ .. 6
Figure ESI-1. Average M-O₂ bond distances for single-component O₂ systems, for (a) side-on bound and (b) bent O₂ molecules. Side-on bound molecules were those with an M-O-O angle between 67° and 80°; bent molecules had M-O-O angles between 80° and 165°.
Figure ESI-2. Average M-N$_2$ bond distances for single-component N$_2$ systems, for (a) bent and (b) linear N$_2$ molecules. Bent molecules were those with an M-N-N angle between 80° and 165°; linear molecules had M-N-N angles between 165° and 180°.
Figure ESI-3. Average M-O-O angles for single-component O₂ systems, for (a) side-on and (b) bent O₂ molecules. Side-on bound molecules were those with an M-O-O angle between 67° and 80°; bent molecules had M-O-O angles between 80° and 165°.
Figure ESI-4. Average M-N-N angles for single-component N₂ systems, for (a) bent and (b) linear N₂ molecules. Bent molecules were those with an M-N-N angle between 80° and 165°; linear molecules had M-N-N angles between 165° and 180°.
Figure ESI-5. Plots of N₂ and O₂ bound to each Fe metal center of Fe₃(dobdc) over time, for 4:6 O₂:N₂ loadings, at (a) 201 K, (b) 258 K, and (c) 298 K. Each simulation begins with six molecules of N₂ bound to the six metal centers and four molecules of O₂ in the center of the pore.