Electronic Supplementary Information

1 Applications of Virtual Melting

Pressure-induced crystal-crystal and crystal-amorphous PTs via the unstable virtual melt was discussed in1 for materials with the negative derivative of the melting temperature with respect to pressure. They include geological materials (ice, α-quartz, jadeite, and coesite), electronic materials (Si and Ge), and ceramics (graphite and boron nitride). For some cases, this was (and for other materials, it was not) related to the relaxation of internal stresses, and it included both nucleation and growth. Amorphization via virtual melting was observed during heating in experiments2 for Avandia (Rosiglitazone), an anti-diabetic pharmaceutical. The important role of the virtual melting phenomena for the PT and plastic flow in various systems is discussed in3. The PT between square and triangular lattices of colloidal films of microspheres via the IM was in-situ observed in4. One should mention that the thermodynamic and kinetic interpretations of this phenomenon in4 possess significant deficiencies. While it is explicitly stated that PT between two lattices occurs below the bulk melting temperature, the bulk driving force for melting is considered to be positive, which is possible above the bulk melting temperature only. In contrast to the statement in Ref.4, crystal-crystal transformation via virtual and intermediate melting have been reported and analyzed for a decade, utilizing significantly more general thermodynamic and kinetic descriptions and far below the bulk melting temperature1–3,5–10.

Crystal-crystal PTs via an intermediate surface-induced virtual pre-melt and melt were justified thermodynamically in9. Substituting the initial interface with interfaces of lower energy during the formation of melt provides a thermodynamic driving force in addition to (or instead of) relaxation of elastic energy. A similar approach was developed for crystal-crystal PT via virtual melting in bulk, which generalizes the approach developed in7,8,11. Including reduction in the interface energy lead to two important consequences. First, melt can be in thermodynamic equilibrium with an internally non-hydrostatically stressed solid below melting temperature. Thus it is not always a transitional state (virtual melt), but thermodynamically stable (i.e., SS-interface stabilized) intermediate melt (IM). The above theoretical estimates have been confirmed by direct experimental observation of the amorphous few-nanometer size region within the interface between perovskite and pre-perovskite phases in PbTiO$_3$ nanofibers, which represents quenched IM9 (Fig. A.1).

Note that there are many phenomena unrelated to solid-solid PT via the IM which exhibit few-nanometers-size interfacial phases (IPs) within interface between two other phases. They include barrierless austenite nucleation at interfaces between two martensitic variants or twins12–14, formation of intergranular and interface amorphous or crystalline phases (complexions)15–24 in ceramic and metallic systems, and developing interfacial phase diagrams for them17–19, which differ from the phase diagrams for bulk phases, pre-melting at grain boundaries16,25, surface pre-melting and melting26–29 at moving solid-melt-gas interfaces, surface-induced SS phase transformation13,14,30, and
liquid-metal embrittlement. Modeling the behavior of IPs, which are commonly nanometer-size phases, plays a key role in understanding the underlying physics, designing new nanodevices, and improving the current ones.

2 Phase Field Approach

The structural changes are introduced with the help of the order parameters, which describe them and associated material instabilities in a continuous manner. The number of minima of the thermodynamic potential in the order parameters’ space is equal to the number of considered phases or structural states. They are separated by energy barriers. Also, the potential depends on the gradients of the order parameters, which are localized within a finite-width interface, penalize interface energy, and determine the interface width. A linear relationship between the time derivative of order parameters and conjugate thermodynamic forces results in Ginzburg-Landau equations, which describe structural evolution, along with evolving stresses, temperature, and other coupled fields. This is a minimum physics that allows one to describe evolution of multiphase systems with bulk phases separated by finite-width interfaces. Additional important requirements are related to a conceptually correct description of the effect of stress tensors and equilibrium stress-strain curves, consistency with thermodynamic equilibrium and instability conditions have been formulated and satisfied for multivariant martensitic PTs for small and large strains, which resulted in more sophisticated expressions for thermodynamic potentials and transformation strains. Still, these theories have a significant drawback: while each austenite-martensitic variant PT is described with a help of a single order parameter, variant-variant transformation (twinning) is described utilizing two order parameters. This does not allow one to obtain an analytical solution for the moving interface and ensure the chosen (experimentally determined) interface energy, width, and velocity by proper calibration of the material parameters of the model. The trajectory of the solution in the plane of two order parameters cannot be properly controlled.

An alternative approach developed by a different research community for multiphase PTs, including melting, is based on utilizing the constraint that the sum of all order parameters is equal to unity, like the concentration of phases. One of the main goals is to constrain a trajectory in the order parameter space for PT between any two phases to the straight line, which then can be parameterized with a single order parameter. This eliminates the problem mentioned above, but has two consequences. (1) Such a constraining comes with the price of some limitations or oversimplifications of models, see critical review in. (2) This automatically excludes the third phase within interface between two other phases and does not allow one to consider IM. Note that most of these works do not involve stresses, and the requirement that PT criteria should follow from the thermodynamic instability conditions accepted was never applied in them. A more advanced approach to multiphase systems, which includes mechanics and all requirements from, as well as allow one to achieve the description of PT between any two phases with the help of a single order parameter, is presented in. It is based on a new penalizing term and was applied to stress-induced martensitic PTs and twinning, when the third phase is excluded from the interface between two other phases.

3 Analytical relations for interface profile, energy, width, and velocity

The GL equation for PT between two phases without mechanics has an analytical solution, which lead to the following relations for the interface profile, energy, width, and velocity:

\[
\vartheta(x) = 1/\left[1 + e^{-p(x-vt)/\delta_{21}}\right]; \quad \Upsilon(x) = 1/\left[1 + e^{-p(x-vt)/\delta_{0}}\right];
\]

\[
E^{21} = \sqrt{2^{21}\left[A^{21}(\theta) - 3G_{21}^{0}(\theta)\right]/6};
\]

\[
E^{0} = \sqrt{2^{0}\left[A^{0}(\theta) - 3G_{0}^{0}(\theta)\right]/6};
\]

\[
\delta_{21} = \{dq/\vartheta(x), 3/dx\}_{\max}^{-1} = p\sqrt{2^{21}/\{2[A^{21}(\theta) - 3G_{21}^{0}(\theta)]\}};
\]

\[
\delta_{0} = \{dq/\Upsilon(x), 3/dx\}_{\max}^{-1} = p\sqrt{2^{0}/\{2[A^{0}(\theta) - 3G_{0}^{0}(\theta)]\}};
\]

\[
v_{21} = 6L_{21}\delta_{21}D_{21}^{0}(\theta)/p; \quad v_{0} = 6L_{0}\delta_{0}D_{0}^{0}(\theta)/p.
\]
temperature, which can be achieved by $A_{ij}^f = -3\Delta_{ij}$, we have5,6

$$k_E = \frac{E^{21}}{E^0} = \frac{\beta^{21}}{\beta^0} \frac{\Delta_{x_1}(\theta^{21} - \theta^2)}{\Delta_{x_0}(\theta^0 - \theta^0)};$$

$$k_\delta = \frac{\delta^{21}}{\delta^0} = \frac{\beta^{21}}{\beta^0} \frac{\Delta_{y_0}(\theta^0 - \theta^0)}{\Delta_{x_1}(\theta^{21} - \theta^1)}.$$ \hspace{1cm} (A.5)

The energy of the SMS interface is measured with respect to corresponding solid phases from each side of the interface5,6,51

$$E^* = \int_{x_0-0.5}^{x_0+0.5} \left[(\psi - \psi_1) dx + \int_{x_0-0.5}^{x_0+0.5} (\psi - \psi_2) dx \right], \hspace{1cm} (A.6)$$

where $x_0 = 0.5$. For the 2-3-4 potential and two-phase interface without any IM, the Gibbs dividing plane is proved to be located at $x_0 = 0.5$50. Here, we have assumed the same location for the dividing surface for SMS interface. A strict solution for determining the location of dividing surface in presence of IM, based on approach similar to one in50,52, is left for future.

4 Thermomechanical properties of HMX

Thermomechanical properties of the model material, HMX, is presented in Table A.2.

5 Initial conditions

The SS diffuse interface $\phi(x)$ or $\phi(r)$ for initial conditions is obtained first by using either a sharp interface or the static analytical solution (A.1).1

Critical nuclei — In order to obtain solutions for CN\textsubscript{1} and CN\textsubscript{2} of the IM by using a solver for a stationary solution, initial conditions should be as close as possible to the final solutions shown in Figs. (12) and (13) of the main text. To address this problem, the following initial conditions for Υ^CN_1 for CN\textsubscript{1},

$$\Upsilon^\text{CN}_1 = \left[1 + \exp \left\{ -\left(z - z_0 - W/2 \right)/\delta^{20} \right\} \right]^{-1}$$

$$+ \left[1 + \exp \left\{ \left(z + z_0 - W/2 \right)/\delta^{10} \right\} \right]^{-1} H(r_0). \hspace{1cm} (A.7)$$

is superposed on SS interface in a box of radius r_0. Here W is the length of the sample in z direction, H is the Heaviside step function, and z_0 is a parameter determining width of CN\textsubscript{1}. Although appropriate value of z_0 that gives the CN is a strong function of the system parameters k_E and k_δ, we found that an initial guess of $z_0 \sim 0.5\delta^{21}$ is an appropriate choice. The Heaviside function H is smoothed to avoid numerical instabilities, and this smoothness depends on the chosen material parameters. For the models with mechanics and interfacial tension solution for the CN can converged much faster by solving first the problem without mechanics and use this solution as the initial condition for the complete model. Gradual increasing of the thermodynamic driving forces corresponding to the elastic energy might be necessary to avoid diverging of the numerical solution. For CN\textsubscript{1} we can use a modified version of Eq. (A.7) as $\Upsilon^\text{CN}_2(z,r) = 1 - \Upsilon^\text{CN}_1(z,r)$, with a large z_0 value — e.g., $z_0 = 8\delta^{21}$.

IM in rectangular sample — Eq. (A.7) can be used for initializing S_1MS_2 interface in the rectangular sample, if we substitute z with x and eliminate the Heaviside function. One has to use large z_0 — e.g., $x \sim 10\delta^{21}$. Formation of IM within SS interface was studied by assigning $\Upsilon = 0.99$ and ϕ to the analytical solution of order parameters for GL equations with $\psi = 0$, i.e., Eq. (A.1), with $v_21 = 0$.

Model verification — To verify the implemented numerical model, simulations are performed for cases in which the model reduces to the one with analytical solution and also cases with previously reported fields. Our numerical simulation results for a two-phase interface without mechanics and IP\textsubscript{s} at different temperatures coincide with the analytical solutions, Eqs. (A.1)-(A.4), and the values reported in Ref.5.

References

11 V. I. Levitas, L. B. Smilowitz, B. F. Henson and B. W. Asay, J.
Table A.2 Thermodynamic and kinetic properties of phase transformations between β, δ, and liquid phases of HMX.

<table>
<thead>
<tr>
<th>Δs ($kJ/m^3.K$)</th>
<th>θ_1 (K)</th>
<th>L ($\mu J/kg$)</th>
<th>ϵ (K)</th>
<th>β (nJ/m)</th>
<th>ϵ_0 (μJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta - \beta$</td>
<td>-141.66</td>
<td>432</td>
<td>1298.3</td>
<td>-1661.6</td>
<td>2.4845</td>
</tr>
<tr>
<td>$m - \delta$</td>
<td>-793.79</td>
<td>550</td>
<td>2596.5</td>
<td>$g(k_F,k_B)$</td>
<td>0.067</td>
</tr>
<tr>
<td>$m - \beta$</td>
<td>-935.45</td>
<td>532.14</td>
<td>2596.5</td>
<td>$g(k_F,k_B)$</td>
<td>-0.147</td>
</tr>
</tbody>
</table>

1. This value was calculated using Eqs. (A.2)-(A.3), assuming $E^{21} = 1.07 J/m^2$ and $\delta^{21} = 1.07 nm$, which are in the range of typical interface energy and width values.