Supporting Information

Thermal decomposition of sodium amide, NaNH$_2$, and sodium amide hydroxide composites, NaNH$_2$–NaOH

Lars H. Jepsena, b Peikun Wangc, Guotao Wuc, Zhitao Xiongc, Flemming Besenbacherd, Ping Chenc

and Torben R. Jensena

aCenter for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

bDanish Technological Institute, Kongsvang Alle 29, 8000 Aarhus C, Denmark

cDalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, P.R. China

dInterdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.

*Corresponding author
Figure S1 Rietveld refinement of SR-PXD data for 0.33NaNH$_2$-0.67NaOH (s12) measured at 177 °C, λ = 0.69449 Å. Tic marks NaOH, 31.8 wt% (top) and Na(OH)$_{1-x}$(NH$_2$)$_x$, 68.2 wt%. The following agreement factors were obtained for Na(OH)$_{1-x}$(NH$_2$)$_x$: R_B = 4.95 %, R_F = 6.63 %, R_p = 1.73 %, R_{wp} = 2.99 % (not corrected for background) and $\chi^2 = 0.204 \cdot 10^4$ (this value is high because of the very high counting statistics accumulated by the 2D detector).
Figure S2 In-situ SR-PXD of 0.33NaNH$_2$-0.67NaOH (s12) during heating from RT to 250 °C (5 °C/min, λ = 0.69449 Å). The temperature difference between each PXD pattern is approx. 2 °C. A zoom of this data in the 2θ range 6.3° to 7.8° is shown in Figure 1a. Symbols: △ NaNH$_2$; □ NaOH; ▲Na(OH)$_{1-x}$(NH$_2$)$_x$.
Figure S3 FTIR spectrum collected at RT for 0.70NaNH₂-0.30NaOH (s8) heated to 160 °C.
Figure S4 *In-situ* SR-PXD of NaNH$_2$ (s2) measured during heating from RT to 200 °C and subsequent cooling to RT (± 5 °C/min, $\lambda = 0.39997$ Å). Symbols: △ NaNH$_2$; □ NaOH; ▼ Na(OH)$_{1-x}$(NH$_2$)$_x$.
Figure S5 *In-situ* SR-PXD of 0.60NaNH$_2$-0.40NaOH (s10) measured during heating from RT to 175 °C and subsequent cooling to RT (± 5 °C/min, λ = 0.39997 Å). Symbols: △ NaNH$_2$; □ NaOH; ▼Na(OH)$_{1-x}$(NH$_2$)$_x$; ■ u1.
Figure S6 In-situ SR-PXD of 0.72NaNH$_2$-0.28NaOH (s7) measured during heating from RT to 175 °C and subsequent cooling to RT (± 5 °C/min, $\lambda = 0.39997$ Å). Symbols: △ NaNH$_2$; □ NaOH; ▼Na(OH)$_{1-x}$(NH$_2$)$_x$; ■ u1.
Figure S7 In-situ SR-PXD of 0.74NaNH$_2$-0.26NaOH (s6) measured during heating from RT to 165 °C and subsequent cooling to RT (± 5 °C/min, $\lambda = 0.39997$ Å). Symbols: Δ NaNH$_2$; □ NaOH; ▼Na(OH)$_{1-x}$(NH$_2$)$_x$; ■ u1.
Figure S8 In-situ SR-PXD of 0.77NaNH$_2$-0.23NaOH (s5) measured during heating from RT to 175 °C and subsequent cooling to 75 °C (± 3.5 °C/min, $\lambda = 0.9937$ Å). Symbols: Δ NaNH$_2$; \Box NaOH; \blacktriangle Na(OH)$_{1-x}$(NH$_2$)$_x$; \blacksquare u1.
Figure S9 Temperature-programmed photographic analysis (TPPA) at 4 °C/min under argon atmosphere for xNaNH$_2$–(1-x)NaOH (x = 1 and 0.77, s2 and s5)

Figure S10 A picture of the glass tube after heating it with NaNH$_2$.