Supporting Information

Conformational Stabilities of Iminoallantoin and its Base Pairs in DNA: Implications for Mutagenicity

N.R. Jena¹*, Manju Bansal², P.C. Mishra³

¹Discipline of Natural Sciences, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur-482005

²Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012

³Department of Physics, Banaras Hindu University, Varanasi-221005

*Corresponding Author’s Email Address: nrjena@iiitdmj.ac.in
Fig. S1: Structures of different tautomers of Ia1 in the R-stereoisomeric conformation (Ia1-R). The relative ZPE-corrected total energies (kcal/mol) calculated with respect to (a) by employing B3LYP/6-31+G* level of theory are shown in parentheses. The energies shown in brackets correspond to the equivalent tautomers of Ia1 in the S-stereoisomeric conformation (Ia1-S).
Fig. S2: Structures of different tautomers of Ia2 in the R-stereoisomeric conformation (Ia2-R). The relative ZPE-corrected total energies (kcal/mol) calculated with respect to (a) by employing B3LYP/6-31+G* level of theory are shown in parentheses. The energies shown in brackets correspond to the equivalent tautomers of Ia2 in the S-stereoisomeric conformation (Ia2-S).
Fig. S3: Structures of different tautomers of Ia3 in the R-stereoisomeric conformation (Ia3-R). The relative ZPE-corrected total energies (kcal/mol) calculated with respect to (a) by employing B3LYP/6-31+G* level of theory are shown in parentheses. The energies shown in brackets correspond to the equivalent tautomers of Ia3 in the S-stereoisomeric conformation (Ia3-S).
Fig. S4: Optimized structures of different rotamers of the most stable tautomer of 2'-deoxyIa in the R- and S-diastereoisomeric conformations in aqueous medium. The χ values of these rotamers obtained at the B3LYP and B3LYP-D3 (in bold) methods are shown for comparison. As the χ values are just higher than the permissible value of a syn-conformation in DNA ($\chi = 0$ to 90 deg), N-glycosidic bond rotation from anti-Ia to syn-Ia would be easy in DNA.
Table S1: The ZPE-corrected binding energies of different complexes involving the R-stereoisomer of Ia (Ia-R) in the *anti*- and *syn*-conformations as obtained in aqueous medium by employing different level of theories. The binding energies of T:G, G:C and T:A complexes are shown in parentheses for comparison. The absence of entry shows that the corresponding complex does not exist.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Method</th>
<th>anti-Ia-R</th>
<th>syn-Ia-R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ia11</td>
<td>Ia12</td>
</tr>
<tr>
<td>Ia:G</td>
<td>B3LYP</td>
<td>-6.84 (-7.41)</td>
<td>-3.07</td>
</tr>
<tr>
<td>Ia:C</td>
<td>B3LYP</td>
<td>-7.21 (-11.63)</td>
<td>-7.01</td>
</tr>
<tr>
<td></td>
<td>ωB97XD</td>
<td>-10.89 (-16.26)</td>
<td>-10.49</td>
</tr>
<tr>
<td>Ia:A</td>
<td>B3LYP</td>
<td>-6.80 (-6.57)</td>
<td>-2.64</td>
</tr>
<tr>
<td>Ia:T</td>
<td>B3LYP</td>
<td>-6.91</td>
<td>-6.80</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a*Obtained by single-point energy calculations by employing B3LYP/6-31+G* geometry.
Fig. S5: Different optimized structures of Ia-R:G complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (c), (e), and (g) G binds with anti-Ia-R in the inverted orientation (G_{inv}). We noted that these complexes can also be formed by binding of G with the inverted anti-Ia-R (anti-Ia-R_{inv}).
Fig. S6: Different optimized structures of Ia-R:C complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (f) C binds with syn-Ia-R in the inverted orientation (C_{inv}). We noted that this complex can also be formed by binding of C with the inverted syn-Ia-R (syn-Ia-R_{inv}).
Fig. S7: Different optimized structures of Ia-R:A complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (b) and (i), A binds with anti-Ia-R and syn-Ia-R in the inverted orientation (A_{inv}) respectively. We noted that these complexes can also be formed by binding of A with the inverted Ia-R in the anti-(anti-Ia-R_{inv}) and syn-(syn-Ia-R_{inv}) conformations respectively.
Fig. S8: Different optimized structures of Ia-R:T complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (b) and (i) T binds with anti-Ia-R and syn-Ia-R in the inverted orientation (T_{inv}) respectively. We noted that these complexes can also be formed by binding of T with the inverted Ia-R in the anti- (anti-Ia-R_{inv}) and syn- (syn-Ia-R_{inv}) conformations respectively.
Table S2: The XYZ-coordinates of the anti-La3\textsubscript{inv}-R:G complex

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.65010300</td>
<td>-0.38529400</td>
<td>0.15799200</td>
</tr>
<tr>
<td>N</td>
<td>4.33245600</td>
<td>-0.23493300</td>
<td>0.53782500</td>
</tr>
<tr>
<td>C</td>
<td>3.33159200</td>
<td>0.22429400</td>
<td>-0.37417500</td>
</tr>
<tr>
<td>C</td>
<td>1.97863200</td>
<td>-0.53739300</td>
<td>-0.26207500</td>
</tr>
<tr>
<td>O</td>
<td>1.86261100</td>
<td>-1.76554300</td>
<td>-0.28933100</td>
</tr>
<tr>
<td>N</td>
<td>0.96647800</td>
<td>0.35635500</td>
<td>-0.13253500</td>
</tr>
<tr>
<td>C</td>
<td>1.50855200</td>
<td>1.59180200</td>
<td>-0.11743800</td>
</tr>
<tr>
<td>N</td>
<td>2.86501000</td>
<td>1.59793700</td>
<td>-0.14402800</td>
</tr>
<tr>
<td>N</td>
<td>6.49182700</td>
<td>-0.83791800</td>
<td>1.13998900</td>
</tr>
<tr>
<td>H</td>
<td>3.73912300</td>
<td>0.11943600</td>
<td>-1.38383100</td>
</tr>
<tr>
<td>H</td>
<td>7.48042600</td>
<td>-0.76494700</td>
<td>0.93815200</td>
</tr>
<tr>
<td>H</td>
<td>6.24017400</td>
<td>-0.75682300</td>
<td>2.11727600</td>
</tr>
<tr>
<td>H</td>
<td>3.40801600</td>
<td>2.40707500</td>
<td>-0.42137500</td>
</tr>
<tr>
<td>O</td>
<td>6.03334300</td>
<td>-0.17611300</td>
<td>-1.00065600</td>
</tr>
<tr>
<td>N</td>
<td>0.74586800</td>
<td>2.67688400</td>
<td>-0.05993600</td>
</tr>
<tr>
<td>H</td>
<td>1.14243300</td>
<td>3.60589000</td>
<td>-0.01374800</td>
</tr>
<tr>
<td>H</td>
<td>-0.27424400</td>
<td>2.55805300</td>
<td>-0.02652900</td>
</tr>
<tr>
<td>H</td>
<td>4.06652000</td>
<td>-0.39544700</td>
<td>1.50186000</td>
</tr>
<tr>
<td>N</td>
<td>-5.70013800</td>
<td>-0.87829700</td>
<td>0.15672100</td>
</tr>
<tr>
<td>C</td>
<td>-6.15188800</td>
<td>0.42248300</td>
<td>0.24987500</td>
</tr>
<tr>
<td>C</td>
<td>-4.33394700</td>
<td>-0.82602100</td>
<td>0.05805000</td>
</tr>
<tr>
<td>H</td>
<td>-7.20577200</td>
<td>0.64906700</td>
<td>0.33743300</td>
</tr>
<tr>
<td>N</td>
<td>-5.17805100</td>
<td>1.30237200</td>
<td>0.21843600</td>
</tr>
<tr>
<td>C</td>
<td>-4.02498100</td>
<td>0.54013900</td>
<td>0.09816400</td>
</tr>
<tr>
<td>N</td>
<td>-3.49302000</td>
<td>-1.87760900</td>
<td>-0.05266400</td>
</tr>
<tr>
<td>C</td>
<td>-2.65086900</td>
<td>0.91999300</td>
<td>0.02255700</td>
</tr>
<tr>
<td>C</td>
<td>-2.22014500</td>
<td>-1.50789400</td>
<td>-0.12978500</td>
</tr>
<tr>
<td>N</td>
<td>-1.81432100</td>
<td>-0.19707200</td>
<td>-0.09334600</td>
</tr>
<tr>
<td>H</td>
<td>-6.26904500</td>
<td>-1.71615300</td>
<td>0.16053000</td>
</tr>
<tr>
<td>N</td>
<td>-1.24868200</td>
<td>-2.44138400</td>
<td>-0.28127000</td>
</tr>
<tr>
<td>H</td>
<td>-0.25632200</td>
<td>-2.21330100</td>
<td>-0.22109000</td>
</tr>
<tr>
<td>H</td>
<td>-1.51507200</td>
<td>-3.41149200</td>
<td>-0.18424100</td>
</tr>
<tr>
<td>O</td>
<td>-2.15303500</td>
<td>2.06601100</td>
<td>0.04942300</td>
</tr>
<tr>
<td>H</td>
<td>-0.79387200</td>
<td>0.00679300</td>
<td>-0.12326200</td>
</tr>
</tbody>
</table>
Table S3: The XYZ-coordinates of the *anti*-Ia3-R:G complex

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.81871700</td>
<td>-1.74555100</td>
<td>0.07470200</td>
</tr>
<tr>
<td>N</td>
<td>3.71986800</td>
<td>-0.98423900</td>
<td>0.41754900</td>
</tr>
<tr>
<td>C</td>
<td>3.33468500</td>
<td>0.16156200</td>
<td>-0.34340300</td>
</tr>
<tr>
<td>C</td>
<td>1.79670200</td>
<td>0.35789000</td>
<td>-0.42067100</td>
</tr>
<tr>
<td>O</td>
<td>1.01281100</td>
<td>-0.53727800</td>
<td>-0.75071200</td>
</tr>
<tr>
<td>N</td>
<td>1.47000200</td>
<td>1.62831900</td>
<td>-0.06737300</td>
</tr>
<tr>
<td>C</td>
<td>2.62189100</td>
<td>2.24893800</td>
<td>0.25837700</td>
</tr>
<tr>
<td>N</td>
<td>3.71871100</td>
<td>1.45297900</td>
<td>0.23504400</td>
</tr>
<tr>
<td>N</td>
<td>5.08082300</td>
<td>-2.80153500</td>
<td>0.90718000</td>
</tr>
<tr>
<td>H</td>
<td>3.75102100</td>
<td>0.05364200</td>
<td>-1.34904000</td>
</tr>
<tr>
<td>H</td>
<td>5.98187400</td>
<td>-3.24450400</td>
<td>0.78442300</td>
</tr>
<tr>
<td>H</td>
<td>4.70305300</td>
<td>-2.83306600</td>
<td>1.84605200</td>
</tr>
<tr>
<td>H</td>
<td>4.66258300</td>
<td>1.81405400</td>
<td>0.16749700</td>
</tr>
<tr>
<td>O</td>
<td>5.48518100</td>
<td>-1.52122400</td>
<td>-0.94437900</td>
</tr>
<tr>
<td>N</td>
<td>2.66405900</td>
<td>3.53597300</td>
<td>0.59227100</td>
</tr>
<tr>
<td>H</td>
<td>3.52102500</td>
<td>3.99330600</td>
<td>0.87404400</td>
</tr>
<tr>
<td>H</td>
<td>1.80743700</td>
<td>4.07356100</td>
<td>0.60419500</td>
</tr>
<tr>
<td>H</td>
<td>3.23866500</td>
<td>-1.15858700</td>
<td>1.29149100</td>
</tr>
<tr>
<td>N</td>
<td>-5.71873200</td>
<td>0.27322300</td>
<td>0.30166100</td>
</tr>
<tr>
<td>C</td>
<td>-6.06767400</td>
<td>-1.06052300</td>
<td>0.37196200</td>
</tr>
<tr>
<td>C</td>
<td>-4.36430500</td>
<td>0.32533800</td>
<td>0.09387200</td>
</tr>
<tr>
<td>H</td>
<td>-7.09206500</td>
<td>-1.36823800</td>
<td>0.53199800</td>
</tr>
<tr>
<td>N</td>
<td>-5.03793300</td>
<td>-1.86259100</td>
<td>0.22434700</td>
</tr>
<tr>
<td>C</td>
<td>-3.95660100</td>
<td>-1.01097200</td>
<td>0.04824600</td>
</tr>
<tr>
<td>N</td>
<td>-3.60895400</td>
<td>1.43863400</td>
<td>-0.03015900</td>
</tr>
<tr>
<td>C</td>
<td>-2.56929000</td>
<td>-1.29379700</td>
<td>-0.16036400</td>
</tr>
<tr>
<td>C</td>
<td>-2.32335900</td>
<td>1.17352200</td>
<td>-0.22809600</td>
</tr>
<tr>
<td>N</td>
<td>-1.81743800</td>
<td>-0.10638500</td>
<td>-0.29260100</td>
</tr>
<tr>
<td>H</td>
<td>-6.34341000</td>
<td>1.06556900</td>
<td>0.38760300</td>
</tr>
<tr>
<td>O</td>
<td>-2.00643200</td>
<td>-2.39683500</td>
<td>-0.23221500</td>
</tr>
<tr>
<td>N</td>
<td>-1.44886900</td>
<td>2.19376500</td>
<td>-0.42078200</td>
</tr>
<tr>
<td>H</td>
<td>-0.44191000</td>
<td>2.05581400</td>
<td>-0.27885200</td>
</tr>
<tr>
<td>H</td>
<td>-1.80676000</td>
<td>3.11696600</td>
<td>-0.21128700</td>
</tr>
<tr>
<td>H</td>
<td>-0.80934400</td>
<td>-0.24125700</td>
<td>-0.46739400</td>
</tr>
</tbody>
</table>
Table S4: The XYZ-coordinates of the \textit{syn}-Ia3-R:G complex

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.29533400</td>
<td>-1.10601700</td>
<td>-0.14663600</td>
</tr>
<tr>
<td>N</td>
<td>2.64284100</td>
<td>-1.24842800</td>
<td>0.07043400</td>
</tr>
<tr>
<td>C</td>
<td>3.45099000</td>
<td>-0.11245500</td>
<td>0.40732700</td>
</tr>
<tr>
<td>C</td>
<td>4.85415000</td>
<td>-0.53007000</td>
<td>0.93789300</td>
</tr>
<tr>
<td>O</td>
<td>5.01340000</td>
<td>-1.37982800</td>
<td>1.81290900</td>
</tr>
<tr>
<td>N</td>
<td>5.82130000</td>
<td>0.17410300</td>
<td>0.28136000</td>
</tr>
<tr>
<td>C</td>
<td>5.18892400</td>
<td>0.93396000</td>
<td>-0.62651400</td>
</tr>
<tr>
<td>N</td>
<td>3.84243900</td>
<td>0.73885200</td>
<td>-0.71654600</td>
</tr>
<tr>
<td>N</td>
<td>0.61371200</td>
<td>-2.20562300</td>
<td>-0.54787600</td>
</tr>
<tr>
<td>H</td>
<td>2.92550100</td>
<td>0.48137500</td>
<td>1.16077400</td>
</tr>
<tr>
<td>H</td>
<td>-0.40839400</td>
<td>-2.15419400</td>
<td>-0.59669100</td>
</tr>
<tr>
<td>H</td>
<td>1.03328100</td>
<td>-3.12540400</td>
<td>-0.50792500</td>
</tr>
<tr>
<td>H</td>
<td>3.21601100</td>
<td>1.45250800</td>
<td>-1.07034600</td>
</tr>
<tr>
<td>O</td>
<td>0.74412500</td>
<td>0.00826700</td>
<td>0.01419400</td>
</tr>
<tr>
<td>N</td>
<td>5.83584700</td>
<td>1.80555000</td>
<td>-1.40111100</td>
</tr>
<tr>
<td>H</td>
<td>5.36863300</td>
<td>2.33886200</td>
<td>-2.12173700</td>
</tr>
<tr>
<td>H</td>
<td>6.83909600</td>
<td>1.89569400</td>
<td>-1.31274300</td>
</tr>
<tr>
<td>H</td>
<td>3.11192300</td>
<td>-2.09351700</td>
<td>-0.23199700</td>
</tr>
<tr>
<td>N</td>
<td>-5.92842800</td>
<td>0.81082400</td>
<td>0.22747900</td>
</tr>
<tr>
<td>C</td>
<td>-6.35863800</td>
<td>-0.44683000</td>
<td>-0.14408700</td>
</tr>
<tr>
<td>C</td>
<td>-4.55905800</td>
<td>0.79393400</td>
<td>0.19859500</td>
</tr>
<tr>
<td>H</td>
<td>-7.41108600</td>
<td>-0.68952300</td>
<td>-0.19893900</td>
</tr>
<tr>
<td>N</td>
<td>-5.36644100</td>
<td>-1.26613400</td>
<td>-0.40762400</td>
</tr>
<tr>
<td>C</td>
<td>-4.22488800</td>
<td>-0.50676400</td>
<td>-0.19967700</td>
</tr>
<tr>
<td>N</td>
<td>-3.73173000</td>
<td>1.82071700</td>
<td>0.49906300</td>
</tr>
<tr>
<td>C</td>
<td>-2.84163000</td>
<td>-0.84257600</td>
<td>-0.31473100</td>
</tr>
<tr>
<td>C</td>
<td>-2.45456500</td>
<td>1.49496800</td>
<td>0.37862900</td>
</tr>
<tr>
<td>N</td>
<td>-2.02115900</td>
<td>0.25130300</td>
<td>-0.00495300</td>
</tr>
<tr>
<td>H</td>
<td>-6.51286100</td>
<td>1.60001900</td>
<td>0.47480200</td>
</tr>
<tr>
<td>N</td>
<td>-1.48476400</td>
<td>2.42940800</td>
<td>0.59163900</td>
</tr>
<tr>
<td>H</td>
<td>-1.76523100</td>
<td>3.26319900</td>
<td>1.09169800</td>
</tr>
<tr>
<td>H</td>
<td>-0.53362100</td>
<td>2.11798700</td>
<td>0.75177900</td>
</tr>
<tr>
<td>O</td>
<td>-2.32424600</td>
<td>-1.93076800</td>
<td>-0.63652400</td>
</tr>
<tr>
<td>H</td>
<td>-0.99852500</td>
<td>0.08834600</td>
<td>-0.05116500</td>
</tr>
</tbody>
</table>
Table S5: The ZPE-corrected binding energies of different complexes involving the S-stereoisomer of Ia (Ia-S) in the anti- and syn-conformations as obtained in aqueous medium. The absence of entry shows that the corresponding complex does not exist.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Method</th>
<th>anti-Ia-S</th>
<th>syn-Ia-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia:G</td>
<td>B3LYP</td>
<td>-6.96</td>
<td>-4.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.12</td>
<td>-7.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.59</td>
<td>-7.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.51</td>
<td>-7.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3.32</td>
<td>-3.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.76</td>
<td>-3.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.68</td>
<td>-5.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.26</td>
<td>-10.27</td>
</tr>
<tr>
<td></td>
<td>B97XD</td>
<td>-10.19</td>
<td>-14.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.41</td>
<td>-15.25</td>
</tr>
<tr>
<td>Ia:C</td>
<td>B3LYP</td>
<td>-5.21</td>
<td>-7.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-7.00</td>
<td>-2.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.09</td>
<td>-5.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.97</td>
<td>-10.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.48</td>
<td>-4.81</td>
</tr>
<tr>
<td></td>
<td>B97XD</td>
<td>-10.49</td>
<td>-10.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.64</td>
<td>-9.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.21</td>
<td>-8.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-15.13</td>
<td>-5.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-14.68</td>
<td>-15.89</td>
</tr>
<tr>
<td>Ia:A</td>
<td>B3LYP</td>
<td>-6.80</td>
<td>-3.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.73</td>
<td>-6.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.31</td>
<td>-5.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.49</td>
<td>-5.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.03</td>
<td>-2.75</td>
</tr>
<tr>
<td></td>
<td>B97XD</td>
<td>-9.97</td>
<td>-6.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9.82</td>
<td>-9.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9.82</td>
<td>-4.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.48</td>
<td>-7.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.36</td>
<td>-9.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.48</td>
<td>-4.48</td>
</tr>
<tr>
<td>Ia:T</td>
<td>B3LYP</td>
<td>-6.92</td>
<td>-6.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4.88</td>
<td>-8.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.30</td>
<td>-6.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.71</td>
<td>-9.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6.19</td>
<td>-6.65</td>
</tr>
<tr>
<td></td>
<td>B97XD</td>
<td>-9.95</td>
<td>-10.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10.11</td>
<td>-8.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-8.71</td>
<td>-8.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-11.10</td>
<td>-8.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-9.67</td>
<td>-9.67</td>
</tr>
<tr>
<td></td>
<td>B3LYP</td>
<td>-10.35</td>
<td>-10.35</td>
</tr>
<tr>
<td></td>
<td>B97XD</td>
<td>-9.65</td>
<td>-9.65</td>
</tr>
</tbody>
</table>

Obtained by single-point energy calculations by employing B3LYP/6-31+G geometry.
Fig. S9: Different optimized structures of Ia-S:G complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (c), (e), and (g) G binds with anti-Ia-S in the inverted orientation (G_{inv}). We noted that these complexes can also be formed by binding of G with the inverted anti-Ia-S (anti-Ia-S_{inv}).
Fig. S10: Different optimized structures of Ia-S:C complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (g), C binds with syn-Ia in the inverted orientation (C_{inv}). We noted that this complex can also be formed by binding of C with the inverted syn-Ia-S (syn-Ia-S_{inv}).
Fig. S11: Different optimized structures of Ia-S:A complexes as obtained in aqueous medium by employing B3LYP/6-31+G* level of theory. In (b) and (h), A binds with *anti*-Ia-S and *syn*-Ia-S in the inverted orientation (A$_{inv}$) respectively. We noted that these complexes can also be formed by binding of A with the inverted Ia-S in the *anti*-(anti-Ia-S$_{inv}$) and *syn*-(syn-Ia-S$_{inv}$) conformations respectively.
Fig. S12: Different optimized structures of Ia-S:T complexes as obtained in the aqueous medium by employing B3LYP/6-31+G* level of theory. In (b) and (i) T binds with *anti*-Ia-S and *syn*-Ia-S in the inverted orientation (T$_{inv}$) respectively. We noted that these complexes can also be formed by binding of T with the inverted Ia-S in the *anti-* (*anti*-Ia-S$_{inv}$) and *syn-* (*syn*-Ia-S$_{inv}$) conformations respectively.