## **Electronic Supplementary Information**

# Cooperative Enhancement versus Additivity of Two-Photon-Absorption Cross Sections

## in Linear and Branched Squaraine Superchromophores

Harald Ceymann,<sup>a</sup> Arnulf Rosspeintner,<sup>b</sup> Maximilian H. Schreck,<sup>a</sup> Carina Mützel,<sup>a</sup> Andreas Stoy,<sup>a</sup> Eric Vauthey \*<sup>b</sup> and Christoph Lambert\*<sup>a</sup>

<sup>a</sup> Institut für Organische Chemie, Universität Würzburg, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany.

\*E-Mail: christoph.lambert@uni-wuerzburg.de

<sup>b</sup> Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.

## Synthetic procedures

All synthetic preparations were performed in standard glassware. The chemicals were obtained from commercial suppliers and used without further purification. Reactions under nitrogen atmosphere were performed in flame dried glassware. The nitrogen was dried over Sicapent from Merck and oxygen was removed by copper catalyst R3-11 from BASF. The solvents were dried according to standard literature procedures and stored under nitrogen. Silica gel 32-64 µm from Merck was used for flash chromatography.



Scheme S1: Precursors SQA-Br, SQA-B<sub>2</sub>, SQB-Br, SQB-Br<sub>2</sub> and TAA-B<sub>3</sub> and the monomeric squaraines SQA and SQB.

Compounds SQA<sup>1</sup>, SQA-Br<sup>2</sup>, SQA-B<sub>2</sub><sup>1</sup>, SQB<sup>3</sup>, SQB-Br<sup>2</sup>, SQB-Br<sub>2</sub><sup>3</sup> and TAA-B<sub>3</sub><sup>4</sup> were synthesized according to the given literature.

**NMR-Spectra** were recorded on either a Bruker Avance III HD 400 or a Bruker Avance III HD 600 FT-spectrometer. The chemical shifts are relative to the internal standard tetramethylsilane and are given in ppm. The coupling constants are given in Hz. Abbreviations used for the spin multiplicities or for C-atom descriptions are: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, ddd = doublet of doublet of doublet; prim. = primary, sec. = secondary, tert. = tertiary, quart. = quaternary. Multiplet signals or overlapping signals in proton NMR spectra that could not be assigned to first order couplings are given as (-).

**High resolution mass spectrometry** was performed on a Bruker Daltonics microTOF focus (ESI).



Scheme S2: Synthesis of the precursors SQA-B, SQB-B and SQB-B<sub>2</sub>.

The precursors **SQA-B**, **SQB-B** and **SQB-B**<sub>2</sub> were synthesised by a Pd-catalysed *Miyaura* borylation reaction of their brominated analogues with 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane).



Scheme S3: Synthesis of the dimers dSQA and dSQB.



Scheme S4: Synthesis of the trimers tSQA and tSQB and the functionalized dimer dSQA-B.

The dimers **dSQA** and **dSQB** and the trimers **tSQA** and **tSQB** were synthesised by Pdcatalysed *Suzuki* coupling reactions. In the case of the transoid **tSQA** the reaction educts were used in a 1:1 ratio in order to isolate the borylated dimer **dSQA-B** as well. For the cisoid **tSQB** the ratios were 2:1, therefore almost no dimer formation was observed.



Scheme S5: Synthesis of the star shaped trimers SQA-TAA and SQB-TAA.



Scheme S6: Synthesis of the star shaped trimers SQA-ben and dSQA-ben.

The star shaped trimers **SQA-TAA**, **SQB-TAA**, **SQA-ben** and **dSQA-ben** were synthesised via Pd-catalysed *Suzuki* coupling reactions. In the case of the TAA core the brominated monomer squaraines **SQA-Br** or **SQB-Br** and the borylated **TAA-B**<sub>3</sub> were used. For the trimers with benzene as core the borylated squaraines **SQA-B** or **dSQA-B** and 1,3,5-tribrombenzene were used.



Under nitrogen atmosphere **SQA-Br** (500 mg, 661 µmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'bi(1,3,2-dioxaborolane) (168 mg, 662 µmol) and KOAc (64.9 mg, 661 µmol) were dissolved in dry 1,4-dioxane (10 ml). The solution was degassed for 10 min. Then Pd(PhCN)<sub>2</sub>Cl<sub>2</sub> (12.7 mg, 33.1 µmol) and 1,1'-bis(diphenylphosphino)ferrocene (18.3 mg, 33.0 µmol) were added and the blue solution was refluxed under exclusion of light for 18 h. The solvent was removed *in vacuo* and the blue residue was purified by flash-chromatography (eluent: PE/EA 1:1  $\rightarrow$  DCM/EA 1:1). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 377 mg (470 µmol; 71 %) of a blue powder

C<sub>52</sub>H<sub>75</sub>BN<sub>2</sub>O<sub>4</sub> [802.98]

#### <sup>1</sup>**H-NMR** (400 MHz, CDCl<sub>3</sub>, 300 K):

$$\begin{split} \delta \text{ [ppm]} &= 7.78 \text{ (dd, } ^{3}J_{\text{HH}} = 8.0 \text{ Hz}, \, ^{4}J_{\text{HH}} = 1.2 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}), \, 7.76 - 7.73 \text{ (m, 1H, -C}\underline{\text{H}}\text{-}), \, 7.36 \text{ (dd, } ^{3}J_{\text{HH}} = 7.7 \text{ Hz}, \, ^{4}J_{\text{HH}} = 0.9 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}), \, 7.31 \text{ (ddd, } ^{3}J_{\text{HH}} = 7.7 \text{ Hz}, \, ^{3}J_{\text{HH}} = 7.7 \text{ Hz}, \, ^{4}J_{\text{HH}} = 1.0 \text{ Hz}, \\ 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}), \, 7.15 \text{ (ddd, } ^{3}J_{\text{HH}} = 7.5 \text{ Hz}, \, ^{3}J_{\text{HH}} = 7.5 \text{ Hz}, \, ^{4}J_{\text{HH}} = 0.7 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}), \, 6.97 \text{ (d, } ^{3}J_{\text{HH}} = 8.3 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}), \, 5.98 \text{ (s, 1H, -C}\underline{\text{C}\underline{\text{H}}\text{-}), \, 5.96 \text{ (s, 1H, -C}\underline{\text{C}\underline{\text{H}}\text{-}), \, 1.85 - 1.46 \text{ (-, 18H, } 2\text{x} - \text{NCH}_2\text{C}\underline{\text{H}}_2\text{-}), \, 2.08 - 1.89 \text{ (-, 2H, 2x} - \text{NCH}_2\text{C}\underline{\text{H}}_2\text{-}), \, 1.85 - 1.46 \text{ (-, 18H, } 2\text{x} - \text{NCH}_2\text{C}\underline{\text{H}}_2\text{-}, \, 2\text{x} - \text{C}\underline{\text{C}\underline{\text{H}}\text{CH}_3}, \, 2\text{x} - \text{C}\underline{\text{C}}(\text{CH}_3)_2, \, 2\text{x} - \text{C}(\text{C}\underline{\text{H}}_3)_2), \, 1.36 \text{ (s, 12H, 2x} - \text{OC}(\text{C}\underline{\text{H}}_3)_2), \, 1.42 - 1.10 \text{ (-, 12H, 2x} - \text{C}\underline{\text{H}}_2\text{C}\underline{\text{H}}_2\text{-}), \, 1.05 \text{ (d, } ^{3}J_{\text{HH}} = 5.7 \text{ Hz}, \, 3\text{H}, -\text{CHC}\underline{\text{H}}_3), \, 1.03 \text{ (d, } ^{3}J_{\text{HH}} = 5.7 \text{ Hz}, \, 3\text{H}, -\text{CHC}\underline{\text{H}}_3), \, 0.87 \text{ (d, } ^{3}J_{\text{HH}} = 6.4 \text{ Hz}, \, 6\text{H}, -\text{CH}(\text{C}\underline{\text{H}}_3)_2), \, 0.86 \text{ (d, } ^{3}J_{\text{HH}} = 6.4 \text{ Hz}, \, 6\text{H}, -\text{CH}(\text{C}\underline{\text{H}}_3)_2). \end{split}$$

SQB-B



Under nitrogen atmosphere **SQB-Br** (1.58 g, 1.97 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'bi(1,3,2-dioxaborolane) (700 mg, 2.76 mmol), and KOAc (615 mg, 6.27 mmol) were dissolved in dry 1,4-dioxane (20 ml). The solution was degassed for 15 min. Then Pd(PhCN)<sub>2</sub>Cl<sub>2</sub> (38.0 mg, 99.1 µmol) and dppf (54.0 mg, 97.4 µmol) were added and the green solution was refluxed under exclusion of light for 18 h. The solvent was removed *in vacuo* and the green residue was purified by flash chromatography (eluent: DCM $\rightarrow$  PE/EA 1:1). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 1.52 g (1.79 mmol, 91 %) of a shiny red powder

C<sub>55</sub>H<sub>75</sub>BN<sub>4</sub>O<sub>3</sub> [851.02]

#### <sup>1</sup>H-NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 300 K):

$$\begin{split} \delta \text{ [ppm]} &= 7.77 \text{ (dd, } {}^{3}J_{\text{HH}} = 8.0 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 7.75 \text{ (s, }1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 7.41 \text{ (dd,} \\ {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 0.8 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 7.36 \text{ (dd, } {}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 7.24 \\ \text{(ddd, } {}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, \, {}^{3}J_{\text{HH}} = 7.6 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 0.8 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 7.09 \text{ (d, } {}^{3}J_{\text{HH}} = 8.0 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \\ 7.04 \text{ (d, } {}^{3}J_{\text{HH}} = 8.0 \text{ Hz}, \, 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 6.51 \text{ (s, } 1\text{H}, \, -\text{C}\underline{\text{H}}\text{-}\text{)}, \, 6.46 \text{ (s, } 1\text{H}, \, -\text{C}\underline{\text{C}}\underline{\text{H}}\text{C}\text{-}\text{)}, \, 4.12 - 3.94 \text{ (-, } 4\text{H}, \\ 2x \text{ -NC}\underline{\text{H}}\underline{2}\text{-}\text{)}, \, 1.85 - 1.71 \text{ (-, } 14\text{H}, 2x \text{ -NC}\underline{\text{H}}_2\underline{\text{C}}\underline{\text{H}}_2\text{-}, 2x \text{ -C}(\underline{\text{C}}\underline{\text{H}}_3)\underline{2}, \, 1.69 - 1.56 \text{ (-, } 4\text{H}, 2x \text{ -NC}\underline{\text{H}}_2\underline{\text{C}}\underline{\text{H}}_2\text{-}, \\ 2x \text{ -C}\underline{\text{H}}\text{C}\underline{\text{H}}_3\text{)}, \, 1.45 - 1.11 \text{ (-, } 26\text{H}, \, 2x \text{ -C}\underline{\text{H}}(\text{C}\underline{\text{H}}_3)\underline{2}, \, 2x \text{ -C}\underline{\text{H}}\underline{2}\underline{\text{C}}\underline{\text{H}}\underline{2}\text{-}, \, 2x \text{ -OC}(\underline{\text{C}}\underline{\text{H}}_3)\underline{2}, \, 1.03 \text{ (d, } \\ {}^{3}J_{\text{HH}} = 6.2 \text{ Hz}, \, 3\text{H}, \text{ -C}\underline{\text{H}}\text{C}\underline{\text{H}}_3\text{)}, \, 1.02 \text{ (d, } {}^{3}J_{\text{HH}} = 6.2 \text{ Hz}, \, 3\text{H}, \text{ -C}\underline{\text{H}}\underline{\text{C}}\underline{\text{H}}_3)\underline{2}, \, 0.87 \text{ (d, } {}^{3}J_{\text{HH}} = 6.8 \text{ Hz}, \, 6\text{H}, \\ -\text{C}\mathbf{\text{H}}(\underline{\text{C}}\underline{\text{H}}_3)\underline{2}, \, 0.86 \text{ (d, } {}^{3}J_{\text{HH}} = 6.8 \text{ Hz}, \, 6\text{H}, -\text{C}\mathbf{\text{H}}(\text{C}\underline{\text{H}}_3)\underline{2}). \end{split}$$

SQB-B<sub>2</sub>



Under nitrogen atmosphere **SQB-Br**<sub>2</sub> (700 mg, 793 µmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'bi(1,3,2-dioxaborolane) (562 mg, 2.21 mmol), and KOAc (248 mg, 2.53 mmol) were dissolved in dry 1,4-dioxane (15 ml). The solution was degassed for 15 min. Then Pd(PhCN)<sub>2</sub>Cl<sub>2</sub> (15.0 mg, 39.1 µmol) and dppf (22.0 mg, 39.7 µmol) were added and the green solution was refluxed under exclusion of light for 18 h. The solvent was removed *in vacuo* and the green residue was purified by flash chromatography (eluent: PE/EA 1:1). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 700 mg (716 µmol, 90 %) of a shiny red powder

 $C_{61}H_{86}B_2N_4O_5$  [976.98]

#### <sup>1</sup>H-NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

$$\begin{split} \delta \text{ [ppm]} &= 7.78 \text{ (dd, } {}^{3}J_{\text{HH}} = 7.8 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 1.2 \text{ Hz}, \, 2\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), \, 7.76 \text{ (s, } 2\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), \, 7.07 \text{ (d, } {}^{3}J_{\text{HH}} = 7.8 \text{ Hz}, \, 2\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), \, 6.49 \text{ (s, } 2\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), \, 4.09 - 3.98 \text{ (m, } 4\text{H}, \, 2\text{x} - \text{NC}\underline{\text{H}}\underline{\text{_2}}\text{-}), \, 1.82 - 1.70 \text{ (-, } 14\text{H}, \, 2\text{x} - \text{NCH}_2\text{C}\underline{\text{H}}\underline{\text{_2}}\text{-}, \, 2\text{x} - \text{C}(\text{C}\underline{\text{H}}\underline{\text{_3}})\underline{\text{_2}}), \, 1.62 - 1.55 \text{ (-, } 4\text{H}, \, 2\text{x} - \text{NCH}_2\text{C}\underline{\text{H}}\underline{\text{_2}}\text{-}, \, 2\text{x} - \text{C}\underline{\text{H}}\text{C}\underline{\text{H}}_3), \, 1.54 - 1.46 \text{ (-, } 2\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}(\text{C}\underline{\text{H}}_3)\underline{\text{_2}}), \, 1.41 - 1.12 \text{ (-, } 36\text{H}, \, 2\text{x} - \text{C}\underline{\text{H}}\underline{\text{2}}\underline{\text{C}}\underline{\text{H}}\underline{\text{_2}}\text{-}, \, 4\text{x} - \text{OC}(\text{C}\underline{\text{H}}\underline{\text{_3}})\underline{\text{_2}}), \, 1.01 \text{ (d, } {}^{3}J_{\text{HH}} = 6.5 \text{ Hz}, \, 6\text{H}, \, 2\text{x} - \text{C}\text{H}\text{C}\underline{\text{H}}_3), \, 0.86 \text{ (d, } {}^{3}J_{\text{HH}} = 6.6 \text{ Hz}, \, 12\text{H}, \, 2\text{x} - \text{CH}(\text{C}\underline{\text{H}}\underline{\text{_3}})\underline{\text{_2}}). \end{split}$$

#### <sup>13</sup>**C-NMR** (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 173.3 (quart.), 172.4 (quart.), 168.0 (quart.), 167.3 (quart.), 144.8 (quart.), 142.1 (quart.), 135.4 (tert.), 128.4 (tert.), 125.4 (quart.), 119.0 (quart.), 109.9 (tert.), 89.9 (tert.), 84.3 (quart.), 49.6 (quart.), 43.3 (sec.), 40.8 (quart.), 39.5 (sec.), 37.4 (sec.), 34.3 (sec.), 31.3 (tert.), 28.4 (tert.), 26.72 (prim.), 26.70 (prim.), 25.04 (prim.), 25.00 (sec.), 22.8 (prim.), 22.7 (prim.), 19.8 (prim.).



Under nitrogen atmosphere **SQA-Br** (37.0 mg, 48.9 µmol) and **SQA-B** (33.0 mg, 41.1 µmol) were dissolved in peroxide-free THF (8 ml). A saturated solution of Na<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the solution was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (4.75 mg, 4.11 µmol) was added and the blue solution was refluxed under exclusion of light for 3 d. The solvent was removed *in vacuo* and the blue residue was purified by flash chromatography (eluent: DCM/MeOH 99:1  $\rightarrow$  98:2). The main fraction was purified by GPC (CHCl<sub>3</sub>). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 37.0 mg (27.4 µmol, 67 %) of a blue powder

 $C_{92}H_{126}N_4O_4\ [1352.01]$ 

#### <sup>1</sup>H-NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

$$\begin{split} &\delta \text{[ppm]} = 7.55 - 7.50 \ (-, 4\text{H}, 4\text{x} - C\underline{\text{H}} -), \ 7.36 \ (\text{d}, \ ^3J_{\text{HH}} = 7.2 \ \text{Hz}, 2\text{H}, 2\text{x} - C\underline{\text{H}} -), \ 7.34 - 7.28 \ (\text{m}, 2\text{H}, 2\text{x} - C\underline{\text{H}} -), \ 7.15 \ (\text{dd}, \ ^3J_{\text{HH}} = 7.2 \ \text{Hz}, \ ^3J_{\text{HH}} = 7.2 \ \text{Hz}, \ 2\text{H}, \ 2\text{x} - C\underline{\text{H}} -), \ 7.02 \ (\text{d}, \ ^3J_{\text{HH}} = 8.4 \ \text{Hz}, \ 2\text{H}, \ 2\text{x} - C\underline{\text{H}} -), \ 6.67 \ (\text{d}, \ ^3J_{\text{HH}} = 7.8 \ \text{Hz}, \ 2\text{H}, \ 2\text{x} - C\underline{\text{H}} -), \ 6.03 - 5.94 \ (-, 4\text{H}, 4\text{x} - C\underline{\text{H}} -), \ 4.17 - 3.88 \ (-, 8\text{H}, 4\text{x} - \text{NC}\underline{\text{H}}_2 -), \ 1.85 \ (\text{s}, \ 12\text{H}, \ 2\text{x} - C(C\underline{\text{H}}_3)_2), \ 1.80 \ (\text{s}, \ 12\text{H}, \ 2\text{x} - C(C\underline{\text{H}}_3)_2), \ 1.71 - 1.57 \ (-, \ 8\text{H}, \ 4\text{x} - \text{NC}\underline{\text{H}}_2 - \frac{1}{2}, \ 4\text{x} - C\underline{\text{H}} - \frac{1}{2}, \ 3J_{\text{HH}} = 6.0 \ \text{Hz}, \ 4\text{H}, \ 4\text{x} - \text{NC}\underline{\text{H}}_2 - \frac{1}{2}, \ 1.45 - 1.10 \ (-, \ 28\text{H}, \ 4\text{x} - C\underline{\text{H}}_2 - \underline{\text{Hz}}_2 - \frac{1}{4} \text{x} - C\underline{\text{H}} - \underline{\text{Hz}}_3)_2), \ 1.07 \ (\text{d}, \ ^3J_{\text{HH}} = 6.0 \ \text{Hz}, \ 6\text{H}, \ 2\text{x} - \text{CH} - \underline{\text{H}}_3), \ 1.05 \ (\text{d}, \ ^3J_{\text{HH}} = 6.0 \ \text{Hz}, \ 6\text{Hz}, \ 2\text{Hz} - C\mathbf{\text{H}} - \underline{\text{Hz}}_3)_2), \ 0.868 \ (\text{d}, \ ^3J_{\text{HH}} = 6.6 \ \text{Hz}, \ 12\text{H}, \ 2\text{x} - C\mathbf{\text{H}} (C\underline{\text{H}}_3)_2). \end{split}$$

<sup>13</sup>**C-NMR** (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 182.5 (2x quart.), 180.2 (quart.), 179.3 (quart.), 170.3 (quart.), 169.4 (quart.), 143.3 (quart.), 142.5 (2x quart.), 141.9 (quart.), 136.8 (quart.), 127.9 (tert.), 126.8 (tert.), 123.9 (tert.),

122.5 (tert.), 121.0 (tert.), 109.6 (tert.), 109.4 (tert.), 87.0 (tert.), 86.8 (tert.), 49.5 (quart.), 49.4 (quart.), 42.3 (2x sec.), 39.32 (sec.), 39.31 (sec.), 37.29 (sec.), 37.26 (sec.), 34.0 (2x sec.), 31.4 (2x tert.), 28.1 (2x tert.), 27.4 (2x prim.), 27.1 (2x prim.), 24.83 (sec.), 24.81 (sec.), 22.848 (prim.), 22.836 (prim.), 22.74 (prim.), 22.73 (prim.), 19.78 (prim.), 19.74 (prim.).

ESI-MS pos (high resolution): [M<sup>+</sup>]

calc.: 1350.97736 m/z found: 1350.97682 m/z Δ: 0.40 ppm

### dSQB



Under nitrogen atmosphere **SQB-Br** (46.0 mg, 57.2 µmol) and **SQB-B** (41.0 mg, 48.2 µmol) were dissolved in peroxide-free THF (8 ml). 2 ml of a saturated solution of Na<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the solution was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (5.57 mg, 4.82 µmol) was added and the green solution was refluxed under exclusion of light for 3 d. The solvent was removed *in vacuo* and the green residue was purified by flash chromatography (eluent: DCM  $\rightarrow$  DCM/MeOH 99.5:0.5  $\rightarrow$  99:1). The main fraction was purified by GPC (CHCl<sub>3</sub>). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 45.0 mg (31.1 µmol, 65 %) of a green powder

C<sub>98</sub>H<sub>126</sub>N<sub>8</sub>O<sub>2</sub> [1448.11]

#### <sup>1</sup>**H-NMR** (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta \text{ [ppm]} = 7.62 - 7.58 (-, 4\text{H}, 4\text{x} - \text{C}\underline{\text{H}}\text{-}), 7.41 (\text{dd}, {}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, {}^{4}J_{\text{HH}} = 0.6 \text{ Hz}, 2\text{H}, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), 7.39 - 7.34 (\text{m}, 2\text{H}, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), 7.26 - 7.20 (\text{m}, 2\text{H}, 2\text{x} - \text{C}\underline{\text{H}}\text{-}), 7.14 (\text{d}, {}^{3}J_{\text{HH}} = 8.4 \text{ Hz}, 2\text{H}, 2\text{x} - \text{C}\underline{\text{H}}\text{-}),$ 

7.09 (d,  ${}^{3}J_{HH}$  = 7.8 Hz, 2H, 2x -C<u>H</u>-), 6.495 (s, 2H, 2x -C<u>H</u>-), 6.489 (s, 2H, 2x -C<u>H</u>-), 4.16 – 3.97 (-, 8H, 4x -NCH<sub>2</sub>C<u>H</u><sub>2</sub>-, 4x -C(C<u>H</u><sub>3</sub>)<sub>2</sub>), 1.71 – 1.47 (-, 12H, 4x -NCH<sub>2</sub>C<u>H</u><sub>2</sub>-, 4x -C<u>H</u>CH<sub>3</sub>, 4x -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.46 – 1.14 (-, 24H, 4x -C<u>H</u><sub>2</sub>C<u>H</u><sub>2</sub>C<u>H</u><sub>2</sub>-), 1.05 (d, {}^{3}J\_{HH} = 6.6 Hz, 6H, 2x -CHC<u>H</u><sub>3</sub>), 1.03 (d, {}^{3}J\_{HH} = 6.6 Hz, 6H, 2x -CHC<u>H</u><sub>3</sub>), 0.87 (d, {}^{3}J\_{HH} = 6.6 Hz, 12H, 2x -CH(C<u>H</u><sub>3</sub>)<sub>2</sub>).

#### <sup>13</sup>C-NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 173.5 (quart.), 172.4 (quart.), 171.4 (quart.), 167.9 (quart.), 166.2 (quart.) 143.7 (quart.), 142.9 (quart.), 142.3 (quart.), 141.9 (quart.), 137.5 (quart.), 128.4 (tert.), 127.2 (tert.), 125.0 (tert.), 122.6 (tert.), 121.1 (tert.), 119.14 (quart.), 119.12 (quart.), 110.7 (tert.), 110.6 (tert.), 89.55 (tert.), 89.51 (tert.), 49.9 (quart.), 49.8 (quart.), 43.4 (2x sec.), 40.6 (2x quart.), 39.52 (sec.), 39.51 (sec.), 37.48 (sec.), 37.46 (sec.), 34.4 (2x sec.), 31.3 (2x tert.), 28.39 (tert.), 28.38 (tert.), 26.87 (prim.), 26.83 (prim.), 26.61 (prim.), 26.60 (prim.), 25.04 (sec.), 25.01 (sec.), 22.82 (prim.), 22.73 (prim.), 22.72 (prim.), 19.82 (prim.), 19.77 (prim.).

**ESI-MS pos** (high resolution): [M<sup>++</sup>]

calc.: 1448.00305 m/z found: 1448.00449 m/z Δ: 0.99 ppm

## dSQA-B and tSQA



Under nitrogen atmosphere **SQA-Br** (332 mg, 439 µmol) and **SQA-B**<sub>2</sub> (429 mg, 462 µmol) were dissolved in peroxide-free THF (10 ml). A saturated solution of Na<sub>2</sub>CO<sub>3</sub> (3 ml) was added and the solution was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (25.4 mg, 22.0 µmol) was added and the blue solution was refluxed under exclusion of light for 4 d. The solvent was removed *in vacuo* and the green residue was purified by flash chromatography (eluent: DCM/MeOH 99:1  $\rightarrow$  98:2). The main fraction was purified by GPC (CHCl<sub>3</sub>) and **dSQA-B** and **tSQA** could be separated. Finally the crude products were dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitates were filtered off and dried under high vacuum.

### dSQA-B:

Yield: 249 mg (168 µmol, 38 %) of a blue powder

C<sub>98</sub>H<sub>137</sub>BN<sub>4</sub>O<sub>6</sub> [1477.97]

#### <sup>1</sup>H-NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

$$\begin{split} \delta \text{ [ppm]} &= 7.75 - 7.72 \text{ (-, 2H, } 2x \text{ -} C\underline{H}\text{-}\text{)}, 7.59 - 7.56 \text{ (-, 4H, } 4x \text{ -} C\underline{H}\text{-}\text{)}, 7.38 \text{ (dd, } {}^{3}J_{\text{HH}}\text{=} 7.2 \text{ Hz}, \\ {}^{4}J_{\text{HH}}\text{=} 0.6 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.32 \text{ (dd, } {}^{3}J_{\text{HH}}\text{=} 7.8 \text{ Hz}, {}^{4}J_{\text{HH}}\text{=} 1.2 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.16 \text{ (ddd,} \\ {}^{3}J_{\text{HH}}\text{=} 7.8 \text{ Hz}, {}^{3}J_{\text{HH}}\text{=} 7.8 \text{ Hz}, {}^{4}J_{\text{HH}}\text{=} 0.6 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.10 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 8.4 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.07 \text{ (d,} \\ {}^{3}J_{\text{HH}}\text{=} 8.4 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.02 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 7.8 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, 7.00 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 8.4 \text{ Hz}, 1\text{H}, -C\underline{H}\text{-}\text{)}, \\ 5.97 \text{ (s, 1H, -C\underline{H}\text{-}), 5.93 \text{ (-, 3H, } 3x \text{ -}C\underline{H}\text{-}\text{)}, 4.15 - 3.92 \text{ (-, 8H, } 4x \text{ -}NC\underline{H}_{2}\text{-}\text{)}, 1.89 - 1.70 \text{ (-, } 28\text{H}, 4x \\ -NC\underline{H}_{2}\underline{C}\underline{H}_{2}\text{-}, 4x \text{ -}C(\underline{C}\underline{H}_{3})_{2}\text{)}, 1.63 - 1.59 \text{ (-, 8H, } 4x \text{ -}NC\underline{H}_{2}\underline{C}\underline{H}_{2}\text{-}, 4x \text{ -}C\underline{H}\underline{C}\underline{H}_{3}), 1.58 - 1.49 \text{ (-, 4H, } 4x \\ -C\underline{H}(CH_{3})_{2}\text{)}, 1.46 - 1.14 \text{ (-, } 36\text{H}, 4x \text{ -}C\underline{H}_{2}\underline{C}\underline{H}_{2}\text{-}, 2x \text{ -}OC(\underline{C}\underline{H}_{3})_{2}\text{)}, 1.084 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.0 \text{ Hz}, 3\text{H}, \\ -CHC\underline{H}_{3}\text{)}, 1.082 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.0 \text{ Hz}, 3\text{H}, \text{ -}CHC\underline{H}_{3}\text{)}, 1.07 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.0 \text{ Hz}, 3\text{H}, \text{ -}CHC\underline{H}_{3}\text{)}, 1.06 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.0 \text{ Hz}, 3\text{H}, \text{ -}CHC\underline{H}_{3}\text{)}, 0.874 \text{ (-, } 12\text{H}, 2x \text{ -}CH(C(\underline{H}_{3})_{2}\text{)}, 0.869 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.6 \text{ Hz}, 6\text{H}, \text{ -}CH(C(\underline{H}_{3})_{2}), 0.866 \text{ (d, } {}^{3}J_{\text{HH}}\text{=} 6.6 \text{ Hz}, 6\text{H}, \text{ -}CH(C(\underline{H}_{3})_{2}). \end{split}$$

#### <sup>13</sup>**C-NMR** (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 182.04 (4x quart.), 181.35 (quart.), 181.0 (quart.), 180.4 (quart.), 180.1 (quart.), 170.2 (quart.), 170.1 (quart.), 169.6 (quart.), 169.4 (quart.), 145.5 (quart.), 143.5 (2x quart.), 142.8 (quart.), 142.6 (quart.), 142.3 (quart.), 142.1 (quart.), 141.8 (quart.), 137.1 (quart.), 136.7 (quart.), 135.3 (tert.), 128.4 (tert.), 128.1 (tert.), 126.9 (2x tert.), 124.1 (quart.), 124.0 (tert.), 122.6 (tert.), 121.1 (2x tert.), 110.1 (tert.), 109.9 (tert.), 109.8 (tert.), 109.0 (tert.), 87.4 (2x tert.), 87.1 (tert.), 86.9 (tert.), 84.2 (quart.), 49.8 (quart.), 49.63 (quart.), 49.57 (quart.), 49.2 (quart.), 42.6 (sec.), 42.5 (sec.), 42.43 (sec.), 42.35 (sec.), 39.5 (4x sec.), 37.48 (sec.), 37.47 (sec.), 34.46 (2x sec.), 34.2 (sec.), 34.12 (sec.), 34.09 (sec.), 34.06 (sec.), 31.5 (4x tert.), 28.37 (2x tert.), 28.36 (2x tert.), 27.28 (prim.), 27.27 (prim.), 27.20 (2x prim.), 27.19 (2x prim.), 27.07 (prim.), 27.06 (prim.), 25.10 (2x sec.), 25.07 (2x sec.), 25.05 (prim.), 22.82 (2x prim.), 22.81 (2x prim.), 22.73 (2x prim.), 22.72 (2x prim.), 19.79 (2x prim.), 19.76 (prim.), 19.75 (prim.).

## tSQA:

Yield: 133 mg (65.6 µmol, 30 %) of a blue powder

C<sub>138</sub>H<sub>188</sub>N<sub>6</sub>O<sub>6</sub> [2027.01]

#### <sup>1</sup>**H-NMR** (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

$$\begin{split} &\delta \text{ [ppm]} = 7.60 - 7.57 \ (-, 6H, 6x - C\underline{H} -), \ 7.56 \ (dd, \ ^4J_{\text{HH}} = 1.8 \ \text{Hz}, \ ^4J_{\text{HH}} = 1.8 \ \text{Hz}, \ 2H, \ 2x \ -C\underline{H} -), \ 7.38 \ (dd, \ ^3J_{\text{HH}} = 7.8 \ \text{Hz}, \ ^2H, \ 2x \ -C\underline{H} -), \ 7.08 \ (dd, \ ^3J_{\text{HH}} = 7.2 \ \text{Hz}, \ ^3J_{\text{H}} = 7.2 \ \text{Hz}, \ ^2H, \ 2x \ -C\underline{H} -), \ 7.08 \ (dd, \ ^3J_{\text{HH}} = 7.2 \ \text{Hz}, \ ^3J_{\text{H}} =$$

#### <sup>13</sup>C-NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 182.1 (3x quart.), 181.0 (quart.), 180.4 (quart.), 180.2 (quart.), 170.2 (quart.), 169.6 (quart.), 169.4 (quart.), 143.5 (2x quart.), 142.8 (quart.), 142.7 (quart.), 142.31 (quart.), 142.26 (quart.), 136.9 (quart.), 136.8 (quart.), 128.1 (tert.), 126.9 (2x tert.), 124.0 (tert.), 122.6 (tert.), 121.1 (2x tert.), 110.04 (tert.), 109.95 (tert.), 109.8 (tert.), 87.3 (tert.), 87.1 (tert.), 86.9 (tert.), 49.68 (quart.), 49.65 (quart.), 49.66 (quart.), 42.52 (2x sec.), 42.45 (sec.), 39.6 (2x sec.), 39.5 (sec.), 37.50 (2x sec.), 37.48 (sec.), 34.19 (sec.), 34.15 (sec.), 34.1 (sec.), 31.5 (3x tert.), 28.39 (2x tert.), 28.38 (tert.), 27.3 (4x prim.), 27.1 (2x prim.), 25.11 (2x sec.), 25.09 (sec.), 22.84 (2x prim.), 22.83 (prim.), 22.75 (2x prim.), 22.74 (prim.), 19.81 (2x prim.), 19.77 (prim.).

**ESI-MS pos** (high resolution): [M<sup>++</sup>]

calc.: 2026.46180 m/z found.: 2026.46389 m/z Δ: 1.03 ppm



Under nitrogen atmosphere **SQB-B**<sub>2</sub> (100 mg, 102 µmol) and **SQB-Br** (181 mg, 225 µmol) were dissolved in peroxide-free THF (8 ml). A saturated solution of Na<sub>2</sub>CO<sub>3</sub> (3 ml) was added and the mixture was degassed 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (9.11 mg, 7.88 µmol) was added and the green solution was refluxed under exclusion of light for 3 d. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (eluent: DCM/MeOH 99:1). The main fraction was purified by GPC (CHCl<sub>3</sub>). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 130 mg (59.9 µmol, 59 %) of a green powder

C<sub>147</sub>H<sub>188</sub>N<sub>12</sub>O<sub>3</sub> [2171.15]

#### <sup>1</sup>**H-NMR** (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta \text{ [ppm]} = 7.62 - 7.59 \text{ (-, 8H, 8x -CH-), 7.41 (d, }^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 2\text{H}, 2\text{ x} -CH-), 7.37 (dd, }^{3}J_{\text{HH}} = 7.8 \text{ Hz}, \, {}^{4}J_{\text{HH}} = 1.0 \text{ Hz}, 2\text{H}, 2\text{ x} -CH-), 7.25 - 7.20 (m, 2\text{H}, 2\text{ x} -CH-), 7.18 - 7.13 (-, 4\text{H}, 4\text{ x} -CH-), 7.09 (d, }^{3}J_{\text{HH}} = 8.0 \text{ Hz}, 2\text{H}, 2\text{ x} -CH-), 6.52 - 6.49 (-, 6\text{H}, 6\text{ x} -CH-), 4.16 - 3.99 (-, 12\text{H}, 6\text{ x} -CH-), 1.88 - 1.75 (-, 42\text{H}, 6\text{ x} -NCH_2CH_2-, 6\text{ x} -C(CH_3)_2), 1.72 - 1.57 (-, 12\text{H}, 6\text{ x} -NCH_2CH_2-, 6\text{ x} -C(HCH_3)_2), 1.57 - 1.49 (-, 6\text{H}, 6\text{ x} -CH(CH_3)_2), 1.44 - 1.19 (-, 36\text{H}, 6\text{ x} -CH_2CH_2-), 1.07 - 1.02 (-, 18\text{H}, 6\text{ x} -CHCH_3), 0.89 - 0.85 (-, 36\text{H}, 6\text{ x} -CH(CH_3)_2).$ 

#### <sup>13</sup>**C-NMR** (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 173.54 (quart.), 173.50 (quart.), 172.4 (quart.), 171.7 (quart.), 171.4 (quart.), 168.0 (quart.), 167.9 (quart.), 167.1 (quart.), 166.5 (quart.), 166.2 (quart.), 143.8 (quart.), 143.7 (quart.), 142.9 (quart.), 142.3 (quart.), 141.9 (quart.), 141.8 (quart.), 137.7 (quart.), 137.4 (quart.), 128.4 (tert.), 127.3 (2x tert.), 125.0 (tert.), 122.6 (2x tert.), 121.2 (tert.), 119.1 (2x quart.), 110.9 (tert.), 110.7 (tert.), 110.6 (tert.), 89.8 (tert.), 89.6 (2x tert.), 49.92 (quart.), 49.91 (quart.), 49.8 (quart.), 43.47 (sec.), 43.37 (2x sec.), 40.75 (quart.), 40.66 (quart.), 39.53 (2x sec.), 39.52

tSQB

(sec.), 37.49 (2x sec.), 37.47 (sec.), 34.45 (sec.), 34.40 (2x sec.), 31.3 (2x tert.), 28.40 (2x tert.), 28.39 (2x tert.), 26.89 (prim.), 26.85 (2x prim.), 26.81 (prim.), 26.62 (prim.), 26.59 (prim.), 25.05 (2x sec.) 25.02 (sec.), 22.83 (2x prim.), 22.82 (prim.), 22.74 (2x prim.), 22.73 (prim.), 19.83 (2x prim.), 19.78 (prim.).

ESI-MS pos (high resolution): [M<sup>·2+</sup>]

 calc.:
 1085.24743 m/z

 found:
 1085.24770 m/z
 Δ: 0.25 ppm

## SQA-TAA



Under nitrogen atmosphere **SQA-Br** (340 mg, 450 µmol) and **TAA-B**<sub>3</sub> (80.0 mg, 128 µmol) were dissolved in peroxide-free THF (12 ml). A saturated solution of K<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the mixture was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (7.42 mg, 6.42 µmol) was added and the blue solution was refluxed under exclusion of light for 3 d. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (eluent: DCM/MeOH 99.5:0.5  $\rightarrow$  99:1  $\rightarrow$  98:2). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 51.0 mg (22.5 µmol; 18 %) of a blue powder

C<sub>156</sub>H<sub>201</sub>N<sub>7</sub>O<sub>6</sub> [2270.31]

#### <sup>1</sup>**H-NMR** (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

δ [ppm] = 7.60 – 7.57 (-, 12H, 12x -C<u>H</u>-), 7.37 (dd, <sup>3</sup>J<sub>HH</sub> = 7.2 Hz, <sup>4</sup>J<sub>HH</sub> = 1.1 Hz, 3H, 3x -C<u>H</u>-), 7.32 (ddd, <sup>3</sup>J<sub>HH</sub> = 7.8 Hz, <sup>3</sup>J<sub>HH</sub> = 7.8 Hz, <sup>4</sup>J<sub>HH</sub> = 1.1 Hz, 3H, 3x -C<u>H</u>-), 7.29 – 7.22 (-, 6H, 6x -C<u>H</u>-), 7.15 (ddd, <sup>3</sup>J<sub>HH</sub> = 7.5 Hz, <sup>3</sup>J<sub>HH</sub> = 7.5 Hz, <sup>4</sup>J<sub>HH</sub> = 0.5 Hz, 3H, 3x -C<u>H</u>-), 7.07 (d, <sup>3</sup>J<sub>HH</sub> = 8.3 Hz, 3H, 3x -C<u>H</u>-), 7.01 (d, <sup>3</sup>J<sub>HH</sub> = 8.0 Hz, 3H, 3x -C<u>H</u>-), 5.93 (s, 3H, 3x -CC<u>H</u>C-), 5.92 (s, 3H, 3x -CC<u>H</u>C-), 4.12 – 3.95 (-, 12H, 6x -NC<u>H<sub>2</sub>-), 1.88 – 1.73 (-, 6H, 6x -NCH<sub>2</sub>C<u>H<sub>2</sub>-), 1.82 (s, 18H, 3x -C(C<u>H<sub>3</sub>)<sub>2</sub>), 1.76 (s, 18H, 3x -C(C<u>H<sub>3</sub>)<sub>2</sub>), 1.70 – 1.59 (-, 12H, 6x -NCH<sub>2</sub>C<u>H<sub>2</sub>-</u>, 6x -C<u>H</u>CH<sub>3</sub>), 1.58 – 1.48 (-, 6H, 6x -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.46 – 1.14 (-, 36H, 6x -C<u>H<sub>2</sub>CH<sub>2</sub>C<u>H<sub>2</sub>-), 1.08</u> (d, <sup>3</sup>J<sub>HH</sub> = 6.0 Hz, 9H, 3x -CHC<u>H<sub>3</sub>), 1.06 (d, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 9H, 3x -CHC<u>H<sub>3</sub></u>), 0.87 (d, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 18H, 3x -CH(C<u>H<sub>3</sub>)<sub>2</sub></u>), 0.86 (d, <sup>3</sup>J<sub>HH</sub> = 6.6 Hz, 18H, 3x -CH(C<u>H<sub>3</sub>)<sub>2</sub></u>).</u></u></u></u></u></u>

#### <sup>13</sup>C-NMR (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 182.0 (2x quart.), 180.6 (quart.), 180.1 (quart.), 170.0 (quart.), 169.5 (quart.), 147.0 (quart.), 143.6 (quart.), 142.8 (quart.), 142.6 (quart.), 142.1 (quart.), 136.6 (quart.), 135.7 (quart.), 128.1 (tert.), 128.0 (2x tert.), 126.6 (tert.), 124.9 (2x tert.), 123.9 (tert.), 122.6 (tert.), 120.9 (tert.), 109.9 (tert.), 109.7 (tert.), 87.0 (tert.), 86.8 (tert.), 49.58 (quart.), 49.58 (quart.), 42.5 (sec.), 42.4 (sec.), 39.52 (sec.), 39.51 (sec.), 37.47 (sec.), 37.45 (sec.), 34.14 (sec.), 34.07 (sec.), 31.50 (prim.), 31.49 (prim.), 28.37 (prim.), 28.36 (prim.), 27.25 (tert.), 27.23 (tert.), 27.08 (tert.), 27.07 (tert.), 25.09 (sec.), 25.07 (sec.), 22.82 (prim.), 22.81 (prim), 22.73 (prim.), 22.72 (prim.), 19.8 (prim.), 19.7 (prim.).

#### **ESI-MS pos** (high resolution): [M<sup>+</sup>]

calc.: 2269.56659 m/z found: 2269.56774 m/z ∆: 0.51 ppm

## SQB-TAA



Under nitrogen atmosphere **SQB-Br** (226 mg, 281 µmol) and **TAA-B**<sub>3</sub> (50.0 mg, 80.2 µmol) were dissolved in peroxide-free THF (10 ml). A saturated solution of K<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the mixture was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (4.64 mg, 4.02 µmol) was added and the green solution was refluxed under exclusion of light for 6 d. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (eluent: DCM/MeOH 99:1  $\rightarrow$  98:2  $\rightarrow$  97:3). The main fraction was purified by GPC (CHCl<sub>3</sub>). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 16.0 mg (6.63 µmol; 8 %) of a green powder

C<sub>165</sub>H<sub>201</sub>N<sub>13</sub>O<sub>3</sub> [2414.45]

#### <sup>1</sup>H-NMR (600 MHz, CD<sub>2</sub>Cl<sub>2</sub>, .293.5 K):

δ [ppm] = 7.61 – 7.58 (-, 12H, 12x -C<u>H</u>-), 7.40 (d, <sup>3</sup>J<sub>HH</sub> = 7.5 Hz, 3H, 3x -C<u>H</u>-), 7.36 (ddd, <sup>3</sup>J<sub>HH</sub> = 7.9 Hz, <sup>3</sup>J<sub>HH</sub> = 7.9 Hz, <sup>4</sup>J<sub>HH</sub> = 0.8 Hz, 3H, 3x -C<u>H</u>-), 7.29 – 7.25 (-, 6H, 6x -C<u>H</u>-), 7.22 (ddd, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>3</sup>J<sub>HH</sub> = 7.6 Hz, <sup>4</sup>J<sub>HH</sub> = 0.6 Hz, 3H, 3x -C<u>H</u>-), 7.14 (d, <sup>3</sup>J<sub>HH</sub> = 9.0 Hz, 3H, 3x -C<u>H</u>-), 7.08 (d, <sup>3</sup>J<sub>HH</sub> = 8.0 Hz, 3H, 3x -C<u>H</u>-), 6.49 (s, 3H, 3x -CC<u>H</u>C-), 6.48 (s, 3H, 3x -CC<u>H</u>C-), 4.14 – 3.98 (-, 12H, 6x -NC<u>H<sub>2</sub>-), 1.87 – 1.73 (-, 6H, 6x -NCH<sub>2</sub>C<u>H<sub>2</sub>-), 1.81 (s, 18H, 3x -C(C<u>H<sub>3</sub>)<sub>2</sub>)</u>, 1.76 (s, 18H, 3x -C(C<u>H<sub>3</sub>)<sub>2</sub>), 1.71 – 1.57 (-, 12H, 6x -NCH<sub>2</sub>C<u>H<sub>2</sub>-</u>, 6x -C<u>H</u>CH<sub>3</sub>), 1.57 – 1.48 (-, 6H, 6x -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.46 – 1.13 (-, 36H, 6x -C<u>H<sub>2</sub>C<u>H<sub>2</sub>-</u>), 1.05 (d, <sup>3</sup>J<sub>HH</sub> = 6.4 Hz, 9H, 3x -CHC<u>H<sub>3</sub></u>),</u></u></u></u>

1.03 (d,  ${}^{3}J_{HH} = 6.5$  Hz, 9H, 3x -CHC<u>H<sub>3</sub></u>), 0.87 (d,  ${}^{3}J_{HH} = 6.6$  Hz, 18H, 3x -CH(C<u>H<sub>3</sub></u>)<sub>2</sub>), 0.86 (d,  ${}^{3}J_{HH} = 6.6$  Hz, 18H, 3x -CH(C<u>H<sub>3</sub></u>)<sub>2</sub>).

#### <sup>13</sup>**C-NMR** (151 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 293.5 K):

 $\delta$  [ppm] = 173.5 (quart.), 172.2 (quart.), 171.6 (quart.), 167.9 (quart.), 166.8 (quart.), 166.3 (quart.), 147.1 (quart.), 143.7 (quart.), 142.9 (quart.), 142.3 (quart.), 141.6 (quart.), 137.5 (quart.), 135.5 (quart.), 128.4 (tert.), 128.2 (2x tert.), 126.8 (tert.), 124.9 (3x tert.), 122.6 (tert.), 120.9 (tert.), 119.17 (quart.), 119.14 (quart.), 110.7 (tert.), 110.5 (tert.), 89.5 (tert.), 89.4 (tert.), 49.8 (2x quart.), 43.4 (sec.), 43.3 (sec.), 40.6 (quart.), 39.54 (sec.), 39.52 (sec.), 37.49 (sec.), 37.47 (sec.), 34.42 (sec.), 34.37 (sec.), 31.3 (tert.), 31.0 (tert.), 28.40 (tert.), 28.39 (tert.), 26.9 (prim.), 26.6 (prim.), 25.04 (sec.), 25.02 (sec.), 22.83 (prim.), 22.82 (prim.), 22.73 (prim.), 19.82 (prim.), 19.78 (prim.).

**ESI-MS pos** (high resolution): [M<sup>·2+</sup>]

calc.: 1206.79983 m/z found.: 1206.80119 m/z Δ: 1.13 ppm SQA-ben



Under nitrogen atmosphere **SQA-B** (150 mg, 187 µmol) and 1,3,5-tribromobenzene (17.8 mg, 56.5 µmol) were dissolved in peroxide-free THF (12 ml). A saturated aqueous solution of K<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the mixture was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (3.27 mg, 2.83 µmol) was added and the solution was refluxed under exclusion of light for 4 d. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (eluent: DCM/MeOH 99.5:0.5  $\rightarrow$  99:1  $\rightarrow$  98:2). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 81.0 mg (38.5 µmol; 68 %) of a blue powder

C<sub>144</sub>H<sub>192</sub>N<sub>6</sub>O<sub>6</sub> [2103.11]

#### <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>, 303.6 K):

 $\delta$  [ppm] = 7.70 (s, 3H, 3x -C<u>H</u>-), 7.65 (dd, <sup>3</sup>*J*<sub>HH</sub> = 8.1 Hz, <sup>4</sup>*J*<sub>HH</sub> = 1.6 Hz, 3H, 3x -C<u>H</u>-), 7.63 (d, <sup>4</sup>*J*<sub>HH</sub> = 1.5 Hz, 3H, 3x -C<u>H</u>-), 7.36 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, 3H, 3x -C<u>H</u>-), 7.31 (ddd, <sup>3</sup>*J*<sub>HH</sub> = 8.1 Hz, <sup>3</sup>*J*<sub>HH</sub> = 8.1 Hz, <sup>4</sup>*J*<sub>HH</sub> = 1.2 Hz, 3H, 3x -C<u>H</u>-), 7.16 (dd, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, 3H, 3x -C<u>H</u>-), 7.08 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.1 Hz, 3H, 3x -C<u>H</u>-), 6.97 (d, <sup>3</sup>*J*<sub>HH</sub> = 8.0 Hz, 3H, 3x -C<u>H</u>-), 6.00 (s, 3H, 3x -C<u>H</u>-), 5.99 (s, 3H, 3x -CC<u>H</u>C-), 4.16 – 3.91 (-, 12H, 6x -NC<u>H</u><sub>2</sub>-), 1.94 – 1.73 (-, 6H, 6x -NCH<sub>2</sub>C<u>H</u><sub>2</sub>-), 1.87 (s, 18H, 3x -C(C<u>H</u><sub>3</sub>)<sub>2</sub>), 1.80 (s, 18H, 3x -C(C<u>H</u><sub>3</sub>)<sub>2</sub>), 1.71 – 1.57 (-, 12H, 6x -NCH<sub>2</sub>C<u>H</u><sub>2</sub>-, 6x -C<u>H</u>CH<sub>3</sub>), 1.57 – 1.48 (-, 6H, 6x -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.45 – 1.11 (-, 36H, 6x -C<u>H</u><sub>2</sub>C<u>H</u><sub>2</sub>C<u>H</u><sub>2</sub>), 1.08 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 9H, 3x -CHC<u>H</u><sub>3</sub>), 1.04 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.2 Hz, 9H, 3x -CHC<u>H</u><sub>3</sub>), 0.88 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.6 Hz, 18H, 3x -CH(C<u>H</u><sub>3</sub>)<sub>2</sub>).

#### <sup>13</sup>**C-NMR** (151 MHz, CDCl<sub>3</sub>, 303.6 K):

 $\delta$  [ppm] = 182.5 (2x quart.), 180.4 (quart.), 179.3 (quart.), 170.4 (quart.), 169.4 (quart.), 143.3 (quart.), 142.6 (2x quart.), 142.44 (quart.), 142.39 (quart.), 137.0 (quart.), 127.9 (tert.), 127.3 (tert.), 125.0 (tert.), 124.0 (tert.), 122.5 (tert.), 121.6 (tert.), 109.6 (tert.), 109.5 (tert.), 87.0 (tert.), 86.8 (tert.), 49.6 (quart.), 49.5 (quart.), 42.3 (2x sec.), 39.32 (sec.), 39.30 (sec.), 37.30 (sec.), 37.26 (sec.), 34.0 (2x sec.), 31.37 (prim.), 31.35 (prim.), 28.12 (prim.), 28.10 (prim.), 27.4 (2x tert.), 27.13 (tert.), 27.12 (tert.), 24.84 (sec.), 24.80 (sec.), 22.87 (prim.), 22.84 (prim.), 22.76 (prim.), 22.74 (prim.), 19.7 (prim.).

**ESI-MS pos** (high resolution): [M<sup>++</sup>]

calc.: 2102.49310 m/z found.: 2102.49663 m/z Δ: 1.68 ppm

## dSQA-ben



Under nitrogen atmosphere **dSQA-B** (150 mg, 101 µmol) and 1,3,5-tribromobenzene (6.26 mg, 19.9 µmol) were dissolved in peroxide-free THF (10 ml). A saturated aqueous solution of K<sub>2</sub>CO<sub>3</sub> (2 ml) was added and the mixture was degassed for 15 min. Then Pd(PPh<sub>3</sub>)<sub>4</sub> (3.45 mg, 2.99 µmol) was added and the solution was refluxed under exclusion of light for 4 d. The solvent was removed *in vacuo* and the residue was purified by flash chromatography (eluent: DCM/MeOH 99:1  $\rightarrow$  98:2). The main fraction was purified by GPC (CHCl<sub>3</sub>). Finally the crude product was dissolved in a small amount of DCM and dropped into an excess of *n*-hexane. The resulting precipitate was filtered off and dried under high vacuum.

Yield: 30.0 mg (7.27 µmol; 37 %) of a blue powder

C<sub>282</sub>H<sub>378</sub>N<sub>12</sub>O<sub>12</sub> [4128.10]

#### <sup>1</sup>**H-NMR** (600 MHz, CDCl<sub>3</sub>, 303.6 K):

δ [ppm] = 7.80 (s, 3H, 3x -C<u>H</u>-), 7.74 – 7.71 (-, 6H, 6x -C<u>H</u>-), 7.59 – 7.56 (-, 12H, 12x -C<u>H</u>-), 7.38 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.8 Hz, 3H, 3x -C<u>H</u>-), 7.32 (ddd, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, <sup>3</sup>*J*<sub>HH</sub> = 7.3 Hz, <sup>4</sup>*J*<sub>HH</sub> = 0.6 Hz, 3H, 3x -C<u>H</u>-), 7.18 – 7.14 (-, 6H, 6x -C<u>H</u>-), 7.10 – 7.06 (-, 6H, 6x -C<u>H</u>-), 7.02 (d, <sup>3</sup>*J*<sub>HH</sub> = 7.8 Hz, 3H, 3x -C<u>H</u>-), 6.01 – 5.91 (-, 12H, 12x -C<u>H</u>-), 4.17 – 3.94 (-, 24H, 12x -NCH<sub>2</sub>-), 1.94 – 1.73 (-, 84H, 12x -C(C<u>H<sub>3</sub>)<sub>2</sub></u>, 12x -NCH<sub>2</sub>C<u>H<sub>2</sub>-</u>), 1.71 – 1.59 (-, 24H, 12x -NCH<sub>2</sub>C<u>H<sub>2</sub>-</u>, 12x -C<u>H</u>CH<sub>3</sub>), 1.59 – 1.48 (-, 12H, 12x -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.48 – 1.13 (-, 72H, 12x -C<u>H<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C<u>H<sub>2</sub></u>), 1.12 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 9H, 3x -CHC<u>H<sub>3</sub></u>), 1.07 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.0 Hz, 9H, 3x -CHC<u>H<sub>3</sub></u>), 0.89 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.6 Hz, 18H, 3x -CH(C<u>H<sub>3</sub>)<sub>2</sub></u>), 0.873 (-, 36H, 6x -CH(C<u>H<sub>3</sub>)<sub>2</sub></u>), 0.869 (d, <sup>3</sup>*J*<sub>HH</sub> = 6.6 Hz, 18H, 3x -CH(C<u>H<sub>3</sub>)<sub>2</sub></u>).</u>

#### <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>, 303.6 K):

 $\delta$  [ppm] = 182.0 (4x quart.), 180.9 (quart.), 180.7 (quart.), 180.3 (quart.), 180.1 (quart.), 170.2 (quart.), 169.8 (quart.), 169.6 (quart.), 169.4 (quart.), 143.5 (3x quart.), 142.8 (quart.), 142.74 (quart.), 142.68 (quart.), 142.6 (quart.), 142.3 (quart.), 142.2 (quart.), 137.00 (quart.), 136.98 (quart.), 136.7 (quart.), 128.1 (tert.), 127.5 (tert.), 126.9 (2x tert.), 124.9 (tert.), 124.0 (tert.), 122.6 (tert.), 121.7 (tert.), 121.1 (2x tert.), 110.1 (tert.), 110.0 (tert.), 109.9 (tert.), 109.8 (tert.), 87.31 (tert.), 87.29 (tert.), 87.1 (tert.), 86.9 (tert.), 49.72 (quart.), 49.68 (quart.), 49.63 (quart.), 49.58 (quart.), 42.59 (sec.), 42.57 (sec.), 42.5 (sec.), 42.4 (sec.), 39.54 (sec.), 39.53 (3x sec.), 37.50 (sec.), 37.48 (2x sec.), 37.46 (sec.), 34.2 (2x sec.), 34.13 (sec.), 34.09 (sec.), 31.53 (prim.), 31.50 (3x prim.), 28.39 (prim.), 28.38 (2x prim.), 28.37 (prim.), 27.31 (2x tert.), 27.28 (tert.), 27.27 (tert.), 27.24 (tert.), 27.23 (tert.), 27.07 (tert.), 27.06 (tert.), 25.12 (sec.), 25.10 (2x sec.), 25.08 (sec.), 22.85 (prim.), 22.83 (2x prim.), 22.82 (prim.), 22.76 (prim.), 22.74 (2x prim.), 22.73 (prim.), 19.80 (2x prim.), 19.76 (prim.).

**ESI-MS pos** (high resolution): [M<sup>·2+</sup>]

calc.: 2063.97126 m/z found.: 2063.97001 m/z Δ: 0.61 ppm

#### Lifetime distribution analysis



**Fig. S1.** Lifetime distribution analysis [software: FAST (version 3.4.2)] of the fluorescence spectra of **dSQA**, **tSQA** and **dSQA-ben** measured by TCSPC, excitation at 15200 cm<sup>-1</sup>.





**Fig. S2.** 1PA (black) and the 2PA (red) spectra of **SQB** in toluene on a logarithmic scale together with the fluorescence excitation anisotropy (FEA) spectrum in polyTHF at 26°C (blue) and at 20°C (dashed blue).



#### Power dependence of the fluorescence intensity in 2PA experiments

**Fig. S3.** Power dependence of the fluorescence signal in the 2PA experiments of **SQB**, **dSQB** and **dSQA-ben** at the given excitation wavelengths.



**Fig. S4.** Orbital state diagram for the interaction of two squaraine dyes in a linear (centrosymmetric) arrangement. Configuration 2 and 3 may undergo CI mixing because of similar energy. The black excitations are 1PA allowed, the red excitations are 2PA allowed.

TD-DFT calculations were performed using Gaussian 09<sup>5</sup>. Here we point out that the results of the quantum chemical calculations of exciton states strongly depend on the functional employed.<sup>6</sup> This is particularly true if CT states are involved. Thus, we consider the presented DFT computations more as an explanation of the findings rather than a confirmation.

**Table S1.** Excited state of **SQB** ( $C_{2v}$  symmetry) from TD-DFT computations at B3LYP/ccpVTZ//B3LYP/6-31G\* level of theory.

Excitation energies and oscillator strengths:

| Excited State<br>124 -> 126<br>125 -> 126<br>125 <- 126                             | 1: Singlet-B2<br>0.16413<br>0.69114<br>-0.10893                       | 1.9407 eV 638.86 nm f=0.5698 <s**2>=0.000</s**2> |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|
| Excited State<br>124 -> 126<br>125 -> 126                                           | 2: Singlet-B2<br>0.68643<br>-0.16850                                  | 2.8668 eV 432.48 nm f=0.8805 <s**2>=0.000</s**2> |
| $n-\pi^*$                                                                           | 2: Singlet P1                                                         | 2 1167 a)/ 207 80 pm f=0 0000 < 5**2>=0 000      |
| 122 -> 126                                                                          | 0.70549                                                               | 3.1107 eV 397.80 mm 1-0.0000 <3 22-0.000         |
| Excited State<br>123 -> 126<br>125 -> 128<br>125 -> 130                             | 4: Singlet-A1<br>0.66551<br>-0.14424<br>-0.15405                      | 3.3428 eV 370.90 nm f=0.0243 <s**2>=0.000</s**2> |
| Excited State<br>123 -> 126<br>125 -> 127<br>125 -> 128                             | 5: Singlet-A1<br>0.10239<br>0.67837<br>0.13174                        | 3.5429 eV 349.95 nm f=0.2920 <s**2>=0.000</s**2> |
| Excited State<br>121 -> 126<br>125 -> 129                                           | 6: Singlet-B2<br>0.19082<br>0.67505                                   | 3.7096 eV 334.22 nm f=0.0077 <s**2>=0.000</s**2> |
| Excited State<br>120 -> 126<br>125 -> 127<br>125 -> 128<br>125 -> 130               | 7: Singlet-A1<br>0.14043<br>-0.14093<br>0.60561<br>-0.28127           | 3.7335 eV 332.08 nm f=0.0301 <s**2>=0.000</s**2> |
| Excited State<br>120 -> 126<br>123 -> 126<br>124 -> 127<br>125 -> 128<br>125 -> 130 | 8: Singlet-A1<br>-0.33747<br>0.14624<br>0.10001<br>0.28759<br>0.51296 | 3.8566 eV 321.48 nm f=0.0438 <s**2>=0.000</s**2> |
| Excited State<br>121 -> 126<br>125 -> 129                                           | 9: Singlet-B2<br>0.67062<br>-0.19645                                  | 3.9129 eV 316.86 nm f=0.0776 <s**2>=0.000</s**2> |
| Excited State<br>120 -> 126<br>123 -> 126<br>125 -> 130                             | 10: Singlet-A1<br>0.59309<br>0.11174<br>0.34796                       | 3.9624 eV 312.90 nm f=0.0119 <s**2>=0.000</s**2> |

**Table S2.** Excited state of **SQA** ( $D_{2h}$  symmetry) from TD-DFT computations at B3LYP/cc-pVTZ//B3LYP/6-31G\* level of theory.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-BU 2.3071 eV 537.40 nm f=1.4096 <S\*\*2>=0.000 113 -> 114 0.71226 113 <- 114 -0.13147n-*π*\* Excited State 2: Singlet-BG 2.3705 eV 523.02 nm f=0.0000 <S\*\*2>=0.000 112 -> 114 0.70517 n-*π*\* Excited State 3: Singlet-AU 3.3172 eV 373.76 nm f=0.0000 <S\*\*2>=0.000 109 -> 114 0.70524 Excited State 4: Singlet-AG 3.4354 eV 360.90 nm f=0.0000 <S\*\*2>=0.000 111 -> 114 0.66393 113 -> 115 -0.12453 113 -> 117 0.19337 3.4944 eV 354.81 nm f=0.1662 <S\*\*2>=0.000 Excited State 5: Singlet-BU 0.70010 110 -> 114 3.6876 eV 336.22 nm f=0.0000 <S\*\*2>=0.000 Excited State 6: Singlet-AG 111 -> 114 0.10036 113 -> 115 0.68142 113 -> 117 0.10737 Excited State 7: Singlet-BU 3.6996 eV 335.13 nm f=0.0171 <S\*\*2>=0.000 107 -> 114 -0.10127 113 -> 116 0.69411 Excited State 8: 4.0100 eV 309.19 nm f=0.0000 <S\*\*2>=0.000 Singlet-AG 108 -> 114 0.26397 111 -> 114 -0.17741113 -> 115 -0.10182 113 -> 117 0.61528 Excited State 9: 4.1310 eV 300.13 nm f=0.0000 <S\*\*2>=0.000 Singlet-AG 0.63864 108 -> 114 113 -> 117 -0.25235 4.1319 eV 300.06 nm f=0.0430 <S\*\*2>=0.000 Excited State 10: Singlet-BU 107 -> 114 0.68987 113 -> 116 0.10772

**Table S3.** Excited state of **dSQA** (in  $C_2$  symmetry) from TD-DFT computations at B3LYP/cc-pVTZ(aug at O)//B3LYP/cc-pVDZ level of theory.

Excitation energies and oscillator strengths:

| Excited State<br>224 -> 227<br>225 -> 226                             | 1: Singlet-B<br>0.10023<br>0.69923                         | 1.9770 eV | 627.15 nm | f=1.6513 | <\$**2>=0.000       |
|-----------------------------------------------------------------------|------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State<br>224 -> 226<br>225 -> 227                             | 2: Singlet-A<br>0.47050<br>0.52664                         | 2.0628 eV | 601.05 nm | f=0.0007 | <s**2>=0.000</s**2> |
| Excited State<br>224 -> 227                                           | 3: Singlet-B<br>0.69670                                    | 2.2744 eV | 545.13 nm | f=1.6905 | <s**2>=0.000</s**2> |
| Excited State<br>224 -> 226<br>225 -> 227<br>224 <- 226<br>225 <- 227 | 4: Singlet-A<br>0.53186<br>-0.47678<br>-0.10004<br>0.10115 | 2.3581 eV | 525.77 nm | f=0.1540 | <s**2>=0.000</s**2> |
| n- <i>π</i> *<br>Excited State<br>222 -> 227<br>223 -> 226            | 5: Singlet-A<br>-0.46476<br>0.52994                        | 2.3786 eV | 521.26 nm | f=0.0000 | <s**2>=0.000</s**2> |
| n- <i>π</i> *<br>Excited State<br>222 -> 226<br>223 -> 227            | 6: Singlet-B<br>0.52997<br>-0.46483                        | 2.3786 eV | 521.26 nm | f=0.0000 | <s**2>=0.000</s**2> |
| Excited State<br>221 -> 226<br>225 -> 228                             | 7: Singlet-B<br>0.68279<br>-0.12762                        | 3.0941 eV | 400.71 nm | f=0.0135 | <s**2>=0.000</s**2> |
| n- <i>π</i> *<br>Excited State<br>222 -> 226<br>223 -> 227            | 8: Singlet-B<br>0.46674<br>0.53061                         | 3.1142 eV | 398.13 nm | f=0.0000 | <s**2>=0.000</s**2> |
| n- <i>π</i> *<br>Excited State<br>222 -> 227<br>223 -> 226            | 9: Singlet-A<br>0.53065<br>0.46674                         | 3.1142 eV | 398.13 nm | f=0.0000 | <s**2>=0.000</s**2> |
| Excited State<br>221 -> 227<br>224 -> 228                             | 10: Singlet-A<br>0.68569<br>0.12094                        | 3.1895 eV | 388.73 nm | f=0.0002 | <s**2>=0.000</s**2> |
| Excited State<br>216 -> 227<br>217 -> 226                             | 11: Singlet-B<br>-0.46096<br>0.53256                       | 3.3333 eV | 371.95 nm | f=0.0000 | <s**2>=0.000</s**2> |
| Excited State<br>216 -> 226<br>217 -> 227                             | 12: Singlet-A<br>0.53134<br>-0.46199                       | 3.3334 eV | 371.95 nm | f=0.0000 | <s**2>=0.000</s**2> |

| Excited State<br>218 -> 227<br>219 -> 226<br>220 -> 227<br>225 -> 228 | 13: Singlet-B<br>0.14807<br>0.51516<br>-0.35877<br>-0.24802  | 3.4505 eV | 359.32 nm | f=0.1983 | <s**2>=0.000</s**2> |
|-----------------------------------------------------------------------|--------------------------------------------------------------|-----------|-----------|----------|---------------------|
| Excited State<br>218 -> 226<br>219 -> 227<br>220 -> 226<br>224 -> 228 | 14: Singlet-A<br>-0.12075<br>-0.34852<br>0.56535<br>-0.14235 | 3.4514 eV | 359.23 nm | f=0.0061 | <s**2>=0.000</s**2> |
| Excited State<br>219 -> 226<br>221 -> 226<br>225 -> 228               | 15: Singlet-B<br>0.25809<br>0.15091<br>0.62145               | 3.5764 eV | 346.67 nm | f=0.0457 | <s**2>=0.000</s**2> |

#### Literature

- 1. S. F. Völker, T. Dellermann, H. Ceymann, M. Holzapfel and C. Lambert, *J. Polym. Sci. Pol. Chem.*, 2014, **52**, 890-911.
- 2. H. Ceymann, M. Balkenhohl, A. Schmiedel, M. Holzapfel and C. Lambert, *Phys. Chem. Chem. Phys.*, 2016, **18**, 2646-2657.
- 3. S. F. Völker and C. Lambert, *Chem. Mat.*, 2012, **24**, 2541-2553.
- 4. J. Cremer and P. Bauerle, *J. Mater. Chem.*, 2006, **16**, 874-884.
- Gaussian 09, Revision D.01, Frisch M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc, Wallingford CT, 2009.
- 6. W. L. Liu, V. Settels, P. H. P. Harbach, A. Dreuw, R. F. Fink and B. Engels, *J. Comput. Chem.*, 2011, **32**, 1971-1981.