Melamine-exfoliated graphene aqueous dispersion: unveiling microsolvation features with density functional theory

Antonio M. Rodríguez, a Ana B. Muñoz-García, a Orlando Crescenzi, a Ester Vásquez, b and Michele Pavone a

a Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Comp. Univ. Monte Sant’Angelo Via Cintia 21, 80126 Naples, Italy.
b Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Figure S1. Side view of the minimum-energy CMx geometries obtained at the PBE-D3 level of theory.
Figure S2. Partial densities of states (PDOS) at the PBE level of theory for the CMx systems. For visualization purposes, only C (p orbitals) contributions are shown for graphene and the melamine contributions are shown as the sum of the C-N-H orbitals.

Figure S3. Geometries and structural features for the CWx systems. In all cases, distances are in angstroms.