An investigation on the conversion of ethylene to ethylidyne on Pt(100) and Pd(100) using density functional theory

SUPPORTING INFORMATION

Yuchun Wang, a, b Xiuqin Dong, a, b Yingzhe Yu, a, b and Minhua Zhang*, a, b

a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, P. R. China

b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China

*Corresponding author

Tel.: +86-22-27405972

fax: +86-22-27406119
Figure S1. The adsorption of intermediates on Pd(100). (a) CH₃CH₂; (b) CH₃CH; (c) CH₃C; (d) CH₂CH₂ in di-σ mode; (e) CH₂CH₂ in π mode; (f) CH₂CH; (g) CH₂C. Carbon atoms are gray, hydrogen atoms white, and palladium atoms green.

In order to present adsorption configurations clearly, here we only show the top layer of Pd(100) and adsorbates.
Figure S2. Geometric structures of the transition state (TS) of intermediate reactions on Pd(100). (a) CH$_3$CH$_2$→CH$_3$CH+H; (b) CH$_3$CH→CH$_3$C+H; (c) CH$_2$CH$_2$(σ)→CH$_2$CH+H; (d) CH$_3$CH→CH$_2$C+H; (e) CH$_2$C+H→CH$_3$C; (f) CH$_2$CH+H→CH$_3$CH; (g) CH$_2$CH$_2$(π)+H→CH$_3$CH$_2$; (h) CH$_2$CH$_2$(σ)→CH$_3$CH; (i) CH$_2$CH$_2$(π)→CH$_3$CH; (j) CH$_2$C→CH$_3$C. Carbon atoms are gray, hydrogen atoms white, and palladium atoms green.

In order to present adsorption configurations clearly, here we only show the top layer of Pd(100) and adsorbates.
Figure S3 Coadsorption of intermediates and H on Pd(100). (a) ethylidene+H; (b) ethylidyne+H; (c) vinyl+H; (d) vinylidene+H; (e) ethylene(π)+H

In order to present adsorption configurations clearly, here we only show the top layer of Pd(100) and adsorbates.
Table S1: Optimized structural parameters (Å) for the Initial State (IS), Transition State (TS), and Final State (FS) of elementary reactions in the formation network of ethylidyne on Pt(100)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IS</th>
<th>TS</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>1.51</td>
<td>1.46</td>
<td>1.50</td>
</tr>
<tr>
<td>C-H<sup>a</sup></td>
<td>1.10</td>
<td>1.64</td>
<td>2.97</td>
</tr>
<tr>
<td>C-Pt<sup>b</sup></td>
<td>2.07</td>
<td>1.97</td>
<td>2.04, 2.06</td>
</tr>
<tr>
<td>H-Pt<sup>c</sup></td>
<td>-</td>
<td>1.73</td>
<td>1.73, 1.76</td>
</tr>
<tr>
<td>CH<sub>3</sub>CH + H → CH<sub>3</sub>CH+H</td>
<td>C-C</td>
<td>1.50</td>
<td>1.45</td>
</tr>
<tr>
<td>C-H</td>
<td>1.10</td>
<td>1.55</td>
<td>3.23</td>
</tr>
<tr>
<td>C-Pt</td>
<td>2.04, 2.05</td>
<td>1.94, 1.96</td>
<td>2.12, 2.17, 2.20, 2.20</td>
</tr>
<tr>
<td>H-Pt</td>
<td>-</td>
<td>1.77</td>
<td>1.71, 1.78</td>
</tr>
<tr>
<td>CH<sub>3</sub>CH → CH<sub>3</sub>C+H</td>
<td>C-C</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>C-H<sup>a</sup></td>
<td>1.10</td>
<td>1.53</td>
<td>2.56</td>
</tr>
<tr>
<td>C-Pt<sup>b</sup></td>
<td>2.09, 2.09</td>
<td>1.98, 2.15</td>
<td>2.01, 2.15, 2.18</td>
</tr>
<tr>
<td>H-Pt</td>
<td>-</td>
<td>1.68</td>
<td>1.70, 1.78</td>
</tr>
<tr>
<td>CH<sub>2</sub>CH → CH<sub>2</sub>C+H</td>
<td>C-C</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>C-H</td>
<td>1.09</td>
<td>2.42</td>
<td>3.91</td>
</tr>
<tr>
<td>C-Pt</td>
<td>1.99, 2.17, 2.19</td>
<td>1.84, 2.00, 2.21</td>
<td>1.86, 2.02, 2.22</td>
</tr>
<tr>
<td>H-Pt</td>
<td>-</td>
<td>1.58</td>
<td>1.73, 1.75</td>
</tr>
<tr>
<td>CH<sub>3</sub>C+H → CH<sub>3</sub>C</td>
<td>C-C</td>
<td>1.39</td>
<td>1.42</td>
</tr>
<tr>
<td>C-H</td>
<td>4.81</td>
<td>1.74</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>1.86, 2.02, 2.22</td>
<td>2.10, 2.13, 2.14</td>
<td>2.15, 2.16, 2.17, 2.19</td>
</tr>
<tr>
<td>H-Pt</td>
<td>1.73, 1.75</td>
<td>1.71</td>
<td>-</td>
</tr>
<tr>
<td>CH<sub>2</sub>CH+H → CH<sub>2</sub>CH</td>
<td>C-C</td>
<td>1.42</td>
<td>1.45</td>
</tr>
<tr>
<td>C-H</td>
<td>2.94</td>
<td>2.00</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>2.01, 2.16, 2.19</td>
<td>2.02, 2.07</td>
<td>2.04, 2.05</td>
</tr>
<tr>
<td>H-Pt</td>
<td>1.70, 1.78</td>
<td>2.58, 2.89</td>
<td>-</td>
</tr>
<tr>
<td>CH<sub>3</sub>CH+H → CH<sub>3</sub>CH</td>
<td>C-C</td>
<td>1.42</td>
<td>1.43</td>
</tr>
<tr>
<td>C-H</td>
<td>3.06</td>
<td>1.76</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>2.17, 2.17</td>
<td>2.17</td>
<td>2.07</td>
</tr>
<tr>
<td>H-Pt</td>
<td>1.72, 1.76</td>
<td>1.60</td>
<td>-</td>
</tr>
<tr>
<td>CH<sub>2</sub>CH(σ) → CH<sub>3</sub>CH</td>
<td>C-C</td>
<td>1.48</td>
<td>1.43</td>
</tr>
<tr>
<td>C-H</td>
<td>1.10</td>
<td>1.32</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>2.09, 2.09</td>
<td>1.97</td>
<td>2.04, 2.05</td>
</tr>
<tr>
<td>CH<sub>2</sub>CH(π) → CH<sub>3</sub>CH</td>
<td>C-C</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>C-H</td>
<td>1.09</td>
<td>1.31</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>2.17, 2.17</td>
<td>1.96</td>
<td>2.04, 2.05</td>
</tr>
<tr>
<td>CH<sub>2</sub>CH → CH<sub>3</sub>C</td>
<td>C-C</td>
<td>1.42</td>
<td>1.44</td>
</tr>
<tr>
<td>C-H</td>
<td>1.10</td>
<td>1.44</td>
<td>1.10</td>
</tr>
<tr>
<td>C-Pt</td>
<td>1.99, 2.17, 2.19</td>
<td>1.99, 2.05</td>
<td>2.15, 2.16, 2.17, 2.19</td>
</tr>
</tbody>
</table>

^a Distance that characterizes the bond that is breaking/forming during the reaction.

^b The values before the semicolon refer to the distance of the Pt atom and the C atom bound to more surface atoms.

^c The distance of dissociating H atom and the surface atom.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>IS</th>
<th>TS</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{3}CH\textsubscript{2} → CH\textsubscript{3}CH+H</td>
<td>C-C</td>
<td>1.51</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>C-Ha</td>
<td>1.10</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>C-Pdb</td>
<td>2.05</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>H-Pdc</td>
<td>-</td>
<td>1.68</td>
</tr>
<tr>
<td>CH\textsubscript{3}CH → CH\textsubscript{3}C+H</td>
<td>C-C</td>
<td>1.50</td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.11</td>
<td>1.61</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.01,2.01</td>
<td>1.95,1.95</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>-</td>
<td>1.88</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH\textsubscript{2} → CH\textsubscript{2}CH+H</td>
<td>C-C</td>
<td>1.44</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.10</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.14;2.14</td>
<td>2.18;2.05</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>-</td>
<td>1.65</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH → CH\textsubscript{2}C+H</td>
<td>C-C</td>
<td>1.39</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.10</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.01,2.13;2.33</td>
<td>1.95,2.07;2.30</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>-</td>
<td>1.79</td>
</tr>
<tr>
<td>CH\textsubscript{3}C+H → CH\textsubscript{3}C</td>
<td>C-C</td>
<td>1.36</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>4.69</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>1.87,1.98</td>
<td>2.01,2.03,2.12,2.33</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>1.74,1.74</td>
<td>1.75</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH+H → CH\textsubscript{2}CH</td>
<td>C-C</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>2.92</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.00,2.14;2.24</td>
<td>2.12,2.13</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>1.70,1.77</td>
<td>2.09</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH\textsubscript{2} + H → CH\textsubscript{2}CH \textsubscript{2}</td>
<td>C-C</td>
<td>1.40</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>3.29</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.15;2.21</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>H-Pd</td>
<td>1.70;1.72</td>
<td>1.66</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH\textsubscript{3}(\sigma) → CH\textsubscript{3}CH</td>
<td>C-C</td>
<td>1.44</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.10</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.14;2.14</td>
<td>1.99</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH\textsubscript{3}(\pi) → CH\textsubscript{3}CH</td>
<td>C-C</td>
<td>1.40</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.09</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.23;2.23</td>
<td>1.97</td>
</tr>
<tr>
<td>CH\textsubscript{2}CH → CH\textsubscript{3}C</td>
<td>C-C</td>
<td>1.39</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>C-H</td>
<td>1.10</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>C-Pd</td>
<td>2.01,2.13;2.33</td>
<td>2.10,2.12</td>
</tr>
</tbody>
</table>

a Distance that characterizes the bond that is breaking/forming during the reaction.
b The values before the semicolon refer to the distance of the Pd atom and the C atom bound to more surface atoms.
c The distance of dissociating H atom and the surface atom.