Mechanochemical synthesis under deuterium gas in the Li-Mg-N-D system: a neutron diffraction study

Zhinian Lia,b, Junxian Zhanga, Michel Latrochea, Shumao Wangb, Lijun Jiangb, Jun Dub and Fermin Cuevasa

aUniversité Paris Est, ICMPE (UMR 7182), CNRS, UPEC, F- 94320 Thiais, France

bGeneral Research Institute for Nonferrous Metals, 2 Xinjiekou Wai Street, Beijing 100088, China

Fig. S1 shows the recorded IR spectrum of as-milled 2Li\textsubscript{3}+Mg powders after long-time milling (12 h). The characteristic bands lines of Mg(NH\textsubscript{2})\textsubscript{2} compound are identified at 3270 and 3328 cm-1, very close to values reported by Linde and Juza1: 3277 and 3329 cm-1. In addition, a shoulder is detected at 3234 cm-1 which, based on PCI measurements, is tentatively assigned to intermediate compounds (LiNH\textsubscript{2} or Li\textsubscript{2}Mg\textsubscript{2}N\textsubscript{3}H\textsubscript{3} phases) due to incomplete D-uptake (reaction yield 87.5 \%).

![Infrared absorption spectrum](image)

Fig. S1: infrared absorption spectrum after long-time milling of 2Li\textsubscript{3}+Mg under deuterium gas for 12 h.

Fig. S2 shows the graphical output of the Rietveld refinement of NPD data for the long-time milled 2Li$_3$+Mg powder after thermal heating to 443 K. The as-milled amorphous Mg(ND$_2$)$_2$ phase crystallizes in the tetragonal unit cell ($I4_1/acd$ space group) with lattice parameters $a = 10.503$ and $c = 19.948$ Å at 443K.

Fig. S2: Rietveld refinement of the in-situ NPD diffraction pattern of long-time milled 2Li$_3$+Mg powder after thermal heating to 443 K. Observed (red dots), calculated (black solid line) and difference curves (blue solid line below) are shown. Vertical bars correspond to (hkl) Bragg line positions for Mg(ND$_2$)$_2$, LiD and stainless-steel sample holder (SH1 and SH2) phases.
Fig. S3 shows the evolution of NPD patterns in the angular domain $2\theta = 25\text{-}70^\circ$ during step-wise deuteration of Li$_3$MgN$_2$D phase. As D incorporates in this phase to form a solid solution like Li$_{3-\delta-e}$Mg$_{1+\delta}$N$_2$D$_{1-\delta-e}$ phase, a diffraction peak gradually appears at $2\theta = 28.8^\circ$ revealing increasing atomic ordering as compared to the starting disordered cubic Li$_3$MgN$_2$D phase (S.G. = $Fm\bar{3}m$). The new diffraction peak can be indexed in the $P\bar{4}3m$ space group.

![Graphical representation of NPD patterns](image)

Fig. S3. Evolution of NPD patterns during Region AI with increasing deuterium pressure (from bottom to top). Diffraction lines for Li$_{3-\delta-e}$Mg$_{1+\delta}$N$_2$D$_{1-\delta-e}$ phase are indexed in S.G. $P\bar{4}3m$. Additional peaks from Li D phase and Fe-peaks from the sample holder (SH) are also marked.
Fig. S4 shows the graphical output of the Rietveld fit of NPD data acquired during the PCT desorption at 473 K for a D-content of 5.65 D/reactants. Beside diffraction peaks from the stainless steel sample holder, the fit comprises three phases: α-Li$_2$MgN$_2$D$_2$ (blue), β-Li$_2$MgN$_2$D$_2$ (red) and LiD (green). The structure of α and β polymorphs of Li$_2$MgN$_2$D$_2$ reported by Rijssenbeek et al. have been used. The refined lattice parameters are $a = 5.009$ Å, $b = 9.832$ Å and $c = 5.211$ Å for α-Li$_2$MgN$_2$D$_2$ (S.G. Iba2) and $a = 5.050$ Å for β-Li$_2$MgN$_2$D$_2$ (S.G. P$\overline{3}$m).

Phase contents were evaluated as 29, 39 and 32 wt.% for α-Li$_2$MgN$_2$D$_2$, β-Li$_2$MgN$_2$D$_2$ and LiD, respectively. This concurs with the desorption reaction:

$$\text{Mg (ND}_2)_2 + 6\text{LiD} \rightarrow \text{Li}_2\text{MgN}_2\text{D}_2 (66 \text{ wt.\%}) + 4\text{LiD (34 wt.\%)} + 2\text{D}_2$$

The unit cell volumes of α and β polymorphs are 256 Å3 ($Z = 4$) and 128.79 Å3 ($Z = 2$) respectively. Note that the lattice parameter of the cubic imide compound β-Li$_2$MgN$_2$D$_2$ ($a = 5.050$ Å) on desorption is very close to that found for the novel imide phase at its maximum D-solubility limit on absorption ($a = 5.046$ Å). This supports that both imide structures are almost equivalent.

2 J. Rijssenbeek, Y. Gao, J. Hanson, Q. Huang, C. Jones and B. Toby, *J. Alloys Compd.*, 2008, **454**, 233–244