Electronic Supplementary Information (ESI) for:

Reactivity at the Cu$_2$O(100):Cu-H$_2$O Interface: A Combined DFT and PES study

Joakim H. Stenlida, Markus Soldemod, A. Johannes Johanssonb, Christofer Leygrafc, M. Göthelidd, Jonas Weissenriederd*, Tore Brincka*

a Applied Physical Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden, b Swedish Nuclear Fuel and Waste Management Co (SKB), Box 250, Stockholm, Sweden, c Surface and Corrosion Science, School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden, d Material Physics, KTH Royal Institute of Technology, SE-164 40 Kista, Sweden

*Correspondence should be addressed to tore@physchem.kth.se, jonas@kth.se

Contents

S1. Crystal structure and molecular optimization.. 2
S2. Thermochemical analysis ... 2
S3. Tabulated data ... 6
S4. Humid and wet conditions .. 9
S5. Effects from variations of the hydrogen pressure ... 10
S6. Additional figures and data ... 11
S7. Convergence test for computational parameters .. 18
S8. Experimental coverage determination from O 1s PES data .. 19
S9. Supplementary references ... 21
S10. Appendix: Cartesian coordinates .. 23
S1. Crystal structure and molecular optimization

1.1. The Cu$_2$O Crystal structure

Bulk Cu$_2$O adopts a cubic unit cell belonging to the Pn3 space group. The Cu$_2$O structure may be described as constructed by a face centered cubic (fcc) Cu sublattice and a body centered cubic (bcc) O sublattice, or, alternatively, as two intercalated fcc Cu$_2$O cristobalite-like sublattices. The initial crystal structure of Cu$_2$O was obtained from Werner et al, with an experimental lattice constant of 4.27 Å. In order to find the converged cell parameters for the unit cell at the PBE-D3+U2-5 level of theory used in this study, different cell volumes were first tested at a 0.01 Å discretization from 4.20 to 4.40 Å without allowing for cell relaxation in VASP. Amongst these, 4.32 Å was identified to correspond to the lowest bulk energy. From the 4.32 Å cell, a lattice relaxation was performed. This yielded the optimized lattice constant of 4.316 Å. During the optimizations, a K-point mesh of 8×8×8 and a plane-wave cut-off of 400 eV were used.

1.2. Gas phase optimization of H$_2$O and H$_2$

The molecular gas phase calculations were performed in a cubic cell of 15Å×15Å×15Å, using a single (Γ) K-point. Otherwise similar computational parameters where applied as for the surface-adsorbate calculations.

S2. Thermochemical analysis

The gas-phase molecules were treated by standard molecular thermodynamics and include contributions from the 3 translational, 3N-6 vibrational, and 3 rotational degrees of freedom as well as electronic contributions. For the surface structures, only contributions from the 3N-3 optical vibrational degrees of freedom were included in the thermochemical analysis. In other
words, the 3 low-frequency acoustic branches were not included and hence assumed to only vary moderately from structure to structure. The purpose of removing the acoustic vibrations was partly to reduce computational cost. This since acoustic vibrations are not accessible from calculations on small unit cells (as those used in this and most periodic surface–adsorbate studies), but typically demand repeating units many times larger than those used in the present study.

The thermochemical analysis was carried out assuming the ideal gas, rigid rotor and harmonic oscillator approximations, where applicable. All thermodynamic quantities were evaluated based on standard relationships as described in, e.g., ref 11.

2.1. The Partial Hessian

Below follows a short account of the producers to determine the vibrational frequencies for the surface–adsorbate states. Due to computational constraints, only a partial Hessian, H, of the surface–adsorbate systems were considered. These were obtained numerically by displacing the atoms of the adsorbate and the top two Cu$_2$O layers ± 0.015 Å in the spatial coordinates using VASP6–10 and the PBE-D32–4 functional (at structures optimized at the same level of theory). The use of partial Hessians has been shown to be a reasonable approximation for Cu$_2$O surfaces,12 but generally only so if one is interested in relative energies and not of absolute energies. A mass-weighted Hessian, H_{MW}, as obtained from the VASP output, was used in the following analysis.

2.2. Separation of acoustic and optical vibrational modes

The partial, and mass-weighted, Hessian H_{MW} from above contains contributions from both the optical modes and the translational acoustic modes (transverse, longitudinal and out-of-plane).13
The acoustic modes can be separated out from the H_{MW}. This will generate three frequencies close to 0, and 3N-3 non-zero frequencies. The separation proceeds by transformation of the H_{MW} into internal coordinates by:

$$H_{int} = D^\dagger H_{MW} D,$$

where the transformation matrix D is the defined as the matrix that converts q_{MW} into the internal coordinates q_{int}. D is formed by:

$$D = I - d_1^t d_1 - d_2^t d_2 - d_3^t d_3$$

where the vector d_1, d_2 and d_3 are the mass-weighted and normalized translational vectors:

$$d'_1 = [\sqrt{m_1} 0 0 \sqrt{m_2} 0 0 \cdots \sqrt{m_N} 0 0]$$
$$d'_2 = [0 \sqrt{m_1} 0 0 \sqrt{m_2} 0 \cdots 0 \sqrt{m_N}]$$
$$d'_3 = [0 0 \sqrt{m_1} 0 0 \sqrt{m_2} \cdots 0 0 \sqrt{m_N}]$$

$$d_i = \frac{1}{\|d'_i\|} [d'_i]$$

The vibrational frequencies can thereafter be obtained by diagonalizing H_{int} and converting the resulting eigenvalues λ_i to frequencies, ν_i, by (c is the speed of light):

$$\nu_i = \frac{\sqrt{\lambda_i}}{2\pi c}$$

In our analysis, and after removing the acoustic modes, all vibrational frequencies below 100 cm$^{-1}$ are set to 100 cm$^{-1}$ in accordance with the recommendations of Cramer and co-workers for H-bonded systems.

2.3. Conversion between standard states

The Gibbs free energy, G, of a system is given by:

$$G = H - TS$$
At equilibrium, the equilibrium constant K for a process/reaction relates to the standard Gibbs free energy, ΔG°, by

$$\Delta G^\circ = -RT\ln(K)$$

Assuming the study of an adsorption reaction, $\text{H}_2\text{O}(g) + S \rightarrow \text{H}_2\text{O-S} (\text{S=surface})$ and an initial standard state of 1 bar H_2O, the above relation yields the conversion factor $\Delta \Delta G^\circ \rightarrow \ast$ to an arbitrary H_2O pressure $p_{\text{H}_2\text{O}}$:

$$\Delta \Delta G^\circ \rightarrow \ast = -RT\ln(p_{\text{H}_2\text{O}})$$

A similar relation is obtained for the conversion to an arbitrary H_2 pressure. The reaction Gibbs free energy for the new reference state, ΔG^\ast, is obtained by adding $\Delta \Delta G^\circ \rightarrow \ast$ to the standard Gibbs free reaction energy ΔG°

$$\Delta G^\ast = \Delta G^\circ + \Delta \Delta G^\circ \rightarrow \ast$$

In order to convert to an aqueous state the conversion factor is, assuming a H_2O concentration of 55 M (0.041 is the concentration of 1 bar of gaseous H_2O):

$$\Delta \Delta G^\circ \rightarrow \ast = -RT\ln\left(\frac{0.041}{55}\right)$$

Note that the electronic energy, E_{el}, for H_2O must be updated from $\text{H}_2\text{O}(g)$ to $\text{H}_2\text{O}(\text{aq})$ by inclusion of solvation effects. We have done so by adding standard PCM16,17 corrections from Gaussian0918 calculations on monomer H_2O. Since Cramer and co-workers15 have established that gas-phase rotation/vibrations give a good approximation to aqueous conditions if converting all vibrations below 100 cm$^{-1}$ to 100 cm$^{-1}$, the thermal corrections from harmonic frequencies obtained without PCM solvation were used also for the solvated systems.
S3. Tabulated data

Below are the energies from the diagrams of Figure 7, 9 and 11 reprinted in table format.

Table S1. Energies in eV for the c(2×2) surface unit cell for the various H$_2$O/OH/H$_2$ adsorption/dissociation states on the ridge-dimer c(2×2) reconstructed Cu$_2$O(100):Cu surface. Reprints from Figure 7 in the main article.

<table>
<thead>
<tr>
<th>Statea</th>
<th>ΔE_{el}</th>
<th>ΔH</th>
<th>ΔG</th>
<th>ΔH</th>
<th>ΔH</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$^{PBE-D3+U}$</td>
<td>$^{PBE-D3+U}$</td>
<td>$^{PBE-D3+U}$</td>
<td>PBE</td>
<td>$^{PBE-D3}$</td>
<td>$^{HSE06-D3}$</td>
</tr>
<tr>
<td>1-H$_2$O 0/4</td>
<td>-0.66</td>
<td>-0.60</td>
<td>-0.10</td>
<td>-0.33</td>
<td>-0.57</td>
<td>-0.59</td>
</tr>
<tr>
<td>1-H$_2$O 1/4*</td>
<td>-2.19</td>
<td>-2.19</td>
<td>-1.66</td>
<td>-1.93</td>
<td>-2.09</td>
<td>-2.80</td>
</tr>
<tr>
<td>1-H$_2$O 1/4</td>
<td>-1.11</td>
<td>-1.16</td>
<td>-0.79</td>
<td>-0.98</td>
<td>-1.08</td>
<td>-1.48</td>
</tr>
<tr>
<td>2-H$_2$O 0/4</td>
<td>-1.28</td>
<td>-1.17</td>
<td>-0.21</td>
<td>-0.82</td>
<td>-1.18</td>
<td>-1.14</td>
</tr>
<tr>
<td>2-H$_2$O 1/4*</td>
<td>-2.80</td>
<td>-2.73</td>
<td>-1.74</td>
<td>-2.25</td>
<td>-2.61</td>
<td>-3.28</td>
</tr>
<tr>
<td>2-H$_2$O 2/4*</td>
<td>-0.55</td>
<td>-0.64</td>
<td>0.40</td>
<td>-0.37</td>
<td>-0.81</td>
<td>-0.46</td>
</tr>
<tr>
<td>2-H$_2$O 1/4</td>
<td>-1.81</td>
<td>-1.79</td>
<td>-0.95</td>
<td>-1.41</td>
<td>-1.68</td>
<td>-2.04</td>
</tr>
<tr>
<td>2-H$_2$O 2/4</td>
<td>-2.27</td>
<td>-2.38</td>
<td>-1.68</td>
<td>-1.98</td>
<td>-2.20</td>
<td>-3.01</td>
</tr>
<tr>
<td>3-H$_2$O 0/4</td>
<td>-2.36</td>
<td>-2.16</td>
<td>-0.71</td>
<td>-1.55</td>
<td>-2.15</td>
<td>-2.26</td>
</tr>
<tr>
<td>3-H$_2$O 1/4*</td>
<td>-3.57</td>
<td>-3.42</td>
<td>-1.99</td>
<td>-2.72</td>
<td>-3.28</td>
<td>-4.00</td>
</tr>
<tr>
<td>3-H$_2$O 1/4</td>
<td>-2.78</td>
<td>-2.69</td>
<td>-1.39</td>
<td>-2.06</td>
<td>-2.56</td>
<td>-3.01</td>
</tr>
<tr>
<td>3-H$_2$O 2/4</td>
<td>-3.19</td>
<td>-3.22</td>
<td>-2.04</td>
<td>-2.62</td>
<td>-3.01</td>
<td>-3.93</td>
</tr>
<tr>
<td>3-H$_2$O 3/4</td>
<td>-1.44</td>
<td>-1.65</td>
<td>-0.60</td>
<td>-1.20</td>
<td>-1.56</td>
<td>-1.48</td>
</tr>
<tr>
<td>4-H$_2$O 0/4</td>
<td>-2.83</td>
<td>-2.56</td>
<td>-0.60</td>
<td>-1.66</td>
<td>-2.52</td>
<td>-2.43</td>
</tr>
<tr>
<td>4-H$_2$O 1/4*</td>
<td>-3.63</td>
<td>-3.45</td>
<td>-1.44</td>
<td>-2.62</td>
<td>-3.29</td>
<td>-3.87</td>
</tr>
<tr>
<td>4-H$_2$O 1/4</td>
<td>-2.87</td>
<td>-2.75</td>
<td>-0.92</td>
<td>-1.97</td>
<td>-2.64</td>
<td>-2.84</td>
</tr>
<tr>
<td>4-H$_2$O 2/4</td>
<td>-3.09</td>
<td>-3.07</td>
<td>-1.36</td>
<td>-2.30</td>
<td>-2.86</td>
<td>-3.61</td>
</tr>
<tr>
<td>4-H$_2$O 3/4</td>
<td>-1.76</td>
<td>-1.89</td>
<td>-0.35</td>
<td>-1.24</td>
<td>-1.84</td>
<td>-1.76</td>
</tr>
<tr>
<td>4-H$_2$O 4/4</td>
<td>-0.68</td>
<td>-0.98</td>
<td>0.43</td>
<td>-0.42</td>
<td>-0.93</td>
<td>0.11</td>
</tr>
</tbody>
</table>

aDegree of dissociation, xOH per surface Cu. The asterisk (*) marks H_ad as dissociation product rather than $\text{H}_2(\text{g})$.
Table S2. Energies in eV for the p(2×2) surface unit cell compared to the c(2×2) unit cell for the various H₂O/OH/H adsorption/dissociation states on the ridge-dimer c(2×2) reconstructed Cu₂O(100):Cu surface. Reprints from Figure 9 in the main article.

<table>
<thead>
<tr>
<th>State</th>
<th>ΔH</th>
<th>ΔG</th>
<th>ΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p(2×2)</td>
<td>p(2×2)</td>
<td>c(2×2)</td>
</tr>
<tr>
<td>0/8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1/8*</td>
<td>-1.07</td>
<td>-1.03</td>
<td>-0.89</td>
</tr>
<tr>
<td>1/8</td>
<td>-0.39</td>
<td>-0.48</td>
<td>-0.20</td>
</tr>
<tr>
<td>2/8*</td>
<td>-1.74</td>
<td>-1.62</td>
<td>-1.78</td>
</tr>
<tr>
<td>2/8</td>
<td>-0.36</td>
<td>-0.59</td>
<td>-0.40</td>
</tr>
<tr>
<td>3/8*</td>
<td>0.04</td>
<td>0.13</td>
<td>(-)</td>
</tr>
<tr>
<td>3/8</td>
<td>-0.78</td>
<td>-1.20</td>
<td>-0.71</td>
</tr>
<tr>
<td>4/8*</td>
<td>2.36</td>
<td>2.63</td>
<td>(-)</td>
</tr>
<tr>
<td>4/8</td>
<td>-0.97</td>
<td>-1.46</td>
<td>-1.03</td>
</tr>
<tr>
<td>5/8</td>
<td>0.23</td>
<td>-0.43</td>
<td>0.15</td>
</tr>
<tr>
<td>6/8</td>
<td>1.41</td>
<td>0.56</td>
<td>1.33</td>
</tr>
<tr>
<td>7/8</td>
<td>2.45</td>
<td>1.45</td>
<td>2.24</td>
</tr>
<tr>
<td>8/8</td>
<td>3.32</td>
<td>2.22</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Degree of dissociation, xOH per surface Cu. The asterisk () marks H₂(g) as dissociation product rather than H₂(g).
Table S3. Energies in eV for bilayer (BL) and monolayer (ML) adsorption for the various H$_2$O/OH/H adsorption/dissociation states using the c(2×2) unit cell on the ridge-dimer c(2×2) reconstructed Cu$_2$O(100):Cu surface. Reprints from Figure 11 in the main article.

<table>
<thead>
<tr>
<th>State a</th>
<th>ΔH</th>
<th>ΔG</th>
<th>ΔH</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ML</td>
<td>BL</td>
<td>ML</td>
<td>BL</td>
</tr>
<tr>
<td>0/4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1/4*</td>
<td>-0.89</td>
<td>-1.03</td>
<td>-0.84</td>
<td>-1.02</td>
</tr>
<tr>
<td>1/4</td>
<td>-0.20</td>
<td>-0.48</td>
<td>-0.31</td>
<td>-0.65</td>
</tr>
<tr>
<td>2/4</td>
<td>-0.51</td>
<td>-0.77</td>
<td>-0.76</td>
<td>-1.00</td>
</tr>
<tr>
<td>3/4</td>
<td>0.66</td>
<td>0.22</td>
<td>0.25</td>
<td>-0.23</td>
</tr>
<tr>
<td>4/4</td>
<td>1.58</td>
<td>1.06</td>
<td>1.03</td>
<td>0.50</td>
</tr>
</tbody>
</table>

aDegree of dissociation, xOH per surface Cu. The asterisk (*) marks H$_{ad}$ as dissociation product rather than H$_2$(g).
S4. Humid and wet conditions

Below (Table S4) are the results for the free energy calculations in under different wet and humid conditions summarized.

Table S4. Gibbs free energies in eV for the c(2×2) unit cell adsorption/dissociation structures on the ridge-dimer reconstructed Cu₂O(100):Cu surface converted to realistic humid and wet conditions at 298.15 K. The case of standard 1 bar H₂O partial pressure, as used in the main article, is included for comparison.

<table>
<thead>
<tr>
<th></th>
<th>22% RH</th>
<th>100% RH</th>
<th>1 bar</th>
<th>55ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>0.03</td>
<td>-0.01</td>
<td>-0.10</td>
<td>-0.05</td>
</tr>
<tr>
<td>1-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4*</td>
<td>-1.53</td>
<td>-1.57</td>
<td>-1.66</td>
<td>-1.61</td>
</tr>
<tr>
<td>1-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>-0.66</td>
<td>-0.70</td>
<td>-0.79</td>
<td>-0.74</td>
</tr>
<tr>
<td>2-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>0.05</td>
<td>-0.03</td>
<td>-0.21</td>
<td>-0.10</td>
</tr>
<tr>
<td>2-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4*</td>
<td>-1.49</td>
<td>-1.57</td>
<td>-1.74</td>
<td>-1.64</td>
</tr>
<tr>
<td>2-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4*</td>
<td>0.66</td>
<td>0.58</td>
<td>0.40</td>
<td>0.51</td>
</tr>
<tr>
<td>2-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>-0.70</td>
<td>-0.77</td>
<td>-0.95</td>
<td>-0.85</td>
</tr>
<tr>
<td>2-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>-1.42</td>
<td>-1.50</td>
<td>-1.68</td>
<td>-1.57</td>
</tr>
<tr>
<td>3-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>-0.32</td>
<td>-0.44</td>
<td>-0.71</td>
<td>-0.55</td>
</tr>
<tr>
<td>3-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4*</td>
<td>-1.61</td>
<td>-1.72</td>
<td>-1.99</td>
<td>-1.83</td>
</tr>
<tr>
<td>3-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>-1.01</td>
<td>-1.13</td>
<td>-1.39</td>
<td>-1.23</td>
</tr>
<tr>
<td>3-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>-1.66</td>
<td>-1.77</td>
<td>-2.04</td>
<td>-1.88</td>
</tr>
<tr>
<td>3-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>-0.21</td>
<td>-0.33</td>
<td>-0.60</td>
<td>-0.44</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/4</td>
<td>-0.09</td>
<td>-0.25</td>
<td>-0.60</td>
<td>-0.39</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4*</td>
<td>-0.93</td>
<td>-1.09</td>
<td>-1.44</td>
<td>-1.23</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>-0.41</td>
<td>-0.56</td>
<td>-0.92</td>
<td>-0.70</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/4</td>
<td>-0.85</td>
<td>-1.01</td>
<td>-1.36</td>
<td>-1.15</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>0.16</td>
<td>0.00</td>
<td>-0.35</td>
<td>-0.14</td>
</tr>
<tr>
<td>4-H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/4</td>
<td>0.94</td>
<td>0.79</td>
<td>0.43</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*a*Probably not applicable under the given conditions due to an assumed ML structure at the surface.
S5. Effects of variations of the hydrogen pressure

The variations in the Gibbs free energy for the different adsorption/dissociation states on the c(2×2) surface as a function of the H₂-pressure is presented in Table S5. Only wet conditions are considered.

Table S5. Gibbs free energies in eV for the c(2×2) unit cell adsorption/dissociation structures on the ridge-dimer reconstructed Cu₂O(100):Cu surface converted to different H₂ partial pressures. Wet conditions (i.e. 55 ML H₂O) have been assumed.

<table>
<thead>
<tr>
<th></th>
<th>1 bar</th>
<th>1 mbar</th>
<th>531 nbar</th>
<th>1 fbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-H₂O</td>
<td>0/4</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>1-H₂O</td>
<td>1/4*</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.61</td>
</tr>
<tr>
<td>1-H₂O</td>
<td>1/4</td>
<td>-0.55</td>
<td>-0.64</td>
<td>-0.74</td>
</tr>
<tr>
<td>2-H₂O</td>
<td>0/4</td>
<td>-0.10</td>
<td>-0.10</td>
<td>-0.10</td>
</tr>
<tr>
<td>2-H₂O</td>
<td>1/4*</td>
<td>-1.64</td>
<td>-1.64</td>
<td>-1.64</td>
</tr>
<tr>
<td>2-H₂O</td>
<td>2/4*</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>2-H₂O</td>
<td>1/4</td>
<td>-0.66</td>
<td>-0.75</td>
<td>-0.85</td>
</tr>
<tr>
<td>2-H₂O</td>
<td>2/4</td>
<td>-1.20</td>
<td>-1.38</td>
<td>-1.57</td>
</tr>
<tr>
<td>3-H₂O</td>
<td>0/4</td>
<td>-0.55</td>
<td>-0.55</td>
<td>-0.55</td>
</tr>
<tr>
<td>3-H₂O</td>
<td>1/4*</td>
<td>-1.83</td>
<td>-1.83</td>
<td>-1.83</td>
</tr>
<tr>
<td>3-H₂O</td>
<td>1/4</td>
<td>-1.04</td>
<td>-1.13</td>
<td>-1.23</td>
</tr>
<tr>
<td>3-H₂O</td>
<td>2/4</td>
<td>-1.51</td>
<td>-1.69</td>
<td>-1.88</td>
</tr>
<tr>
<td>3-H₂O</td>
<td>3/4</td>
<td>0.12</td>
<td>-0.15</td>
<td>-0.44</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>0/4</td>
<td>-0.39</td>
<td>-0.39</td>
<td>-0.39</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>1/4*</td>
<td>-1.23</td>
<td>-1.23</td>
<td>-1.23</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>1/4</td>
<td>-0.51</td>
<td>-0.60</td>
<td>-0.70</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>2/4</td>
<td>-0.78</td>
<td>-0.96</td>
<td>-1.15</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>3/4</td>
<td>0.42</td>
<td>0.15</td>
<td>-0.14</td>
</tr>
<tr>
<td>4-H₂O</td>
<td>4/4</td>
<td>1.38</td>
<td>1.03</td>
<td>0.64</td>
</tr>
</tbody>
</table>

*Probably not applicable under the given conditions due to an assumed ML structure at the surface.
S6. Additional figures and data

Here follows additional figures and data that could not be fitted into the main article but are supporting the discussion and conclusions.

6.1. H$_2$O adsorption and dissociation on the (3,0;1,1) surfaces structure

Adsorption energies for single and ML water onto the (3,0;1,1) reconstructed surface is reported in Table S6. The different adsorption sites considered on the (3,0;1,1) surface are shown in Figure S1. The binding geometry for H$_2$O adsorption at the favored site is shown in Figure S2 and the ML structure for the OH/H$_2$O ML with the OH:H$_2$O ratio of 1:5 is shown in Figure S3.

Table S6. Adsorption energies in eV/H$_2$O for the (3,0;1,1) surfaces. Energies are given as electronic energy without thermal corrections. Adsorption sites are specified in Figure S1.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Site/mode</th>
<th>E_{ad}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,0;1,1)</td>
<td>1$^{a,b)}$</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>2$^{a,e)}$</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>3$^{a,e)}$</td>
<td>-0.56</td>
</tr>
<tr>
<td></td>
<td>4$^{a,b)}$</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td>5$^{c,e)}$</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>6$^{a,f)}$</td>
<td>-0.70</td>
</tr>
<tr>
<td></td>
<td>7$^{a,g)}$</td>
<td>-0.53</td>
</tr>
<tr>
<td>H$_2$O ML</td>
<td></td>
<td>-0.55</td>
</tr>
<tr>
<td>OH/H$_2$O ML</td>
<td></td>
<td>-0.65</td>
</tr>
</tbody>
</table>

a) H-bonds to adjacent surface oxygen. b) Moves to bridge site between Cu1 and Cu4. c) Stays on top site. d) Moves to hollow site in-between Cu3, Cu4 and Cu6. e) no H-bond. f) Resides on the edge of Cu6, leaning out from the surface reconstruction ridge. g) Migrates to bridge site between Cu3, and Cu5.
Figure S1. H$_2$O adsorption sites on the (3,0;1,1) surface. Note that the (2,-1;1,1) unit cell displayed here is equivalent to the (3,0;1,1) cell. Coloring: Cu$_{\text{bulk}}$ (●), Cu$_{\text{surf}}$ (▲), O$_{\text{bulk}}$ (◆) and O$_{\text{surf}}$ (○).

Figure S2. Water adsorption at the favored site (Cu6) on the (3,0;1,1) surface. Coloring: Cu (●), O (●) and H (○).

Figure S3. H$_2$O/OH monolayer structure on (3,0;1,1) surface. Coloring: Cu (●), O (●) and H (○).
6.2. Water interactions on the low-energy reconstructed c(2×2) surface

The adsorption energies for water onto the low-energy c(2×2) reconstructed surface are given in Table S7. Figure S4 shows the various adsorption sites. Consult the main article for a discussion on the modes of water interaction on the surface.

Table S7. Adsorption energies, E_{ad}, for the different sites depicted in Figure S4 on the low-energy reconstructed c(2×2) surface. The energies are given as electronic energies at the DFT PBE-D3+U level of theory.

<table>
<thead>
<tr>
<th>Surface site</th>
<th>E_{ad} [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A1$</td>
<td>-0.38</td>
</tr>
<tr>
<td>$A2$</td>
<td>-0.51</td>
</tr>
<tr>
<td>$A3$</td>
<td>-0.72 (-0.97)</td>
</tr>
<tr>
<td>$A4$</td>
<td>-0.60</td>
</tr>
<tr>
<td>$B1$</td>
<td>-0.32</td>
</tr>
<tr>
<td>$B2$</td>
<td>-0.39</td>
</tr>
<tr>
<td>$B3$</td>
<td>-0.43</td>
</tr>
<tr>
<td>$B4$</td>
<td>-0.69</td>
</tr>
<tr>
<td>$B5$</td>
<td>-0.57</td>
</tr>
<tr>
<td>$H1$</td>
<td>-0.35</td>
</tr>
<tr>
<td>$H2$</td>
<td>-0.53</td>
</tr>
<tr>
<td>$H3$</td>
<td>-0.43</td>
</tr>
</tbody>
</table>

a) H$_2$O forms H-bond with the O atom on the substrate surface in all cases but B4 and H3. b) Obtained upon full relaxation of top two Cu$_2$O layers and the interacting H$_2$O.
Figure S4. Depicts H$_2$O adsorption sites for the low-energy reconstructed c(2×2) surface. Coloring: Cu(●), O (●) and H (○).

6.3. H$_2$O monolayer on the ridge-dimer c(2×2) using the p(2×2) unit cell

Figure S5. Shows the H$_2$O monolayer structure on top of the ridge dimer reconstructed c(2×2) surface using the p(2×2) unit cell.

6.4. Cooperative effects

Analysis of the H$_2$O adsorption processes reveal strong cooperative effects upon binding to the Cu$_2$O(100):Cu surface, especially at intermediate H$_2$O coverage and with pre-adsorbed OH. Two series were used to analyze the cooperative effect: i) adsorption to the clean ridge-dimer
reconstructed surface using a c(2×2) unit cell, and ii) adsorption to a OH/H pre-covered surface (0.125 ML OH) using a p(2×2) unit cell. These are referred to throughout the main article.

In previous study by Cox and Schulz19 the desorption of a H\textsubscript{2}O covered Cu\textsubscript{2}O(100):Cu surface was studied by ramping from low (110 K) to high temperatures (600 K). Our computational data can be compared to the data from Cox and Schulz (see Figure 2 in ref. 19). They found that the adsorption energy for H\textsubscript{2}O decreases with the H\textsubscript{2}O coverage, which indicates that the cooperative effect is largest at low coverage. The trends of Cox and Schulz are here reproduced by the DFT calculations for high water coverage on the c(2×2) unit cell (see Figure S6 and Figure 7 of the main article). Nevertheless, at intermediate to lower coverage the computational trend is reversed to the experimentally observed. In order to understand why computations and experiments differ, we used another approach: Since both experimental and computational results indicate H\textsubscript{2}O dissociation on the surface, the adsorption study was repeated using a p(2×2) surface unit cell and Cu\textsubscript{2}(100):Cu-(OH/H)\textsubscript{(ad)} as reference state. Hence assuming 0.125 ML initial OH coverage. The experimental trend can now qualitatively be reproduced (see Figure S6): the adsorption energy as well as the cooperative effect are largest at low coverage, and decline as the coverage increases.
Figure S6. Sequential adsorption energies (note that no thermal corrections are added) onto bare Cu$_2$O(100):Cu (red series) as well as onto an OH/H pre-adsorbed surface (blue). A ridge-dimer structure was assumed. The horizontal axis depicts the surface coverage. For the OH/H pre-adsorbed series, 0.125 ML coverage indicate the first dissociative adsorption, i.e. Cu$_2$O(100):Cu + H$_2$O(g) \rightarrow Cu$_2$O(100):Cu-(OH/H)$_{ad}$. The green and black series show the cooperative effect of co-adsorption for the bare (black) and pre-covered (green) surfaces. Note that the c(2×2) unit cell was used to represent the bare surface, hence only 0.25, 0.5, 0.75 and 1 ML adsorption are included.

6.5. NBO and Mulliken partial charge analysis

Figure S7 shows the cluster model used for the computations of the natural bond orbital (NBO)20 and Mulliken charges for the H and OH adsorbates. The cluster was cut out from the ridge-dimer surface template. Charge neutrality and conservation of Cu$_2$O stoichiometry were prioritized when choosing the cluster model. In order to saturate the cluster and to ensure a charge distribution similar to the periodic Cu$_2$O surface, dangling and unsaturated Cu and O atoms where terminated by OH and H groups respectively. The above procedure follows the recommendations of ref. 21 and 22.
Figure S7. Shows the (Cu₂O)₁₅ cluster model used for the NBO and Mulliken partial charges calculations.

Initially, the cluster atoms of the clean surface where kept at there original surface positions while the terminating OH and H groups where relaxed. In the next step all atoms where constraint apart from the adsorbate and the Cu and O atoms in direct contact with the adsorbing OH and H. The OH and H groups where placed at the favored B1 position (see original article).

All cluster where optimized by DFT calculations. These where carried using the Orca program system, employing the PBE₀²⁴-D³ₓ-c functional, the split-J²⁵ def2-SVP/J basis set²⁶–²⁸ and the RIJCOSX algorithm.²⁹ The NBO and Mulliken charges where obtained by single point calculations at the PBE₀-D3/LACV₃P***³⁰,³¹ level of theory using the Gaussian 09 program suit.³²
S7. Convergence test for computational parameters

Table S8 summarizes the results from our convergence test for the parameters: i) the number of K-points, ii) the plane-wave cut-off and iii) the vacuum distance between two repeating slabs.

Table S9 shows a comparison of the results for the adsorption and dissociation states on the c(2×2) surface allowing the top two (2L) or top four layers (4L) to relax. Clearly the latter does not result in any large differences from the 2L case.

Table S8. Convergence test for critical computational parameters: i) number of K-points, ii) plane-wave cut-off and iii) vacuum distance between the model slabs. The test was conducted on water adsorption onto the ridge-dimer c(2×2) reconstructed surface. The energies are reported in eV.

<table>
<thead>
<tr>
<th>K-points</th>
<th>$E_{ad}(H_2O)$</th>
<th>Cut-off</th>
<th>$E_{ad}(H_2O)$</th>
<th>Vacuum</th>
<th>$E_{ad}(H_2O)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2×1</td>
<td>-0.64</td>
<td>320 eV</td>
<td>-0.68</td>
<td>12 Å</td>
<td>-0.68</td>
</tr>
<tr>
<td>4×4×1</td>
<td>-0.66</td>
<td>400 eV</td>
<td>-0.66</td>
<td>17 Å</td>
<td>-0.66</td>
</tr>
<tr>
<td>8×8×1</td>
<td>-0.66</td>
<td>520 eV</td>
<td>-0.66</td>
<td>22 Å</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 eV</td>
<td>-0.66</td>
<td>17 Åa</td>
<td>-0.66</td>
</tr>
</tbody>
</table>

a Employing dipole corrections, otherwise not.
Table S9. Electronic energy for the various surface states at the PBE-D3+U level of theory with the two or four topmost Cu₂O layers unconstraint during the geometrical relaxation.

<table>
<thead>
<tr>
<th>State</th>
<th>2L</th>
<th>4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-H₂O 0/4</td>
<td>-0.66</td>
<td>-0.66</td>
</tr>
<tr>
<td>1-H₂O 1/4*</td>
<td>-2.19</td>
<td>-2.18</td>
</tr>
<tr>
<td>1-H₂O 1/4</td>
<td>-1.11</td>
<td>-1.12</td>
</tr>
<tr>
<td>2-H₂O 0/4</td>
<td>-1.28</td>
<td>-1.28</td>
</tr>
<tr>
<td>2-H₂O 1/4*</td>
<td>-2.80</td>
<td>-2.79</td>
</tr>
<tr>
<td>2-H₂O 2/4*</td>
<td>-0.55</td>
<td>-0.53</td>
</tr>
<tr>
<td>2-H₂O 1/4</td>
<td>-1.81</td>
<td>-1.82</td>
</tr>
<tr>
<td>2-H₂O 2/4</td>
<td>-2.27</td>
<td>-2.25</td>
</tr>
<tr>
<td>3-H₂O 0/4</td>
<td>-2.36</td>
<td>-2.35</td>
</tr>
<tr>
<td>3-H₂O 1/4*</td>
<td>-3.57</td>
<td>-3.56</td>
</tr>
<tr>
<td>3-H₂O 1/4</td>
<td>-2.78</td>
<td>-2.80</td>
</tr>
<tr>
<td>3-H₂O 2/4</td>
<td>-3.19</td>
<td>-3.17</td>
</tr>
<tr>
<td>3-H₂O 3/4</td>
<td>-1.44</td>
<td>-1.42</td>
</tr>
<tr>
<td>4-H₂O 0/4</td>
<td>-2.83</td>
<td>-2.85</td>
</tr>
<tr>
<td>4-H₂O 1/4*</td>
<td>-3.63</td>
<td>-3.65</td>
</tr>
<tr>
<td>4-H₂O 1/4</td>
<td>-2.87</td>
<td>-2.90</td>
</tr>
<tr>
<td>4-H₂O 2/4</td>
<td>-3.09</td>
<td>-3.07</td>
</tr>
<tr>
<td>4-H₂O 3/4</td>
<td>-1.76</td>
<td>-1.75</td>
</tr>
<tr>
<td>4-H₂O 4/4</td>
<td>-0.68</td>
<td>-0.69</td>
</tr>
</tbody>
</table>

S8. Experimental coverage determination from O 1s PES data

The photoelectron inelastic mean free paths for the compounds of interest in the present study were calculated using the Tanuma-Penn-Powell algorithm from the NIST Electron Inelastic-Mean-Free-Path Database. The photoionization cross sections are assumed to be constant for...
the O 1s core level in all compounds and a normal photoelectron emission angle geometry was used in all relevant experiments. In the calculations we used a kinetic energy of 120 eV and the following compound specific parameters: band gap \(E_{g}^{\text{Cu}_2\text{O}} = 2.2 \text{ eV} \), \(E_{g}^{\text{H}_2\text{O}} = 7.0 \text{ eV} \), density \(\rho^{\text{Cu}_2\text{O}} = 6 \text{ g cm}^{-3} \), \(\rho^{\text{H}_2\text{O}} = 0.9971 \text{ g cm}^{-3} \), and the number of valence electrons \(N_{v}^{\text{Cu}_2\text{O}} = 28 \), \(N_{v}^{\text{H}_2\text{O}} = 8 \). The resulting mean free paths at 120 eV kinetic energy are \(\lambda^{\text{Cu}_2\text{O}} = 5.37 \text{ Å} \) for \(\text{Cu}_2\text{O} \) and \(\lambda^{\text{H}_2\text{O}} = 8.65 \text{ Å} \) for \(\text{H}_2\text{O} \). The inelastic mean free path of \(\text{OH} \) was assumed to be equal to that of \(\text{H}_2\text{O} \). The thickness of a monolayer of hydroxyl groups was defined using the DFT geometry from the present study for \(\text{OH} \) adsorbed on \(\text{Cu}_2\text{O}(100) \), 2.89 Å. The thickness of a monolayer of adsorbed water was obtained from the average thickness of a molecular layer of water in bulk liquid water, 3.1 Å, using the bulk liquid water density. The calculated thicknesses of the \(\text{OH} \) and \(\text{H}_2\text{O} \) layers were converted into monolayer coverage by dividing by their respective layer thickness. The coverage of \(\text{H}_2\text{O} \) and \(\text{OH} \) was estimated from their fraction of the intensity of the integrated O 1s intensity. A layered structure was assumed in the simulations with \(\text{H}_2\text{O} \) adsorbed closest to the vacuum and \(\text{OH} \) at the \(\text{Cu}_2\text{O} \) interface. The photoelectron contributions from the \(\text{H}_2\text{O} \) and \(\text{OH} \) layers as well as from a \(\text{Cu}_2\text{O} \) slab with a thickness exceeding 10 nm was integrated after the signal from each excitation depth was subjected to exponential decay when travelling through the relevant layers to the vacuum. The coverage was estimated from an iterative procedure.
S9. Supplementary references

(20) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. The NBO 3.0 Program Manual

S10. Appendix: Cartesian coordinates

Below are the XYZ-coordinates for the optimized adsorption and dissociation structures included. All structures have been optimized at the PBE-D3+U level of theory. The coordinates for the surface reconstruction structure without adsorbates can be obtained from the supporting info for supplementary ref. 38 (ref. 17 in main article).

10.1. Ridge-dimer c(2×2) structures - c(2×2) unit cell

Structures displayed in Figure 8 of the main article.

0.25 ML H$_2$O coverage – 0/4 OH

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.4003999999999984</td>
<td>3.1971300000000005</td>
<td>12.2266500000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.4003999999999983</td>
<td>1.0412200000000010</td>
<td>10.0707400000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.5555899999999989</td>
<td>5.3523200000000010</td>
<td>12.2266500000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.4004000000000014</td>
<td>7.5074999999999933</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.4003999999999984</td>
<td>3.1971300000000005</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.4003999999999983</td>
<td>1.0412200000000010</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7547800000000000</td>
<td>3.1963999999999933</td>
<td>10.0707400000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.5555899999999989</td>
<td>5.3523200000000010</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.4004000000000015</td>
<td>5.3515899999999989</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7547800000000000</td>
<td>3.1963999999999933</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Symbol</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.55559</td>
<td>3.19639</td>
<td>14.38257</td>
</tr>
<tr>
<td>Cu</td>
<td>1.75478</td>
<td>5.35232</td>
<td>16.53847</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.40040</td>
<td>7.50749</td>
<td>12.22665</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.40040</td>
<td>5.35159</td>
<td>10.07040</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.55559</td>
<td>3.19639</td>
<td>10.07040</td>
</tr>
<tr>
<td>Cu</td>
<td>1.75478</td>
<td>5.35232</td>
<td>12.22665</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.27759</td>
<td>3.60873</td>
<td>20.24898</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.48880</td>
<td>0.93319</td>
<td>18.63045</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.08328</td>
<td>5.36343</td>
<td>20.39367</td>
</tr>
<tr>
<td>Cu</td>
<td>1.81002</td>
<td>4.95097</td>
<td>20.21076</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.83698</td>
<td>7.54473</td>
<td>20.20624</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.24901</td>
<td>5.54987</td>
<td>18.64815</td>
</tr>
<tr>
<td>Cu</td>
<td>1.63362</td>
<td>2.96908</td>
<td>18.54364</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.40641</td>
<td>3.31962</td>
<td>18.67985</td>
</tr>
<tr>
<td>O</td>
<td>-1.35892</td>
<td>4.39507</td>
<td>17.57794</td>
</tr>
<tr>
<td>O</td>
<td>0.87226</td>
<td>6.32533</td>
<td>19.86243</td>
</tr>
<tr>
<td>O</td>
<td>0.56114</td>
<td>1.92924</td>
<td>19.75016</td>
</tr>
<tr>
<td>O</td>
<td>2.73651</td>
<td>4.17952</td>
<td>17.54365</td>
</tr>
<tr>
<td>O</td>
<td>0.67755</td>
<td>6.42953</td>
<td>11.14870</td>
</tr>
<tr>
<td>O</td>
<td>2.83273</td>
<td>4.27436</td>
<td>8.99278</td>
</tr>
<tr>
<td>O</td>
<td>-1.47762</td>
<td>4.27436</td>
<td>13.30461</td>
</tr>
<tr>
<td>O</td>
<td>0.67754</td>
<td>6.42953</td>
<td>15.46052</td>
</tr>
<tr>
<td>O</td>
<td>2.83273</td>
<td>4.27436</td>
<td>13.30461</td>
</tr>
<tr>
<td>O</td>
<td>-1.47762</td>
<td>4.27436</td>
<td>8.99278</td>
</tr>
<tr>
<td>O</td>
<td>0.67755</td>
<td>2.11917</td>
<td>11.14870</td>
</tr>
<tr>
<td>O</td>
<td>0.67755</td>
<td>2.11917</td>
<td>21.94652</td>
</tr>
<tr>
<td>H</td>
<td>-2.97864</td>
<td>3.25048</td>
<td>21.39403</td>
</tr>
<tr>
<td>H</td>
<td>-3.32305</td>
<td>4.35390</td>
<td>22.46706</td>
</tr>
<tr>
<td>O</td>
<td>-2.58392</td>
<td>3.98184</td>
<td>20.19465</td>
</tr>
</tbody>
</table>
0.25 ML H$_2$O coverage – 1/4* OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu -0.400855094987342 3.200763860731604 12.226650000000033
Cu -0.400855094987342 1.042403451555298 10.0707400000000047
Cu -2.558494685811035 5.358403451555297 12.2266500000000033
Cu -0.400855094987373 7.516033031012959 16.5384799999999911
Cu -0.400855094987342 3.200763860731604 16.5384799999999911
Cu -0.400855094987342 1.042403451555298 14.3825699999999925
Cu 1.756774484470320 3.200033031012960 10.0707400000000047
Cu -2.558494685811035 5.358403451555297 16.5384799999999911
Cu -0.400855094987373 5.357672621836652 14.3825699999999925
Cu 1.756774484470320 3.200033031012960 14.3825699999999925
Cu -2.558494685811065 5.358403451555267 16.5384799999999911
Cu 1.756774484470320 5.358403451555267 12.2266500000000033
Cu -0.400855094987373 7.516033031012959 14.3825699999999925
Cu -0.400855094987342 3.200763860731604 14.3825699999999925
Cu -2.558494685811065 3.200033031012960 10.0707400000000047
Cu 1.756774484470320 5.358403451555267 12.2266500000000033
Cu -0.599876304834079 3.433397052380350 20.405885191726853
Cu -0.390585414611553 1.071143277235628 18.656649851461658
Cu -2.368663979318350 5.193403451555267 20.405719415621995
Cu 1.748684769687268 5.326490678391274 20.610919000268876
Cu -0.482741890107295 7.562607194326104 20.607917936450246
Cu -0.384611510280700 5.397152959658094 18.549386275616008
Cu 1.726357647592729 3.185987987598950 18.644533667352913
Cu -2.587509332278970 3.189970522778444 18.558858298484846
O -1.477847237948649 4.280769578655905 17.55255278614062
O 0.655856820858364 6.464056647840403 19.646984923438097
O 0.661640677411640 2.142493736900012 19.771205606557892
O 2.836017855609914 4.279968462568033 17.602585596348199
O 0.678320103917781 6.436847820741805 11.14870000000101
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>2.83595964741474</td>
<td>4.279218241284113</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>-1.479309475539881</td>
<td>4.279218241284144</td>
<td>13.304610000000086</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>6.436847820741805</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>2.83595964741474</td>
<td>4.279218241284113</td>
<td>13.304610000000086</td>
</tr>
<tr>
<td>O</td>
<td>-1.479309475539881</td>
<td>4.279218241284144</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>2.121578650460451</td>
<td>11.148700000000101</td>
</tr>
<tr>
<td>H</td>
<td>3.255813483963656</td>
<td>4.748436826777705</td>
<td>22.373397675118344</td>
</tr>
<tr>
<td>H</td>
<td>-1.493964635006934</td>
<td>4.303968553813883</td>
<td>21.366850713479984</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>2.121578650460451</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>11.148700000000101</td>
<td>15.460529999999977</td>
</tr>
</tbody>
</table>

0.25 ML H$_2$O coverage – 1/4 OH

38

Lattice vectors: [4.316, 4.316, 0.000; -4.316, 4.316, 0.000; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>7.516033031012959</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>3.200033031012960</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>3.200033031012960</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>5.358403451555267</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>7.516033031012959</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>5.358403451555267</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.2415740555872398</td>
<td>3.419138951770787</td>
<td>20.624738411504122</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.524033185418446</td>
<td>0.922458787359075</td>
<td>18.681608154306446</td>
</tr>
</tbody>
</table>
 Cu -2.352914174333961 5.532768589426890 20.625867257952173
 Cu 1.818583957077997 4.960401274046794 20.22820592837809
 Cu -0.799327522872756 7.579188577428763 20.228205373614443
 Cu -0.309767267860731 5.450221650813885 18.627085924882891
 Cu 1.643046942167205 3.089715920594572 18.595142742730015
 Cu -2.529532037639916 3.230806608020881 18.669597817465089
 O -1.438836407614274 4.321029571489354 17.613373221441385
 O 0.749074946381666 6.509074476416941 19.804438425186284
 O 0.55566651410050 2.011277582185449 19.696277878579398
 O 2.751539218914641 4.194836930882935 17.533019357239944
 O 0.678320103917781 6.436847820741805 11.148700000000101
 O 2.835959694741474 4.279218241284113 8.992779999999994
 O -1.479309475539881 4.279218241284144 13.304610000000086
 O 0.678320103917781 6.436847820741805 15.460529999999977
 O 2.835959694741474 4.279218241284113 13.304610000000086
 O -1.479309475539881 4.279218241284144 8.992779999999994
 O 0.678320103917781 2.121578650460451 15.460529999999977
 O 0.678320103917781 2.121578650460451 11.148700000000101
 H -0.614962572187882 5.156719955702302 22.230761639688531
 O -1.209418985918912 4.563149761048433 21.735881664045166

0.50 ML H₂O coverage – 0/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.157994993440015</td>
<td>5.0000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>0.000000000000000</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.473994993440015</td>
<td>9.311830008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.316000000000000</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440014</td>
<td>6.473994993440014</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.316000000000000</td>
<td>9.311830008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.473994993440015</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>2.157994993440015</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>2.337661738904627</td>
<td>2.459021595010295</td>
<td>15.077386704690445</td>
</tr>
<tr>
<td>Cu</td>
<td>2.289035258720018</td>
<td>4.443435536269291</td>
<td>13.568237316682985</td>
</tr>
<tr>
<td>Cu</td>
<td>0.155224545794513</td>
<td>2.224916297746411</td>
<td>13.642031940405909</td>
</tr>
<tr>
<td>Cu</td>
<td>0.535925132901678</td>
<td>4.216491168298918</td>
<td>15.402078493564263</td>
</tr>
<tr>
<td>Cu</td>
<td>1.831103989161301</td>
<td>6.497798712905647</td>
<td>15.184562575599282</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.165745591843661</td>
<td>4.168975107539538</td>
<td>13.560646994081910</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.009367872645630</td>
<td>6.209266024798637</td>
<td>13.481244202542957</td>
</tr>
<tr>
<td>Cu</td>
<td>0.128161347636025</td>
<td>8.196226095501840</td>
<td>15.182710453912458</td>
</tr>
<tr>
<td>O</td>
<td>-1.051094810669397</td>
<td>5.131902956578274</td>
<td>14.65540583852738</td>
</tr>
<tr>
<td>O</td>
<td>1.166097237970811</td>
<td>3.319888615924115</td>
<td>12.520528003438951</td>
</tr>
<tr>
<td>O</td>
<td>-0.901615745862351</td>
<td>1.153347655848711</td>
<td>14.719976843606478</td>
</tr>
<tr>
<td>O</td>
<td>1.003016395558884</td>
<td>7.478469509103375</td>
<td>12.479731828436035</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279992</td>
<td>5.395002503279992</td>
<td>10.389790052303100</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279993</td>
<td>1.079002503279993</td>
<td>6.077960138539800</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279993</td>
<td>1.079002503279993</td>
<td>10.389790052303100</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279992</td>
<td>5.395002503279992</td>
<td>6.077960138539800</td>
</tr>
<tr>
<td>O</td>
<td>-3.236997496720007</td>
<td>3.236997496720007</td>
<td>8.233869964343864</td>
</tr>
</tbody>
</table>
0.50 ML H₂O coverage – 1/4* OH

42

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Atom1</th>
<th>Atom2</th>
<th>Atom3</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1.079002503279993</td>
<td>3.236997496720007</td>
<td>8.233869964343864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-3.236997496720007</td>
<td>3.236997496720007</td>
<td>3.922040050580346</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.079002503279993</td>
<td>3.236997496720007</td>
<td>3.922040050580346</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.657283679160061</td>
<td>3.522001477552063</td>
<td>17.581789905564730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.791616065746869</td>
<td>3.437770119430116</td>
<td>17.039527607366924</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-2.620874000154799</td>
<td>2.801105095558100</td>
<td>18.456723094046367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.713797959794142</td>
<td>2.7107634202609734</td>
<td>17.53593421344384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-2.295091246821521</td>
<td>3.541825068987229</td>
<td>17.90845981179167</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.325784007507140</td>
<td>3.585812069949146</td>
<td>17.34478547324029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>7.516033031012959</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7567744484470320</td>
<td>3.200033031012960</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7567744484470320</td>
<td>3.200033031012960</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>14.3825699999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.7567744484470320</td>
<td>5.358403451555267</td>
<td>16.5384799999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>7.516033031012959</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>5.358403451555267</td>
<td>12.2266500000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.219565048561327</td>
<td>3.246213099084652</td>
<td>20.578190203568752</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.30755532840676</td>
<td>1.023134994278571</td>
<td>18.577286877341024</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.299483976444703</td>
<td>5.290630393529744</td>
<td>20.595613900242583</td>
</tr>
<tr>
<td>Cu</td>
<td>2.084428368932711</td>
<td>5.106435493986814</td>
<td>20.531768800510847</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.461445080461163</td>
<td>7.61060968547871</td>
<td>20.361820173436701</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.279034953839735</td>
<td>5.342483777462291</td>
<td>18.625744877030233</td>
</tr>
<tr>
<td>Cu</td>
<td>1.815533385087290</td>
<td>3.151735694504317</td>
<td>18.560702910225992</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.475332824078500</td>
<td>3.148620890803386</td>
<td>18.638335743580104</td>
</tr>
<tr>
<td>O</td>
<td>-1.450063549599824</td>
<td>4.305131714131062</td>
<td>17.59612397745618</td>
</tr>
<tr>
<td>O</td>
<td>0.832428735260745</td>
<td>6.355162537532248</td>
<td>19.727318114724341</td>
</tr>
<tr>
<td>O</td>
<td>0.817963061866403</td>
<td>2.028483137684894</td>
<td>19.64786416214970</td>
</tr>
<tr>
<td>O</td>
<td>2.860313412775966</td>
<td>4.304268408309031</td>
<td>17.55021546215483</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>6.436847820741805</td>
<td>11.148700000000101</td>
</tr>
<tr>
<td>O</td>
<td>2.835959694741474</td>
<td>4.279218241284113</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>-1.479309475539881</td>
<td>4.279218241284144</td>
<td>13.304610000000086</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>6.436847820741805</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>2.835959694741474</td>
<td>4.279218241284113</td>
<td>13.304610000000086</td>
</tr>
<tr>
<td>O</td>
<td>-1.479309475539881</td>
<td>4.279218241284144</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917812</td>
<td>2.121578650460451</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917812</td>
<td>2.121578650460451</td>
<td>11.148700000000101</td>
</tr>
<tr>
<td>H</td>
<td>-0.648027038325117</td>
<td>4.871473870934498</td>
<td>22.269765476861551</td>
</tr>
<tr>
<td>H</td>
<td>-2.223842103332592</td>
<td>2.855926261352728</td>
<td>22.481588082133470</td>
</tr>
<tr>
<td>H</td>
<td>2.215659304563505</td>
<td>5.854838568179879</td>
<td>23.304784206244154</td>
</tr>
<tr>
<td>H</td>
<td>2.997790137150038</td>
<td>4.130527912751840</td>
<td>21.369900935635432</td>
</tr>
<tr>
<td>O</td>
<td>-1.245015801051908</td>
<td>4.271219016121746</td>
<td>21.777400117700271</td>
</tr>
</tbody>
</table>
O: 1.642381678390805 6.303478686365802 22.657095020812726

0.50 ML H$_2$O coverage – 1/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu: -0.400787229552186 3.200221966079347 12.226650000000033
Cu: -0.400787229552186 1.042226970914926 10.0707400000000047
Cu: -2.558061528399799 5.357496264926960 12.2266500000000047
Cu: -0.400787229552186 7.514760554103477 16.538479999999911
Cu: -0.400787229552186 3.200221966079347 16.538479999999911
Cu: -0.400787229552186 1.042226970914926 14.382569999999925
Cu: 1.756477059624332 3.199491260091444 10.0707400000000047
Cu: -2.558061528399799 5.357496264926960 16.538479999999911
Cu: -0.400787229552186 5.356755589389944 14.382569999999925
Cu: 1.756477059624332 3.199491260091444 14.382569999999925
Cu: -2.558061528399768 3.199491260091412 14.382569999999925
Cu: 1.756477059624332 5.357496264926960 16.538479999999911
Cu: -0.400787229552186 7.514760554103477 12.2266500000000033
Cu: -0.400787229552186 5.356755589389943 10.0707400000000047
Cu: -2.558061528399768 3.199491260091412 10.0707400000000047
Cu: 1.756477059624332 5.357496264926960 12.2266500000000033
Cu: -0.495856504099471 0.940385437890393 18.70545376753697
Cu: -2.276773329730047 5.486749876687553 20.612493906715461
Cu: 1.975810428801598 4.962216536670228 20.440237647208701
Cu: -0.657156502519249 7.558498049058132 20.212768865683376
Cu: -0.278576673575352 5.366842799801194 18.625319155696729
Cu: 1.706671769432988 3.171245749008750 18.653229198152221
<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-2.508210207385317</td>
<td>3.176476921984501</td>
<td>18.643409030802147</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.316903520756250</td>
<td>3.321744215814058</td>
<td>20.580847136215947</td>
</tr>
<tr>
<td>O</td>
<td>-1.479059025982010</td>
<td>4.278493762509171</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>0.678205263194508</td>
<td>2.121219463661620</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>0.678205263194508</td>
<td>2.121219463661620</td>
<td>11.148700000000010</td>
</tr>
<tr>
<td>O</td>
<td>0.678205263194508</td>
<td>6.435758051685688</td>
<td>11.148700000000010</td>
</tr>
<tr>
<td>O</td>
<td>2.835479562042090</td>
<td>4.278493762509202</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>-1.479059025982010</td>
<td>4.278493762509171</td>
<td>13.304610000000008</td>
</tr>
<tr>
<td>O</td>
<td>0.678205263194508</td>
<td>6.435758051685688</td>
<td>15.460529999999977</td>
</tr>
<tr>
<td>O</td>
<td>0.678205263194508</td>
<td>4.278493762509202</td>
<td>13.304610000000008</td>
</tr>
<tr>
<td>O</td>
<td>-1.447998719939805</td>
<td>4.309344201148564</td>
<td>17.607996676962742</td>
</tr>
<tr>
<td>O</td>
<td>0.799739042565767</td>
<td>6.405830074411623</td>
<td>19.751316683876105</td>
</tr>
<tr>
<td>O</td>
<td>0.648053986604816</td>
<td>2.012646562182006</td>
<td>19.68356054944240</td>
</tr>
<tr>
<td>O</td>
<td>2.786151900628558</td>
<td>4.231696673674021</td>
<td>17.542888732657712</td>
</tr>
<tr>
<td>H</td>
<td>-1.720851442346315</td>
<td>3.979254057722014</td>
<td>22.405782722254386</td>
</tr>
<tr>
<td>H</td>
<td>0.39197561569637</td>
<td>5.136642639169182</td>
<td>22.402207735531814</td>
</tr>
<tr>
<td>H</td>
<td>1.724704774105325</td>
<td>4.710341256198630</td>
<td>23.124793497610707</td>
</tr>
<tr>
<td>O</td>
<td>1.363685822207327</td>
<td>5.368034055092631</td>
<td>22.501925380945075</td>
</tr>
<tr>
<td>O</td>
<td>-1.15881644168075</td>
<td>4.506670770249152</td>
<td>21.805065915202196</td>
</tr>
</tbody>
</table>

0.50 ML H$_2$O coverage – 2/4* OH

42

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>7.516033031012959</td>
<td>16.538479999999991</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>3.200763860731604</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987342</td>
<td>1.042403451555298</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>3.200033031012960</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811035</td>
<td>5.358403451555297</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>3.200033031012960</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>5.358403451555267</td>
<td>16.538479999999911</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400855094987373</td>
<td>5.357672621836652</td>
<td>10.070740000000047</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.558494685811065</td>
<td>3.200033031012960</td>
<td>14.382569999999925</td>
</tr>
<tr>
<td>Cu</td>
<td>1.756774484470320</td>
<td>5.358403451555267</td>
<td>12.226650000000033</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.138926464623378</td>
<td>3.424487250675960</td>
<td>20.794365595432890</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.401115685156908</td>
<td>1.135046803983947</td>
<td>18.527457394220910</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.501400816733454</td>
<td>5.345863902431484</td>
<td>20.730404626852579</td>
</tr>
<tr>
<td>Cu</td>
<td>1.920856433751461</td>
<td>5.099899846022689</td>
<td>20.545149169610099</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.410233232093652</td>
<td>7.680690841521485</td>
<td>20.407703828064164</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.378014002095055</td>
<td>5.317411942422906</td>
<td>18.606515051165307</td>
</tr>
<tr>
<td>Cu</td>
<td>1.773410210202563</td>
<td>3.211695203072716</td>
<td>18.660167375473950</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.557818893620023</td>
<td>3.095437683299898</td>
<td>18.531496169676782</td>
</tr>
<tr>
<td>O</td>
<td>-1.495318530577254</td>
<td>4.267159051163565</td>
<td>17.583476718474209</td>
</tr>
<tr>
<td>O</td>
<td>0.727298809258315</td>
<td>6.354935347415944</td>
<td>19.628427560777471</td>
</tr>
<tr>
<td>O</td>
<td>0.677567186275528</td>
<td>2.112171987169183</td>
<td>19.666245335801449</td>
</tr>
<tr>
<td>O</td>
<td>2.839559617324370</td>
<td>4.278315300303264</td>
<td>17.579096818430383</td>
</tr>
<tr>
<td>O</td>
<td>0.678320103917781</td>
<td>6.436847820741805</td>
<td>11.148700000000010</td>
</tr>
<tr>
<td>O</td>
<td>2.835959694741474</td>
<td>4.279218241284113</td>
<td>8.992779999999994</td>
</tr>
<tr>
<td>O</td>
<td>-1.479309475539881</td>
<td>4.279218241284144</td>
<td>13.304610000000086</td>
</tr>
</tbody>
</table>
0.50 ML H₂O coverage – 2/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu -0.400855094987342 3.200763860731604 12.226650000000033
Cu -0.400855094987342 1.042403451555298 10.070740000000047
Cu -2.558494685811035 5.358403451555297 12.226650000000033
Cu -0.400855094987373 7.516033031012959 16.538479999999911
Cu -0.400855094987342 3.200763860731604 16.538479999999911
Cu -0.400855094987342 1.042403451555298 14.382569999999925
Cu 1.756774484470320 3.200033031012960 10.070740000000047
Cu -2.558494685811035 5.358403451555297 16.538479999999911
Cu -0.400855094987373 5.357672621836652 14.382569999999925
Cu 1.756774484470320 3.200033031012960 14.382569999999925
Cu -2.558494685811065 3.200033031012960 14.382569999999925
Cu 1.756774484470320 5.358403451555267 16.538479999999911
Cu -0.400855094987373 7.516033031012959 12.226650000000033
Cu -0.400855094987373 5.357672621836652 10.070740000000047
Cu -2.558494685811065 3.2000 10.070740000000047
Cu 1.756774484470320 5.358403451555267 12.226650000000033
Cu -0.429118631649427 3.292385029797026 20.614893708002338
Cu -0.410854474909554 1.038767026039777 18.612587264778004
Cu -2.494182102359873 5.357935128090062 20.620918701119969
Cu 1.775176014693177 5.307805955016054 20.619272734376203
Cu -0.480140759676174 7.560975332951791 20.614548534110376
Cu -0.378620320791049 5.387549910402575 18.607171621840855
Cu 1.730009562721985 3.179706705727454 18.605290332280646
Cu -2.555024600747266 3.210050891562235 18.609466584241936
O -1.465669476487752 4.292771177385680 17.577230050924019
O 0.684048582342467 6.467534304147967 19.677092817252628
O 0.651773281351156 2.119845613737953 19.675690299826218
O 2.822796860430143 4.265696276920906 17.576803891488222
O 0.678320103917781 6.436847820741805 11.148700000000101
O 2.835959649741474 4.279218241284113 8.992779999999994
O -1.479309475539881 4.279218241284144 13.304610000000086
O 0.678320103917781 6.436847820741805 15.460529999999977
O 2.835959649741474 4.279218241284113 13.304610000000086
O -1.479309475539881 4.279218241284144 8.992779999999994
O 0.678320103917812 2.121578650460451 15.460529999999977
O 0.678320103917812 2.121578650460451 11.148700000000101
H 3.286990517192177 4.750916901612068 22.377373137556280
H -0.906132077492770 4.873962764778827 22.329251478220339
O -1.476201729717131 4.308000541297240 21.774253288287380
0.75 ML H₂O coverage – 0/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

O 2.741001062791386 4.210407038999424 21.774821994001012

Cu -2.189641687546193 4.172143809706766 13.529181908835975
Cu -0.064895365627976 6.202807662616213 13.447984958063564
Cu 0.093074574031842 8.153718352523001 15.091785767920459
Cu 2.288694793816049 2.460170807408186 15.105778579597555
Cu 2.253992873073093 4.424018037647317 13.579413887849562
Cu 0.116006879146529 2.225744638795727 13.664150710678898
Cu 0.501173973384105 4.248223931114332 15.398955088876010
Cu 1.786870593813765 6.500129234204579 15.13000812455308
Cu 2.157994995164452 6.473994995164452 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316000000000000 7.155910000000008
Cu 0.000000000000000 4.316000000000000 11.467750000000004
Cu 2.157994995164453 2.157994995164453 7.155910000000008
Cu -2.158005004835517 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.157994995164483 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.473994995164483 9.311829999999899
Cu 2.157994995164483 4.316000000000000 5.000000000000021
Cu 2.157994995164452 6.473994995164452 7.155910000000008
Cu 2.157994995164483 4.316000000000000 9.311829999999899
Cu 0.000000000000000 6.473994995164483 5.000000000000021
Cu 2.157994995164453 2.157994995164453 11.467750000000004
Cu -2.158005004835517 4.316000000000000 9.311829999999899
Cu 0.000000000000000 2.157994995164483 9.311829999999899
O -1.082732489959445 5.392130561296833 10.393473064651655
O -1.078881389756959 1.078982432330723 6.062799039881647
O -1.073763247031772 1.084738052207774 10.405857780549217
O -1.079015379241903 5.395085121055558 6.062137964689462
O -3.236762126534094 2.337122467363394 8.248378516994340
O 1.078444846587071 2.336763838179582 8.248822905832320
O -3.237899107197594 2.338202856211094 4.099662307190933
O 1.076719266382645 2.339469548156112 4.100636084093196
O -1.105845749604121 5.145644943733195 14.635223977493560
O 1.141017594618261 3.298242894106127 12.524792285433678
O -0.933557947886833 1.14368232057414 4.754355880643406
O 0.983906805644839 7.460714868853195 12.464782049150751
H 0.258093305538163 2.819418443554415 17.54147849656641
H -2.845100635106845 3.303026304730442 17.011075236800902
H -2.474583651115029 2.839957505641200 18.464428635423467
H -0.575171278834202 0.991185873127916 16.914456683568979
H 0.457112093992200 0.574429982875723 18.018726950488141
H -0.718676079215288 4.018787209330310 17.537152049550500
O -2.521246649708201 3.641641447224067 17.903603087279912
O 0.232217561809656 3.810307332160767 17.338766016816340
O -0.225452876708354 1.257957158979398 17.795404026667605
0.75 ML H$_2$O coverage – 1/4* OH

45

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu -2.079239692403527 4.218989524597304 13.560937206533030
Cu 0.046538592583228 6.314784299550253 13.538185574114348
Cu 0.066969330677832 8.348395609822278 15.485939710956520
Cu 2.208683179730727 2.234859353895372 15.253814861548618
Cu 2.255498719537453 4.307336567452451 13.474755357272024
Cu 0.078457105720380 2.10233147283138 13.513017365603853
Cu 0.362504683630211 3.972410211818529 15.493528637693709
Cu 2.104624014961747 6.291055710809712 15.487815654343455
Cu 2.157994995164452 6.473994995164452 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316000000000000 7.155910000000008
Cu 0.000000000000000 4.316000000000000 11.467750000000004
Cu 2.157994995164453 2.157994995164453 7.155910000000008
Cu -2.158005004835517 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.157994995164483 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.473994995164483 9.311829999999899
Cu 2.157994995164483 4.316000000000000 5.000000000000021
Cu 2.157994995164452 6.473994995164452 7.155910000000008
Cu 2.157994995164483 4.316000000000000 9.311829999999899
Cu 0.000000000000000 6.473994995164483 5.000000000000021
Cu 2.157994995164453 2.157994995164453 11.467750000000004
Cu -2.158005004835517 4.316000000000000 9.311829999999899
Cu 0.000000000000000 2.157994995164483 9.311829999999899
<table>
<thead>
<tr>
<th>O</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>-1.0803846087885294</td>
<td>5.394996549635089</td>
<td>10.3912485279425475</td>
</tr>
<tr>
<td>O</td>
<td>-1.078168302105032</td>
<td>1.078227512191886</td>
<td>6.053864922907340</td>
</tr>
<tr>
<td>O</td>
<td>-1.078098103747332</td>
<td>1.080863198988827</td>
<td>10.387861044160282</td>
</tr>
<tr>
<td>O</td>
<td>-1.078569593629782</td>
<td>5.394561773003780</td>
<td>6.054128770666892</td>
</tr>
<tr>
<td>O</td>
<td>-3.237067174743421</td>
<td>3.23702190725140</td>
<td>8.240743300942793</td>
</tr>
<tr>
<td>O</td>
<td>1.078890439001811</td>
<td>3.237116191843777</td>
<td>8.240342884399421</td>
</tr>
<tr>
<td>O</td>
<td>-3.235618838716405</td>
<td>3.235621090725140</td>
<td>4.100771406185639</td>
</tr>
<tr>
<td>O</td>
<td>1.080318273896836</td>
<td>3.235723373576881</td>
<td>4.098957031126739</td>
</tr>
<tr>
<td>O</td>
<td>-0.933267540449533</td>
<td>5.179375864282734</td>
<td>14.6502163434318723</td>
</tr>
<tr>
<td>O</td>
<td>1.095465195434129</td>
<td>3.250006938097719</td>
<td>12.478134085345172</td>
</tr>
<tr>
<td>O</td>
<td>-0.93596403579592</td>
<td>0.984720227121710</td>
<td>14.575396306336080</td>
</tr>
<tr>
<td>O</td>
<td>1.057202654169236</td>
<td>7.52699684338826</td>
<td>12.525488049715324</td>
</tr>
<tr>
<td>H</td>
<td>-0.329201975067575</td>
<td>3.192834169872581</td>
<td>17.938230102854238</td>
</tr>
<tr>
<td>H</td>
<td>0.464422909487031</td>
<td>6.680854198229763</td>
<td>17.172083044406996</td>
</tr>
<tr>
<td>H</td>
<td>-0.146032935531137</td>
<td>1.005212136967942</td>
<td>19.121816919300741</td>
</tr>
<tr>
<td>H</td>
<td>0.547510380186410</td>
<td>0.962013258979965</td>
<td>17.733884396304969</td>
</tr>
<tr>
<td>H</td>
<td>-1.658814360255512</td>
<td>3.76373002150582</td>
<td>17.364013966713486</td>
</tr>
<tr>
<td>H</td>
<td>1.527869484351804</td>
<td>3.214411624955596</td>
<td>16.248915984402430</td>
</tr>
<tr>
<td>O</td>
<td>1.056289605704971</td>
<td>7.299968822396840</td>
<td>16.697946699044220</td>
</tr>
<tr>
<td>O</td>
<td>-0.711743911076010</td>
<td>4.001699321167498</td>
<td>17.509932493935494</td>
</tr>
<tr>
<td>O</td>
<td>0.305881298556567</td>
<td>1.566301133155596</td>
<td>18.466657599485998</td>
</tr>
</tbody>
</table>

0.75 ML H₂O coverage – 1/4 OH

<table>
<thead>
<tr>
<th>Cu</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-2.151289661803341</td>
<td>4.2675788568883919</td>
<td>13.581093643721228</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.008878318629508</td>
<td>6.330049099926699</td>
<td>13.563334357657595</td>
</tr>
</tbody>
</table>
0.75 ML H₂O coverage – 2/4 OH

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
<th>Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-2.213631743772103, 4.260262824867370, 13.567496995356370</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.046889995394904, 6.407957689723795, 13.555095399070975</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.115552233161952, 8.490769908245529, 15.506112874363330</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>2.145613940604385, 2.223888374033625, 15.504381241661925</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>2.14399845281202, 4.343478279514386, 13.546556796513984</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.015962674325047, 2.16355472725504, 13.552761195898972</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>0.001626462701262, 4.198528853786009, 15.596139263009860</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
<tr>
<td>Cu</td>
<td>2.011411000548069, 6.512727485490105, 15.584645456117649</td>
<td>[4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]</td>
</tr>
</tbody>
</table>
Cu 2.157994995164452 6.473994995164452 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316000000000000 7.155910000000008
Cu 0.000000000000000 4.316000000000000 11.467750000000004
Cu 2.157994995164453 2.157994995164453 7.155910000000008
Cu -2.158005004835517 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.157994995164483 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.473994995164483 9.311829999999899
Cu 2.157994995164483 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.157994995164483 9.311829999999899
Cu 0.000000000000000 6.473994995164483 5.000000000000021
Cu 2.157994995164453 2.157994995164453 11.467750000000004
Cu -2.158005004835517 4.316000000000000 9.311829999999899
Cu 0.000000000000000 2.157994995164483 9.311829999999899
O -1.079162591568323 5.395204002380105 10.391039901212247
O -1.078799053803761 1.078932212783062 6.053341294591880
O -1.076086906010540 1.081365715637449 10.389711807952285
O -1.078730529490824 5.394943274233189 6.053709048677495
O -3.236935542150920 3.237127231776820 8.240755690041260
O 1.078964324487867 3.237094081772772 8.240708517741675
O -3.235541426031602 3.235421358639266 4.099697449331852
O 1.080653909120867 3.235672936378857 4.099639247249605
O -1.110185238706563 5.309252312005091 14.6148458333237064
O 1.079705498398739 3.234910839907006 12.508051880326860
O -1.131583435665499 1.131645818190058 14.612659649647645
O 1.028692132682576 7.505822916985932 12.508649592096221
H 0.817154575854743 2.641250459882154 17.342730919750348
H 0.272175574367953 6.813787963190024 17.158431669763377
H 0.016853229605540 1.013016525126177 19.012856049484032
H -3.4509531219829 4.617410591963290 17.906124547258315
O 0.877310201024025 7.468515265429952 16.754563654591394
O 1.181763961549831 3.286330359110539 16.68070548737904
O 0.760851908248628 1.153452394839167 18.402423550056998

0.75 ML H₂O coverage – 3/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]
Cu -0.400855094987342 3.200763860731604 12.226650000000033
Cu -0.400855094987342 1.042403451555298 10.070740000000047
Cu -2.558494685811035 5.358403451555297 12.226650000000033
Cu -0.400855094987373 7.516033031012959 16.538479999999911
Cu -0.400855094987342 3.200763860731604 16.538479999999911
Cu -0.400855094987342 1.042403451555298 14.382569999999925
Cu 1.756774484470320 3.200033031012960 10.070740000000047
Cu -2.558494685811035 5.358403451555297 16.538479999999911
Cu -0.400855094987373 5.357672621836652 14.382569999999925
Cu 1.756774484470320 3.200033031012960 14.382569999999925
Cu -2.558494685811065 3.200033031012960 14.382569999999925
Cu 1.756774484470320 5.358403451555267 16.538479999999911
Cu -0.400855094987373 7.516033031012959 12.226650000000033
Cu -0.400855094987373 5.357672621836652 10.070740000000047
Cu -2.558494685811065 3.200033031012960 10.070740000000047
1.00 ML H₂O coverage – 0/4 OH

48

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Cu</th>
<th>2.157994993440015</th>
<th>6.473994993440014</th>
<th>11.467750096282828</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3160000000000000</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3160000000000000</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>2.157994993440015</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.158005006559985</td>
<td>4.3160000000000000</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.157994993440015</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3160000000000000</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.3160000000000000</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>6.473994993440014</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.3160000000000000</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>6.473994993440015</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>2.157994993440015</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.158005006559985</td>
<td>4.3160000000000000</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.157994993440015</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>2.211972099702995</td>
<td>2.580385634877813</td>
<td>15.387220640340521</td>
</tr>
<tr>
<td>Cu</td>
<td>2.295029541441627</td>
<td>4.380671376882545</td>
<td>13.654604508420650</td>
</tr>
<tr>
<td>Cu</td>
<td>0.159298232335978</td>
<td>2.284934735328282</td>
<td>13.734745808167521</td>
</tr>
<tr>
<td>Cu</td>
<td>0.384808161417159</td>
<td>4.457256037169808</td>
<td>15.345963119725786</td>
</tr>
<tr>
<td>Cu</td>
<td>1.831830958990809</td>
<td>6.509538065387753</td>
<td>15.044003626563535</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.225030593404242</td>
<td>4.236545879013955</td>
<td>13.479303718946108</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.169890453605043</td>
<td>6.298520136188099</td>
<td>13.428479569048013</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cu</td>
<td>0.16132485905695</td>
<td>8.140167607906893</td>
<td>15.086531445372541</td>
</tr>
<tr>
<td>O</td>
<td>-1.25067617045642</td>
<td>5.296623428830864</td>
<td>14.588098716967870</td>
</tr>
<tr>
<td>O</td>
<td>1.161326987605771</td>
<td>3.319420379343317</td>
<td>12.542170568383460</td>
</tr>
<tr>
<td>O</td>
<td>-0.857227753398030</td>
<td>1.152606140356081</td>
<td>14.820366647160647</td>
</tr>
<tr>
<td>O</td>
<td>0.984558360639707</td>
<td>7.456343474271520</td>
<td>12.454614142649268</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279992</td>
<td>5.395002503279992</td>
<td>10.389790052303100</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279993</td>
<td>1.079002503279993</td>
<td>6.077960138539800</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279993</td>
<td>1.079002503279993</td>
<td>10.389790052303100</td>
</tr>
<tr>
<td>O</td>
<td>-1.079002503279992</td>
<td>5.395002503279992</td>
<td>6.077960138539800</td>
</tr>
<tr>
<td>O</td>
<td>-3.236997496720007</td>
<td>3.236997496720007</td>
<td>8.233869964343864</td>
</tr>
<tr>
<td>O</td>
<td>1.079002503279993</td>
<td>3.236997496720007</td>
<td>8.233869964343864</td>
</tr>
<tr>
<td>O</td>
<td>-3.236997496720007</td>
<td>3.236997496720007</td>
<td>3.922040050580346</td>
</tr>
<tr>
<td>O</td>
<td>1.079002503279993</td>
<td>3.236997496720007</td>
<td>3.922040050580346</td>
</tr>
<tr>
<td>H</td>
<td>3.854033190246074</td>
<td>4.470906579279049</td>
<td>17.928341263942901</td>
</tr>
<tr>
<td>H</td>
<td>-1.035677021334063</td>
<td>3.895606611259380</td>
<td>17.616861135142777</td>
</tr>
<tr>
<td>H</td>
<td>-2.872376042698828</td>
<td>2.986203795399521</td>
<td>17.076740622518894</td>
</tr>
<tr>
<td>H</td>
<td>-1.930678441637574</td>
<td>2.200858833800461</td>
<td>18.054004563216459</td>
</tr>
<tr>
<td>H</td>
<td>-0.641540708904870</td>
<td>1.054242768592242</td>
<td>16.648322485007004</td>
</tr>
<tr>
<td>H</td>
<td>1.236077957313510</td>
<td>1.745443846084838</td>
<td>17.642420840501394</td>
</tr>
<tr>
<td>H</td>
<td>-1.489334887340329</td>
<td>5.960158528054444</td>
<td>17.641640205021240</td>
</tr>
<tr>
<td>H</td>
<td>0.494321089896726</td>
<td>4.164446236530317</td>
<td>18.002437048061566</td>
</tr>
<tr>
<td>O</td>
<td>-0.459636330594695</td>
<td>1.088630643628484</td>
<td>17.634915151359358</td>
</tr>
<tr>
<td>O</td>
<td>-0.223751609534613</td>
<td>4.482722582918381</td>
<td>17.421234340963203</td>
</tr>
<tr>
<td>O</td>
<td>2.072567136369614</td>
<td>2.266351613018159</td>
<td>17.483995632002205</td>
</tr>
<tr>
<td>O</td>
<td>-2.399994632942573</td>
<td>3.069122695732017</td>
<td>17.958704976118486</td>
</tr>
</tbody>
</table>
1.00 ML H₂O coverage – 1/4* OH

48

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.157994995164452 6.473994995164452 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316000000000000 7.155910000000008
Cu 0.000000000000000 4.316000000000000 11.467750000000004
Cu 2.157994995164453 2.157994995164453 7.155910000000008
Cu -2.15800504835517 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.157994995164483 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.473994995164483 9.311829999998999
Cu 2.157994995164483 4.316000000000000 5.000000000000021
Cu 2.157994995164452 6.473994995164452 7.155910000000008
Cu 2.157994995164483 4.316000000000000 9.311829999998999
Cu 0.000000000000000 6.473994995164483 5.000000000000021
Cu 2.157994995164453 2.157994995164453 11.467750000000004
Cu -2.15800504835517 4.316000000000000 9.311829999998999
Cu 0.000000000000000 2.157994995164483 9.311829999998999
Cu -1.625611350025240 6.528318157251682 15.991923129556572
Cu 2.100229659183888 4.396500396846964 13.606998932629903
Cu -0.094106177741723 2.220539118491701 13.591502573954047
Cu -0.210382990164926 4.482630259151133 15.716359111704822
Cu -2.355625502585674 2.541196540917036 15.437765600891440
Cu -2.144721594545950 4.454941227110883 13.459270176770719
Cu 0.014190820648821 6.573050161689473 13.464710116441507
Cu -4.167325478538803 4.288642577764927 15.262747971342272
<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>-1.07902</td>
<td>5.39500</td>
<td>10.3898</td>
</tr>
<tr>
<td>O</td>
<td>-1.07902</td>
<td>1.07902</td>
<td>6.07796</td>
</tr>
<tr>
<td>O</td>
<td>-1.07902</td>
<td>1.07902</td>
<td>10.3898</td>
</tr>
<tr>
<td>O</td>
<td>-1.07902</td>
<td>5.39500</td>
<td>6.07796</td>
</tr>
<tr>
<td>O</td>
<td>-3.23699</td>
<td>3.23699</td>
<td>8.23387</td>
</tr>
<tr>
<td>O</td>
<td>1.07902</td>
<td>3.23699</td>
<td>8.23387</td>
</tr>
<tr>
<td>O</td>
<td>-3.23699</td>
<td>3.23699</td>
<td>3.92204</td>
</tr>
<tr>
<td>O</td>
<td>1.07902</td>
<td>3.23699</td>
<td>3.92204</td>
</tr>
<tr>
<td>O</td>
<td>-1.11128</td>
<td>5.56786</td>
<td>14.4876</td>
</tr>
<tr>
<td>O</td>
<td>1.07587</td>
<td>3.24190</td>
<td>12.5531</td>
</tr>
<tr>
<td>O</td>
<td>-1.19716</td>
<td>1.19705</td>
<td>14.6940</td>
</tr>
<tr>
<td>O</td>
<td>-3.17493</td>
<td>3.29937</td>
<td>12.4615</td>
</tr>
<tr>
<td>H</td>
<td>3.57062</td>
<td>3.71961</td>
<td>18.2884</td>
</tr>
<tr>
<td>H</td>
<td>-0.56681</td>
<td>3.28346</td>
<td>17.7492</td>
</tr>
<tr>
<td>H</td>
<td>1.88846</td>
<td>6.56533</td>
<td>18.6129</td>
</tr>
<tr>
<td>H</td>
<td>-1.13150</td>
<td>1.35118</td>
<td>18.2627</td>
</tr>
<tr>
<td>H</td>
<td>-3.78185</td>
<td>4.41897</td>
<td>17.7405</td>
</tr>
<tr>
<td>H</td>
<td>-1.98345</td>
<td>6.29625</td>
<td>18.3136</td>
</tr>
<tr>
<td>H</td>
<td>1.08130</td>
<td>3.43203</td>
<td>17.6284</td>
</tr>
<tr>
<td>H</td>
<td>-3.10731</td>
<td>3.67344</td>
<td>16.2310</td>
</tr>
<tr>
<td>O</td>
<td>-0.06328</td>
<td>0.12142</td>
<td>18.5209</td>
</tr>
<tr>
<td>O</td>
<td>0.16775</td>
<td>3.90929</td>
<td>17.4529</td>
</tr>
<tr>
<td>O</td>
<td>2.38403</td>
<td>2.76648</td>
<td>17.7385</td>
</tr>
<tr>
<td>O</td>
<td>-1.70561</td>
<td>2.13560</td>
<td>17.9685</td>
</tr>
</tbody>
</table>
1.00 ML H$_2$O coverage – 1/4 OH

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>6.473994993440014</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3160000000000000</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3160000000000000</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>2.157994993440015</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.158005006559985</td>
<td>4.3160000000000000</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.157994993440015</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>6.473994993440015</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.3160000000000000</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>6.473994993440014</td>
<td>7.155909920364136</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.3160000000000000</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>6.473994993440015</td>
<td>5.000000094560074</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>2.157994993440015</td>
<td>11.467750096282828</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.158005006559985</td>
<td>4.3160000000000000</td>
<td>9.31183008323588</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157994993440015</td>
<td>4.3160000000000000</td>
<td>13.589321908993226</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.362568902679540</td>
<td>4.253533538675909</td>
<td>13.597036961888055</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.141618542404538</td>
<td>6.434249167058996</td>
<td>13.504536712880542</td>
</tr>
<tr>
<td>Cu</td>
<td>4.188750700874145</td>
<td>4.178881479616210</td>
<td>14.980321065382226</td>
</tr>
</tbody>
</table>
1.00 ML H$_2$O coverage – 2/4 OH

46

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.157629579457693 6.474360409176308 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316730829718614 7.155910000000008
Cu 0.000000000000000 4.316730829718614 11.467750000000004
Cu 2.158360409176307 2.158360409176307 7.155910000000008
Cu -2.158370420542338 4.316730829718646 5.0000000000000021
Cu 0.000000000000000 2.158360409176307 5.0000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.475091238894922 9.311829999999899
Cu 2.158360409176307 4.316730829718614 5.0000000000000021
Cu 2.157629579457693 6.474360409176308 7.155910000000008
Cu 2.158360409176307 4.316730829718614 9.311829999999899
Cu 0.000000000000000 6.475091238894922 5.0000000000000021
Cu 2.158360409176307 2.158360409176307 11.467750000000004
Cu -2.158370420542338 4.316730829718646 9.311829999999899
Cu 0.000000000000000 2.158360409176307 9.311829999999899
Cu -1.480659171235398 6.525599535689386 16.015979832750997
Cu 2.157030119190797 4.317371022920976 13.548437878910418
Cu -0.018695281421772 2.160187350768539 13.545962885787768
Cu -0.316312308843378 4.259078755134269 15.824146808809488
Cu -2.132931717149117 2.265927910634566 15.523678603095497
Cu -2.172256115559039 4.354639872949575 13.538236507882205
Cu 0.019098795199634 6.476051000100025 13.542216561306775
Cu -4.157304062309260 4.297039448605425 15.460931717192523
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>-1.081023395933219</td>
<td>5.416932867502153</td>
<td>14.578264342501159</td>
</tr>
<tr>
<td>O</td>
<td>1.075164739399014</td>
<td>3.234753808791431</td>
<td>12.521703254330777</td>
</tr>
<tr>
<td>O</td>
<td>3.239375771670598</td>
<td>5.382159204313602</td>
<td>14.591629460704214</td>
</tr>
<tr>
<td>O</td>
<td>-3.226510864314085</td>
<td>3.247320941756015</td>
<td>12.497865330579017</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271154</td>
<td>1.079185210271154</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271154</td>
<td>1.079185210271154</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271184</td>
<td>5.395916039989799</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-3.237545619447461</td>
<td>3.237545619447461</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>1.079185210271154</td>
<td>3.237545619447461</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>-3.237545619447461</td>
<td>3.237545619447461</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>1.079185210271154</td>
<td>3.237545619447461</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271154</td>
<td>5.395916039989799</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>H</td>
<td>0.600834686882464</td>
<td>0.646428861156398</td>
<td>17.981139363273382</td>
</tr>
<tr>
<td>H</td>
<td>-1.543009004732186</td>
<td>6.760977783530246</td>
<td>18.39342245808127</td>
</tr>
<tr>
<td>H</td>
<td>3.423902155934335</td>
<td>4.612016541169624</td>
<td>18.1120539332941</td>
</tr>
<tr>
<td>H</td>
<td>-0.197109059468727</td>
<td>2.630564659282517</td>
<td>17.719901587265156</td>
</tr>
<tr>
<td>H</td>
<td>0.663863815764743</td>
<td>7.186575843658996</td>
<td>17.24719684873365</td>
</tr>
<tr>
<td>H</td>
<td>1.206087571185779</td>
<td>3.406155942376452</td>
<td>17.59275349987444</td>
</tr>
<tr>
<td>O</td>
<td>-3.036680433532702</td>
<td>3.403277684978058</td>
<td>16.699512743668130</td>
</tr>
<tr>
<td>O</td>
<td>0.183767486961386</td>
<td>3.528102600509660</td>
<td>17.466924737160170</td>
</tr>
<tr>
<td>O</td>
<td>2.677829578646491</td>
<td>3.083480922072763</td>
<td>17.661583674091780</td>
</tr>
<tr>
<td>O</td>
<td>-0.245828379821019</td>
<td>1.040041576298629</td>
<td>18.28257551282360</td>
</tr>
</tbody>
</table>

1.00 ML H$_2$O coverage – 3/4 OH

45

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.157264289176517 6.473264289176518 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316000000000000 7.155910000000008
Cu 0.000000000000000 4.316000000000000 11.467750000000004
Cu 2.15799495164453 2.15799495164453 7.155910000000008
Cu -2.158005004835517 4.316000000000000 5.000000000000021
Cu 0.000000000000000 2.15799495164483 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.473994995164483 9.311829999999899
Cu 2.15799495164483 4.316000000000000 5.000000000000021
Cu 2.157264289176518 6.473264289176518 7.155910000000008
Cu 2.15799495164483 4.316000000000000 9.311829999999899
Cu 0.000000000000000 6.473994995164483 5.000000000000021
Cu 2.15799495164453 2.15799495164453 11.467750000000004
Cu -2.158005004835517 4.316000000000000 9.311829999999899
Cu 0.000000000000000 2.15799495164483 9.311829999999899
Cu -1.998364570364400 4.308145837482188 13.567051937292163
Cu 0.150983682268437 6.500841515093182 13.561274009694412
Cu -3.951389559319397 4.222367165351377 15.605315143014117
Cu -2.227075355821321 6.271459506713494 15.493713529225099
Cu 2.223064859503833 4.149898308136102 13.525707715776075
Cu 0.062852625182462 1.943854080132584 13.483392729831611
Cu 0.238046985059063 5.157865319490636 16.071387513283113
Cu -1.772258420927304 2.183271400990653 15.496791188443607
O -1.079000250241775 5.395002502417759 10.389789999999952
O -1.079000250241775 1.079002502417759 6.077960000000074
O -1.079000250241775 1.079002502417759 10.389789999999952
O -1.079000250241775 5.395002502417759 6.077960000000074
O -3.236997497582241 3.236997497582241 8.233870000000060
O 1.079002502417759 3.236997497582241 8.233870000000060
O -3.236997497582241 3.236997497582241 3.922039999999968
O 1.079002502417759 3.236997497582241 3.922039999999968
O -0.867505766259780 5.372501809597274 14.59322371950345
O 1.027560887698518 3.186960020908677 12.506116507527393
O 3.376714170919778 5.126848603559433 14.559042525236551
O -3.153266151514390 3.308190689132268 12.503542185415972
H 0.763418644339269 5.278109024648410 18.417483821781889
H -2.725867390520672 3.257758397112990 17.367932847007644
H 2.903414292320962 4.822828806451535 17.661477140095421
H -0.029334037515035 1.296748755498625 17.434030572747133
H 1.017445176345178 3.308656636056428 17.13353988490544
O 3.896184965305744 4.701266773930935 17.567750940484881
O -2.398898209950520 3.596172873047123 16.512213135042696
O 1.260509868556658 5.040172163169524 17.61394901396788
O 0.707886438203980 2.615599143940441 16.492420240402161

1.00 ML H₂O coverage – 4/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.157629579457693 6.474360409176308 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.316730829718614 7.155910000000008
Cu 0.000000000000000 4.316730829718614 11.467750000000004
Cu 2.158360409176307 2.158360409176307 7.155910000000008
Cu -2.158370420542338 4.316730829718646 5.000000000000021
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.158360409176307</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>0.000000000000000</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.475091238894922</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>2.158360409176307</td>
<td>4.316730829718614</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>2.157629579457693</td>
<td>6.474360409176308</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>2.158360409176307</td>
<td>4.316730829718614</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.475091238894922</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>2.158360409176307</td>
<td>2.158360409176307</td>
<td>11.467750000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.158370420542338</td>
<td>4.316730829718646</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.158360409176307</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.016046192938706</td>
<td>6.314531548820980</td>
<td>15.794889353325944</td>
</tr>
<tr>
<td>Cu</td>
<td>2.284304614161617</td>
<td>4.328350490212329</td>
<td>13.497969691994042</td>
</tr>
<tr>
<td>Cu</td>
<td>0.103877911032103</td>
<td>2.148241205104658</td>
<td>13.543504805700502</td>
</tr>
<tr>
<td>Cu</td>
<td>0.074111053201252</td>
<td>4.22982623017576</td>
<td>15.782936309088207</td>
</tr>
<tr>
<td>Cu</td>
<td>2.307823054859598</td>
<td>6.317645362841216</td>
<td>15.793824116579529</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.033461147834739</td>
<td>4.328270764627939</td>
<td>13.499035559764891</td>
</tr>
<tr>
<td>Cu</td>
<td>0.101235992151935</td>
<td>6.462763652135482</td>
<td>13.546229134964674</td>
</tr>
<tr>
<td>Cu</td>
<td>0.082416059743551</td>
<td>8.546241961544043</td>
<td>15.775349177820686</td>
</tr>
<tr>
<td>O</td>
<td>-0.918647986813983</td>
<td>5.326946103856854</td>
<td>14.559497738256251</td>
</tr>
<tr>
<td>O</td>
<td>1.126385926829638</td>
<td>3.28959885468652</td>
<td>12.509001884711246</td>
</tr>
<tr>
<td>O</td>
<td>-0.918024315533415</td>
<td>1.014413748531731</td>
<td>14.555899569907455</td>
</tr>
<tr>
<td>O</td>
<td>-3.191054786146524</td>
<td>3.280525478659860</td>
<td>12.510440622765818</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271154</td>
<td>1.079185210271154</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271154</td>
<td>1.079185210271154</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-1.079185210271184</td>
<td>5.395916039989799</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-3.237545619447461</td>
<td>3.237545619447461</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>1.079185210271154</td>
<td>3.237545619447461</td>
<td>8.2338700000000060</td>
</tr>
</tbody>
</table>
The H$_2$O monolayer structure displayed in Figure 10 of the main article and in Figure S5:

0.25 ML H$_2$O coverage – 0/4 OH

Lattice vectors: [8.632, 0.000, 0.000 ; 0.000, 8.632, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Element</th>
<th>x-coordinate</th>
<th>y-coordinate</th>
<th>z-coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>8.228459999999986</td>
<td>4.7261660000000029</td>
<td>15.537699999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>8.619315999999985</td>
<td>0.6066060000000015</td>
<td>15.156549999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>8.561145999999985</td>
<td>6.6004560000000030</td>
<td>13.663529999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>4.3683200000000002</td>
<td>4.9989460000000030</td>
<td>15.282239999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>4.2918500000000002</td>
<td>2.3205260000000022</td>
<td>13.725479999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>2.3276600000000002</td>
<td>4.6701060000000029</td>
<td>13.625359999999976</td>
</tr>
<tr>
<td>Cu</td>
<td>6.9769999999999991</td>
<td>2.3403560000000023</td>
<td>15.273659999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>4.4000000000000000</td>
<td>4.5355660000000030</td>
<td>11.411899999999974</td>
</tr>
<tr>
<td>Element</td>
<td>X Position</td>
<td>Y Position</td>
<td>Z Position</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>2.3796660000000023</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000002</td>
<td>4.5355660000000030</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>2.3796660000000023</td>
<td>11.4118999999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>4.5355660000000030</td>
<td>7.0999999999999991</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>2.3796660000000023</td>
<td>4.944100000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>4.5355660000000030</td>
<td>4.944100000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>2.3796660000000023</td>
<td>7.0999999999999991</td>
</tr>
<tr>
<td>Cu</td>
<td>3.862630000000002</td>
<td>0.289146000000013</td>
<td>15.663989999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>4.411420000000001</td>
<td>6.9501660000000030</td>
<td>13.507469999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>2.176940000000002</td>
<td>0.106516000000013</td>
<td>13.569409999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>6.414099999999993</td>
<td>6.4958360000000029</td>
<td>15.1442099999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>0.223666000000014</td>
<td>11.4118999999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>6.6914660000000030</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000002</td>
<td>0.223666000000014</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>6.6914660000000030</td>
<td>11.4118999999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>0.223666000000014</td>
<td>7.0999999999999991</td>
</tr>
<tr>
<td>Cu</td>
<td>4.400000000000000</td>
<td>6.6914660000000030</td>
<td>4.944100000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>0.223666000000014</td>
<td>4.944100000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>6.6914660000000030</td>
<td>7.0999999999999991</td>
</tr>
<tr>
<td>Cu</td>
<td>0.111550000000002</td>
<td>2.6325660000000023</td>
<td>13.506289999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>6.491809999999993</td>
<td>4.4260760000000030</td>
<td>13.687929999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>2.084710000000002</td>
<td>2.0837760000000022</td>
<td>15.073779999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>4.5355660000000030</td>
<td>11.411899999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>2.3796660000000023</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>4.5355660000000030</td>
<td>9.2558999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000002</td>
<td>2.3796660000000023</td>
<td>11.411899999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>4.5355660000000030</td>
<td>7.0999999999999991</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>2.37966600000000023</td>
<td>4.944100000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000000002</td>
<td>4.535566000000000030</td>
<td>4.944100000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000000002</td>
<td>2.379666000000000023</td>
<td>7.099999999999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>6.541499999999999933</td>
<td>0.403926000000000015</td>
<td>13.609489999999999976</td>
</tr>
<tr>
<td>Cu</td>
<td>2.621180000000000002</td>
<td>6.631986000000000030</td>
<td>15.242639999999999975</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>0.22366600000000014</td>
<td>11.411899999999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>6.691466000000000030</td>
<td>9.255899999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>6.555899999999992</td>
<td>0.22366600000000014</td>
<td>9.255899999999999983</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000000002</td>
<td>6.691466000000000030</td>
<td>11.411899999999999974</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>0.22366600000000014</td>
<td>7.099999999999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>0.088100000000002</td>
<td>6.691466000000000030</td>
<td>4.944100000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000000002</td>
<td>0.22366600000000014</td>
<td>4.944100000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.244100000000000002</td>
<td>6.691466000000000030</td>
<td>7.099999999999999999</td>
</tr>
<tr>
<td>O</td>
<td>8.634225999999999984</td>
<td>4.980686000000000031</td>
<td>17.566760000000000002</td>
</tr>
<tr>
<td>O</td>
<td>1.166100000000000002</td>
<td>7.769466000000000028</td>
<td>6.02209999999999995</td>
</tr>
<tr>
<td>O</td>
<td>7.633899999999999988</td>
<td>1.30166600000000017</td>
<td>3.866100000000000004</td>
</tr>
<tr>
<td>O</td>
<td>1.166100000000000002</td>
<td>7.769466000000000028</td>
<td>10.333899999999999979</td>
</tr>
<tr>
<td>O</td>
<td>7.633899999999999988</td>
<td>1.30166600000000017</td>
<td>8.177999999999999988</td>
</tr>
<tr>
<td>O</td>
<td>1.056720000000000002</td>
<td>7.661026000000000028</td>
<td>14.717829999999999974</td>
</tr>
<tr>
<td>O</td>
<td>7.700279999999999987</td>
<td>1.36973600000000018</td>
<td>12.456749999999999975</td>
</tr>
<tr>
<td>O</td>
<td>1.166100000000000002</td>
<td>3.457566000000000027</td>
<td>6.02209999999999995</td>
</tr>
<tr>
<td>O</td>
<td>7.633899999999999988</td>
<td>5.613466000000000029</td>
<td>3.866100000000000004</td>
</tr>
<tr>
<td>O</td>
<td>1.166100000000000002</td>
<td>3.457566000000000027</td>
<td>10.333899999999999979</td>
</tr>
<tr>
<td>O</td>
<td>7.633899999999999988</td>
<td>5.613466000000000029</td>
<td>8.177999999999999988</td>
</tr>
<tr>
<td>O</td>
<td>1.152260000000000002</td>
<td>3.736306000000000028</td>
<td>14.700749999999999974</td>
</tr>
<tr>
<td>O</td>
<td>7.543249999999999988</td>
<td>5.527096000000000030</td>
<td>12.492959999999999975</td>
</tr>
<tr>
<td>O</td>
<td>5.47789999999999997</td>
<td>7.769466000000000028</td>
<td>6.02209999999999995</td>
</tr>
<tr>
<td></td>
<td>0.886950000000002</td>
<td>5.409556000000030</td>
<td>17.773570000000007</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>H</td>
<td>3.002930000000002</td>
<td>5.981736000000030</td>
<td>17.310540000000000</td>
</tr>
<tr>
<td>H</td>
<td>2.561430000000002</td>
<td>6.964716000000029</td>
<td>18.443490000000018</td>
</tr>
<tr>
<td>H</td>
<td>3.908460000000002</td>
<td>5.082276000000030</td>
<td>19.213470000000033</td>
</tr>
<tr>
<td>H</td>
<td>5.449899999999998</td>
<td>5.328976000000029</td>
<td>19.308770000000035</td>
</tr>
<tr>
<td>H</td>
<td>6.127049999999994</td>
<td>6.579156000000030</td>
<td>17.585550000000001</td>
</tr>
<tr>
<td>H</td>
<td>6.774989999999992</td>
<td>7.487106000000029</td>
<td>18.712980000000023</td>
</tr>
</tbody>
</table>

10.3. Double-layer structures

Structures displayed in Figure 11 of the main article.

0/4 OH

60

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th></th>
<th>2.1559099999999987</th>
<th>6.4677399999999987</th>
<th>11.467750000000004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>0.000000000000000</td>
<td>11.467750000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>4.311830000000000</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>4.311830000000000</td>
<td>11.467750000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559099999999986</td>
<td>2.1559099999999986</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559199999999983</td>
<td>4.3118299999999999</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.1559100000000016</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>0.000000000000000</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.4677400000000017</td>
<td>9.3118299999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559100000000017</td>
<td>4.3118300000000000</td>
<td>5.000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559099999999987</td>
<td>6.46773999999999987</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559100000000017</td>
<td>4.3118300000000000</td>
<td>9.3118299999999899</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.4677400000000017</td>
<td>5.0000000000000021</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559099999999986</td>
<td>2.1559099999999986</td>
<td>11.4677500000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.1559199999999983</td>
<td>4.3118299999999999</td>
<td>9.3118299999999989</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.1559100000000016</td>
<td>9.3118299999999989</td>
</tr>
<tr>
<td>Cu</td>
<td>2.21873598323856</td>
<td>2.630914972350666</td>
<td>15.263861125566867</td>
</tr>
<tr>
<td>Cu</td>
<td>2.294120961245939</td>
<td>4.447543541118026</td>
<td>13.585249014019189</td>
</tr>
<tr>
<td>Cu</td>
<td>0.146981252255599</td>
<td>2.298879387544086</td>
<td>13.682083983510555</td>
</tr>
<tr>
<td>Cu</td>
<td>0.423719039103691</td>
<td>4.452230065263110</td>
<td>15.327871818784693</td>
</tr>
<tr>
<td>Cu</td>
<td>1.815674100662854</td>
<td>6.529537150783890</td>
<td>15.115458499212494</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.212540659333630</td>
<td>4.231752346671378</td>
<td>13.512729206323533</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.150923310431628</td>
<td>6.302962831710444</td>
<td>13.477109043714171</td>
</tr>
<tr>
<td>Cu</td>
<td>0.127040140233376</td>
<td>8.194280040982605</td>
<td>15.106991750326308</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999991</td>
<td>5.389789999999991</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999992</td>
<td>1.077959999999992</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999992</td>
<td>1.077959999999992</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999991</td>
<td>5.389789999999991</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>-2.247739468851606</td>
<td>3.385451302200352</td>
<td>18.077361441297203</td>
</tr>
<tr>
<td>O</td>
<td>-1.230037979979033</td>
<td>5.267286864754183</td>
<td>14.644975270746558</td>
</tr>
<tr>
<td>O</td>
<td>1.173450272918693</td>
<td>3.332725565496480</td>
<td>12.52043008941295</td>
</tr>
<tr>
<td>O</td>
<td>0.151775645225022</td>
<td>4.129629814988979</td>
<td>17.55478101966196</td>
</tr>
<tr>
<td>O</td>
<td>-2.302639254540261</td>
<td>6.298114496096944</td>
<td>17.40301621473695</td>
</tr>
<tr>
<td>O</td>
<td>-0.887430718702665</td>
<td>1.195977167065011</td>
<td>14.748021911661770</td>
</tr>
<tr>
<td>O</td>
<td>0.990612452380965</td>
<td>7.455707580466044</td>
<td>12.467317962413674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>O</td>
<td>-0.318968809707679</td>
<td>1.050110522856067</td>
<td>17.743816084174629</td>
</tr>
<tr>
<td>O</td>
<td>-0.027027612965104</td>
<td>4.667970312030472</td>
<td>20.294346731187890</td>
</tr>
<tr>
<td>O</td>
<td>2.096380926588723</td>
<td>6.424674628145805</td>
<td>20.427747499403523</td>
</tr>
<tr>
<td>O</td>
<td>3.877539384047731</td>
<td>4.309528291469784</td>
<td>20.208605722928887</td>
</tr>
<tr>
<td>O</td>
<td>-2.067298501097455</td>
<td>6.526649602598816</td>
<td>20.225053721452408</td>
</tr>
<tr>
<td>H</td>
<td>-0.375819334880926</td>
<td>0.472936363573040</td>
<td>18.558551118050897</td>
</tr>
<tr>
<td>H</td>
<td>-0.744259678434888</td>
<td>3.634106674614186</td>
<td>17.667575895932227</td>
</tr>
<tr>
<td>H</td>
<td>-2.740574936210694</td>
<td>2.930485190980409</td>
<td>17.352112543182265</td>
</tr>
<tr>
<td>H</td>
<td>-2.261011113243345</td>
<td>2.790794126070515</td>
<td>18.893597885218128</td>
</tr>
<tr>
<td>H</td>
<td>3.525594833710733</td>
<td>4.942202916516021</td>
<td>16.990780502212893</td>
</tr>
<tr>
<td>H</td>
<td>1.143835343852146</td>
<td>1.421694769587620</td>
<td>17.463556344912075</td>
</tr>
<tr>
<td>H</td>
<td>-1.557467399659775</td>
<td>5.671782863927542</td>
<td>17.301569687317468</td>
</tr>
<tr>
<td>H</td>
<td>0.867797245598828</td>
<td>3.456555351598401</td>
<td>17.558628433375556</td>
</tr>
<tr>
<td>H</td>
<td>-1.467942402460106</td>
<td>5.759556235119618</td>
<td>20.419159456539287</td>
</tr>
<tr>
<td>H</td>
<td>1.311380395765513</td>
<td>5.826333118133610</td>
<td>20.529504286387759</td>
</tr>
<tr>
<td>H</td>
<td>0.081921764042059</td>
<td>4.460877859047402</td>
<td>19.32518523375942</td>
</tr>
<tr>
<td>H</td>
<td>0.022339371265860</td>
<td>3.813141346103221</td>
<td>20.762000106645779</td>
</tr>
<tr>
<td>H</td>
<td>2.111196436763313</td>
<td>2.149979863733529</td>
<td>19.246411198900926</td>
</tr>
<tr>
<td>H</td>
<td>3.291224332028606</td>
<td>3.490578517294415</td>
<td>20.315727926086286</td>
</tr>
<tr>
<td>H</td>
<td>-3.867077215792857</td>
<td>4.093676953518977</td>
<td>20.571840562187568</td>
</tr>
<tr>
<td>H</td>
<td>-1.456739247222060</td>
<td>1.476391654201660</td>
<td>20.483387274151688</td>
</tr>
</tbody>
</table>

1/4* OH

60

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>2.1559099999999987</td>
<td>6.4677399999999987</td>
<td>11.4677500000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>11.4677500000000004</td>
</tr>
</tbody>
</table>
Cu 0.000000000000000 4.311830000000000 7.155910000000008
Cu 0.000000000000000 4.311830000000000 11.467750000000004
Cu 2.155909999999986 2.155909999999986 7.155910000000008
Cu -2.155919999999983 4.311829999999999 5.000000000000021
Cu 0.000000000000000 2.155910000000000 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.467740000000017 9.311829999999899
Cu 2.155909999999987 6.467739999999998 7.155910000000008
Cu 2.155910000000000 4.311830000000000 9.311829999999899
Cu 0.000000000000000 6.467740000000017 5.000000000000021
Cu 2.155909999999986 2.155909999999986 11.467750000000004
Cu -2.155919999999983 4.311829999999999 9.311829999999899
Cu 0.000000000000000 2.155910000000000 9.311829999999899
Cu -1.616047117306474 6.407586272810383 15.990905215642885
Cu 2.158943571919075 4.330953700045632 13.590900390499257
Cu -0.029156471073829 2.152536879536607 13.596479843226033
Cu -0.305885426189132 4.293673187673639 15.709147450573564
Cu -2.292740393242493 2.42451397456736 15.300306981908751
Cu -2.163978366689189 4.393209131263175 13.440838164555480
Cu -0.000285726028478 6.475221588726833 13.45465254882457
Cu -4.113074461968537 4.113112941226559 15.292870794187813
O -1.077959999999991 5.389789999999991 10.389789999999952
O -1.077959999999992 1.077959999999992 6.0779600000000074
O -1.077959999999992 1.077959999999992 10.389789999999952
O -1.077959999999991 5.389789999999991 6.0779600000000074
O -3.233870000000008 3.233870000000008 8.2338700000000060
O 1.077959999999992 3.233870000000008 8.233870000000060
O -3.233870000000008 3.233870000000008 3.922039999999968
O 1.077959999999992 3.233870000000008 3.922039999999968
O -1.773284342966722 2.143773627226382 18.599537073548635
O -1.104601215810219 5.455127453353765 14.484697618326141
O 1.072754261857356 3.2327771730415 12.547891102459360
O 0.142395507717683 3.733813735717468 17.409710900576790
O 2.382355635350911 2.792694059584135 17.654837169522320
O 3.223401805407083 5.387850565894937 14.693859744359870
O -3.217125588958727 3.249438181419755 12.461259951038825
O 4.139810986086763 4.384336695622073 18.523439656032629
O -1.489790025070393 2.232891515418813 21.36725431497256
O 0.357073312444277 4.196445198144262 20.67457863317275
O -1.591463885729851 5.886961483191624 19.889841551005123
O -3.763646228345833 4.586567405681769 21.12750461523555
H 3.457406795633434 3.700882949605779 18.114740533583351
H -0.585750273874601 3.241134683166258 17.8724166073406
H 1.665431815958691 6.187600397126923 18.255339384589252
H -1.1736134560406194 1.329804267592740 18.511916559792393
H -3.714186652364211 4.42856131689763 17.924553070186448
H -1.834339863510797 6.480269553625208 18.463465194584619
H 1.114894916238225 3.286282862423531 17.593914234251645
H -3.125883226526982 3.355471923044497 16.25483049121116
H -3.397662643071561 3.805963303262970 21.586374188420564
H -0.216753250675942 3.499803941488580 21.097974004777395
H -1.704004850732828 2.184477846613161 20.399034771154696
H -0.867565697948477 1.477494565057422 21.511573712040420
1/4 OH

59

Lattice vectors: $[4.316, 4.316, 0.000; -4.316, 4.316, 0.000; 0.000, 0.000, 34.528]$
<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.080558855979534</td>
<td>2.119772469189362</td>
<td>13.572661778318206</td>
</tr>
<tr>
<td>Cu</td>
<td>0.042658574160988</td>
<td>3.879458034388421</td>
<td>15.607178911163784</td>
</tr>
<tr>
<td>Cu</td>
<td>1.759432212860917</td>
<td>6.731844144481816</td>
<td>15.40079860805485</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.170323101851792</td>
<td>4.164723483271540</td>
<td>13.580786614998830</td>
</tr>
<tr>
<td>Cu</td>
<td>0.076425394305178</td>
<td>6.282113854802286</td>
<td>13.504778892632238</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999991</td>
<td>5.389789999999991</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999992</td>
<td>1.077959999999992</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999992</td>
<td>1.077959999999992</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.077959999999991</td>
<td>5.389789999999991</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>-2.507478346055757</td>
<td>2.684489874114733</td>
<td>17.633593590474273</td>
</tr>
<tr>
<td>O</td>
<td>-0.919638563394304</td>
<td>5.092029107701050</td>
<td>14.546003011998279</td>
</tr>
<tr>
<td>O</td>
<td>1.062122282368901</td>
<td>3.203200079940128</td>
<td>12.556559206824968</td>
</tr>
<tr>
<td>O</td>
<td>0.773996077225444</td>
<td>3.098890254216019</td>
<td>17.190173974742329</td>
</tr>
<tr>
<td>O</td>
<td>-1.022412232025641</td>
<td>7.118067358762103</td>
<td>17.626483815870870</td>
</tr>
<tr>
<td>O</td>
<td>3.117053571079277</td>
<td>5.468376858845199</td>
<td>14.725591810358130</td>
</tr>
<tr>
<td>O</td>
<td>1.030168896854844</td>
<td>7.500591182568916</td>
<td>12.456017903761200</td>
</tr>
<tr>
<td>O</td>
<td>-0.636913272748102</td>
<td>0.924225360022263</td>
<td>18.207834935407814</td>
</tr>
<tr>
<td>O</td>
<td>-1.695128823024167</td>
<td>3.057186061743554</td>
<td>20.456665879224762</td>
</tr>
<tr>
<td>O</td>
<td>0.461418264165182</td>
<td>4.338493381018063</td>
<td>19.578817454224957</td>
</tr>
<tr>
<td>O</td>
<td>-1.527040769169014</td>
<td>6.449564508535219</td>
<td>20.172349910395617</td>
</tr>
<tr>
<td>O</td>
<td>0.302878977212029</td>
<td>1.034025133023885</td>
<td>20.671512213039367</td>
</tr>
<tr>
<td>H</td>
<td>1.804694614678070</td>
<td>3.008822401975339</td>
<td>17.260714714482894</td>
</tr>
<tr>
<td>H</td>
<td>3.585558876239655</td>
<td>4.259965141543308</td>
<td>17.882230817322153</td>
</tr>
</tbody>
</table>
H 0.5459800001476791 3.631372564872050 18.016781327390678
H 0.827370336523208 6.861639424963224 17.742024120049891
H 2.308884729901292 6.152018699230803 17.845961178612516
H -0.018509405907095 1.437008456800513 17.634072947292765
H -1.21494993645489 6.665777940815808 18.499080053332897
H -3.904660445964123 4.475336438165397 21.099063482332291
H -0.323384538594169 3.829408844423192 19.97322763919104
H -2.066775755860495 2.874252932002340 19.560597191365069
H -1.241674253102982 2.226421721066218 20.741479852641280
H -0.004483630581519 0.856636162955382 19.724976868826552
H -2.358415125329397 5.956817160895417 20.422767403626288
H -0.779910294181745 5.838771950879737 20.343853298182630
H 1.253480727839200 3.998108882623846 20.041232569131729

2/4 OH

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.155179999999997 6.467009999999997 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
Cu 0.000000000000000 4.311830000000000 7.155910000000008
Cu 0.000000000000000 4.311830000000000 11.467750000000004
Cu 2.155909999999986 2.155909999999986 7.155910000000008
Cu -2.155919999999983 4.311829999999999 5.000000000000021
Cu 0.000000000000000 2.1559100000000016 5.000000000000021
Cu 0.000000000000000 0.000000000000000 7.155910000000008
Cu 0.000000000000000 6.4677400000000017 9.311829999999899
Cu 2.15591000000000017 4.311830000000000 5.000000000000021
O -0.904668960518928 0.905936774206404 14.575807892886928
O -3.219339153612692 3.244304516746109 12.495276096303497
O -0.146812404575609 0.839360763138403 18.324505559412732
O -2.400846029364752 3.561734729642883 20.246901633026525
O -0.969232381039036 5.769954364167614 19.816407228122991
O 1.831909730244234 3.520140370556095 20.964914924144836
O -0.852542678786065 1.476893084073476 20.873866708421872
H 0.884994033467463 7.030980547580084 17.78436432551192
H 1.398269645149426 3.263321678502916 17.554965732235534
H -3.552638354820252 4.781219880994464 18.276563809964372
H -1.314070212179267 6.701016294749403 18.34163342746225
H 3.580561293470247 4.366198402449580 18.015212182460154
H -0.019691156656869 2.477695887844154 17.661954055362141
H 2.868597211024000 5.033258914656197 21.12502628216503
H -1.44501360472478 4.888400515530378 19.951570679552034
H -2.982778486365201 3.779994661848014 20.99748828119063
H -1.831688835929922 2.773691346889464 20.54086269947837
H -0.551869566413035 1.23569295097231 19.94963156534352
H 1.076266842687323 3.083977266546742 21.400840152346934
H 2.401151280815461 2.778779707911064 20.63354782102572
H -0.017820325830129 5.582165604945029 19.918211087043009

3/4 OH

57

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

Cu 2.155179999999997 6.467009999999997 11.467750000000004
Cu 0.000000000000000 0.000000000000000 11.467750000000004
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>4.311830000000000</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>4.311830000000000</td>
<td>11.467750000000004</td>
</tr>
<tr>
<td>Cu</td>
<td>2.155909999999986</td>
<td>2.155909999999986</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.155919999999983</td>
<td>4.311829999999999</td>
<td>5.000000000000002</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.155910000000016</td>
<td>5.000000000000002</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>0.000000000000000</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.467740000000000</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>2.155910000000000</td>
<td>4.311830000000000</td>
<td>5.000000000000002</td>
</tr>
<tr>
<td>Cu</td>
<td>2.155179999999997</td>
<td>6.467009999999997</td>
<td>7.155910000000008</td>
</tr>
<tr>
<td>Cu</td>
<td>2.155910000000000</td>
<td>4.311830000000000</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>6.467740000000000</td>
<td>5.000000000000002</td>
</tr>
<tr>
<td>Cu</td>
<td>2.155909999999986</td>
<td>2.155909999999986</td>
<td>5.000000000000002</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.155919999999983</td>
<td>4.311829999999999</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000000000000000</td>
<td>2.155910000000016</td>
<td>9.311829999999899</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.018343577726309</td>
<td>2.14292445908445</td>
<td>13.473921250263823</td>
</tr>
<tr>
<td>Cu</td>
<td>0.123499226282163</td>
<td>5.135253346076018</td>
<td>16.209359055850872</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.08556505805049</td>
<td>2.513685019411621</td>
<td>15.345559164703353</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.043863234713439</td>
<td>4.439590352905785</td>
<td>13.539353759313526</td>
</tr>
<tr>
<td>Cu</td>
<td>0.062420723069117</td>
<td>6.552012750709645</td>
<td>13.575689176076660</td>
</tr>
<tr>
<td>Cu</td>
<td>0.165058858768241</td>
<td>0.270999633568270</td>
<td>15.505826393084094</td>
</tr>
<tr>
<td>Cu</td>
<td>2.014398035568600</td>
<td>2.309010956458772</td>
<td>15.418362388497519</td>
</tr>
<tr>
<td>Cu</td>
<td>2.172949542677290</td>
<td>4.33094103690410</td>
<td>13.480268841049316</td>
</tr>
<tr>
<td>O</td>
<td>-1.07795999999999</td>
<td>5.389789999999999</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.07795999999999</td>
<td>1.077959999999999</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-1.07795999999999</td>
<td>1.077959999999999</td>
<td>10.389789999999952</td>
</tr>
<tr>
<td>O</td>
<td>-1.07795999999999</td>
<td>5.389789999999999</td>
<td>6.0779600000000074</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>8.2338700000000060</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>8.233870000000060</td>
</tr>
<tr>
<td>O</td>
<td>-3.233870000000008</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>1.077959999999992</td>
<td>3.233870000000008</td>
<td>3.922039999999968</td>
</tr>
<tr>
<td>O</td>
<td>-1.150852386965832</td>
<td>1.143759767715664</td>
<td>14.524528024166685</td>
</tr>
<tr>
<td>O</td>
<td>-3.156177813302274</td>
<td>3.315061141899515</td>
<td>12.51344915005571</td>
</tr>
<tr>
<td>O</td>
<td>-0.849045283638530</td>
<td>1.195901250959293</td>
<td>17.725480801190354</td>
</tr>
<tr>
<td>O</td>
<td>-2.810924152772905</td>
<td>3.772389746596565</td>
<td>16.498352072610700</td>
</tr>
<tr>
<td>O</td>
<td>-0.981916432796806</td>
<td>5.485621791215637</td>
<td>14.68109900034200</td>
</tr>
<tr>
<td>O</td>
<td>1.081828170586730</td>
<td>3.235820811851560</td>
<td>12.491937783213549</td>
</tr>
<tr>
<td>O</td>
<td>0.794391643384210</td>
<td>5.902531183275393</td>
<td>17.801089130226135</td>
</tr>
<tr>
<td>O</td>
<td>0.815377391659931</td>
<td>3.29530501345269</td>
<td>16.476729200585986</td>
</tr>
<tr>
<td>O</td>
<td>-2.450060427452466</td>
<td>3.105477711137083</td>
<td>20.138123934418626</td>
</tr>
<tr>
<td>O</td>
<td>-0.881645861478189</td>
<td>5.290207601493984</td>
<td>19.868151453922174</td>
</tr>
<tr>
<td>O</td>
<td>1.754436181033169</td>
<td>3.099927315836169</td>
<td>19.035038067307031</td>
</tr>
<tr>
<td>O</td>
<td>-0.221137903455139</td>
<td>1.490882361309676</td>
<td>20.252732931005493</td>
</tr>
<tr>
<td>H</td>
<td>0.261512658702637</td>
<td>5.523777595211280</td>
<td>18.548858837953240</td>
</tr>
<tr>
<td>H</td>
<td>1.058720273111440</td>
<td>7.493936743655128</td>
<td>17.174422908179938</td>
</tr>
<tr>
<td>H</td>
<td>2.455305509892757</td>
<td>5.598886900665457</td>
<td>17.759477130626319</td>
</tr>
<tr>
<td>H</td>
<td>-0.479283637205807</td>
<td>2.027419123362397</td>
<td>17.338909747116851</td>
</tr>
<tr>
<td>H</td>
<td>1.227077710204495</td>
<td>3.295762930610565</td>
<td>17.400527176925518</td>
</tr>
<tr>
<td>H</td>
<td>0.139544704494121</td>
<td>0.704786233791334</td>
<td>20.702296336312813</td>
</tr>
<tr>
<td>H</td>
<td>-1.476605248460756</td>
<td>4.480475631126509</td>
<td>19.943501208029225</td>
</tr>
<tr>
<td>H</td>
<td>1.494862944315653</td>
<td>7.057626580779088</td>
<td>19.296801592982902</td>
</tr>
<tr>
<td>H</td>
<td>-1.749773989549942</td>
<td>2.445154509851789</td>
<td>20.391293021708105</td>
</tr>
<tr>
<td>H</td>
<td>-0.426025015758452</td>
<td>1.207769384510400</td>
<td>19.301237308538603</td>
</tr>
<tr>
<td>H</td>
<td>1.031941632712124</td>
<td>2.683329472277728</td>
<td>19.568515393821123</td>
</tr>
<tr>
<td>H</td>
<td>-1.814226506992211</td>
<td>6.783364970463729</td>
<td>19.198656397434021</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>H</td>
<td>-0.417398025881475</td>
<td>5.379804578472919</td>
<td>20.718283577127618</td>
</tr>
</tbody>
</table>

4/4 OH

56

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>2.1551799999999997</td>
<td>6.4670099999999997</td>
<td>11.467750000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>11.467750000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3118300000000000</td>
<td>7.155910000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>4.3118300000000000</td>
<td>11.467750000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.15590999999999986</td>
<td>2.15590999999999986</td>
<td>7.155910000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.15591999999999983</td>
<td>4.3118299999999999</td>
<td>5.000000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.1559100000000000</td>
<td>5.000000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>0.0000000000000000</td>
<td>7.155910000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>6.4677400000000000</td>
<td>9.311829999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559100000000000</td>
<td>4.3118300000000000</td>
<td>5.000000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1551799999999997</td>
<td>6.4670099999999997</td>
<td>7.155910000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.1559100000000000</td>
<td>4.3118300000000000</td>
<td>9.311829999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>6.4677400000000000</td>
<td>5.000000000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>2.15590999999999986</td>
<td>2.15590999999999986</td>
<td>11.467750000000000</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.15591999999999983</td>
<td>4.3118299999999999</td>
<td>9.311829999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0000000000000000</td>
<td>2.1559100000000000</td>
<td>9.311829999999999</td>
</tr>
<tr>
<td>Cu</td>
<td>2.381767094369526</td>
<td>6.229200494788958</td>
<td>15.832623171357925</td>
</tr>
<tr>
<td>Cu</td>
<td>-1.93877765972234</td>
<td>4.384798670103137</td>
<td>13.50216278500697</td>
</tr>
<tr>
<td>Cu</td>
<td>0.199178678154182</td>
<td>6.521421573042209</td>
<td>13.526467997330622</td>
</tr>
<tr>
<td>Cu</td>
<td>0.111599768988099</td>
<td>8.476608233684331</td>
<td>15.798512257485630</td>
</tr>
<tr>
<td>Cu</td>
<td>-1.795551233234719</td>
<td>6.412972146818327</td>
<td>15.797124186246151</td>
</tr>
<tr>
<td>Cu</td>
<td>2.212364228851943</td>
<td>4.217634269554598</td>
<td>13.536002825582118</td>
</tr>
</tbody>
</table>
Cu 0.036957973537286 2.040509435538541 13.518231316172319
Cu 0.268704324160847 4.338305827386897 15.779334781464998
O -1.077959999999992 1.077959999999992 10.389789999999952
O -1.077959999999992 1.077959999999992 6.0779600000000074
O -1.077959999999991 5.389789999999991 6.0779600000000074
O -3.233870000000008 3.233870000000008 8.2338700000000060
O 1.077959999999992 3.233870000000008 8.2338700000000060
O -3.233870000000008 3.233870000000008 3.922039999999968
O 1.077959999999992 3.233870000000008 3.922039999999968
O -1.077959999999991 5.389789999999991 10.389789999999952
O -3.020231266940584 3.092674559204116 16.742980669172631
O -0.782399972182324 5.370482670314010 14.542309150009352
O 1.054056639914750 3.207577407972589 12.515342375518765
O -1.067580613635450 5.027992395046632 17.136985824259771
O 1.289555271797024 3.123548100286027 16.764009553743254
O 3.366551019909925 5.203272231686817 14.559083385423909
O -3.109323241769974 3.356357691071989 12.503613975461107
O -0.474249576120709 1.352384847877322 17.068019732729613
O -0.809602030481004 5.592082242201490 19.613638705648235
O 1.257540456972150 7.257395676657344 19.312178196161110
O -1.049859294246393 1.093809612754920 19.681151310270486
O 1.683234583876158 3.330879290531692 19.520558365302975
H -0.694395209584890 1.184237204607164 18.02956933247876
H 0.554073015507805 2.389528103712233 16.973325343470147
H 1.212079402912958 7.307898800868350 17.774174731230715
H -1.778575836054659 4.336351346995828 17.086114953777880
H 2.226814741464970 2.519093120311973 19.702761440406235
10.4. (3,0;1,1) structures

Structures for the (3,0;1,1) surface reconstruction as displayed in Figure 12 of the main article and in Figure S2 and Figure S3:

Single H$_2$O adsorption

57

Lattice vectors: [8.632, -4.316, 0.000 ; 4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.497680398422212</td>
<td>6.638822910221778</td>
<td>19.535438235458159</td>
</tr>
<tr>
<td>H</td>
<td>-0.888699817143658</td>
<td>5.308021233894563</td>
<td>18.620251876986018</td>
</tr>
<tr>
<td>H</td>
<td>-0.60925578086817</td>
<td>4.782366422561601</td>
<td>20.115026750223262</td>
</tr>
<tr>
<td>H</td>
<td>1.546375831244413</td>
<td>3.317488883153952</td>
<td>18.534159135052441</td>
</tr>
<tr>
<td>H</td>
<td>2.694925522324763</td>
<td>4.557198890980307</td>
<td>19.723331411435211</td>
</tr>
<tr>
<td>H</td>
<td>-0.214253508719371</td>
<td>0.922404816907274</td>
<td>20.150014553298142</td>
</tr>
<tr>
<td>H</td>
<td>-2.246279586896255</td>
<td>2.4277267155142</td>
<td>19.562692253238730</td>
</tr>
</tbody>
</table>

Cu | 9.701619999999977 | -1.077960000000004 | 3.233870000000039 |
Cu | 7.545699999999977 | -1.077959999999992 | 1.0779600000000053 |
Cu | 5.389790000000015 | 3.233870000000001 | 3.233870000000039 |
Cu | 3.233870000000007 | 1.077959999999990 | 3.233870000000039 |
Cu | 9.701619999999982 | 1.0779600000000014 | 1.0779600000000053 |
Cu | 7.545699999999982 | 1.0779600000000027 | 3.233870000000039 |
Cu | 3.233870000000033 | -1.077959999999997 | 1.0779600000000053 |
Cu | 5.389790000000009 | 1.0779599999999978 | 1.0779600000000053 |
Cu | 5.389790000000033 | -1.0779600000000010 | 3.233870000000039 |
Cu | 3.233870000000014 | 3.233870000000014 | 1.0779600000000053 |
<table>
<thead>
<tr>
<th>Element</th>
<th>X-coordinates</th>
<th>Y-coordinates</th>
<th>Z-coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>1.0779600000000002</td>
<td>1.0779600000000002</td>
<td>1.0779600000000053</td>
</tr>
<tr>
<td>Cu</td>
<td>7.5457000000000002</td>
<td>-3.2338699999999984</td>
<td>3.2338700000000039</td>
</tr>
<tr>
<td>Cu</td>
<td>9.7016199999999977</td>
<td>-1.0779600000000004</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>7.5456999999999977</td>
<td>-1.0779599999999992</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>5.3897900000000015</td>
<td>3.2338700000000001</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>3.2338700000000007</td>
<td>1.0779599999999990</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>9.7016199999999982</td>
<td>1.07796000000000014</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>7.5456999999999982</td>
<td>1.0779600000000027</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>3.2338700000000033</td>
<td>-1.0779599999999997</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>5.3897900000000009</td>
<td>1.0779599999999978</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>5.3897900000000033</td>
<td>-1.0779600000000010</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>3.2338700000000014</td>
<td>3.2338700000000014</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>1.0779600000000002</td>
<td>1.0779600000000002</td>
<td>5.3898200000000072</td>
</tr>
<tr>
<td>Cu</td>
<td>7.5457000000000002</td>
<td>-3.2338699999999984</td>
<td>7.5457300000000058</td>
</tr>
<tr>
<td>Cu</td>
<td>8.06973539237181</td>
<td>-3.936102652094050</td>
<td>11.549491301446603</td>
</tr>
<tr>
<td>Cu</td>
<td>7.279171866892868</td>
<td>-0.458072166453719</td>
<td>9.775449368243907</td>
</tr>
<tr>
<td>Cu</td>
<td>5.348379547132419</td>
<td>0.156931049686105</td>
<td>11.278122073938103</td>
</tr>
<tr>
<td>Cu</td>
<td>5.241378706361980</td>
<td>2.848551155476986</td>
<td>10.85844954837616</td>
</tr>
<tr>
<td>Cu</td>
<td>9.306734485720986</td>
<td>1.405895767134881</td>
<td>9.739408097264414</td>
</tr>
<tr>
<td>Cu</td>
<td>7.318893336488102</td>
<td>1.662987011751127</td>
<td>11.148156403549494</td>
</tr>
<tr>
<td>Cu</td>
<td>2.837946675832770</td>
<td>-1.014637966437880</td>
<td>9.383414735269843</td>
</tr>
<tr>
<td>Cu</td>
<td>5.630248714694977</td>
<td>1.276673287715230</td>
<td>9.164514029490185</td>
</tr>
<tr>
<td>Cu</td>
<td>6.622759547352117</td>
<td>-1.943243297851926</td>
<td>11.529059846650066</td>
</tr>
<tr>
<td>Cu</td>
<td>3.001532659489632</td>
<td>2.801210494346260</td>
<td>9.342867924433733</td>
</tr>
<tr>
<td>Cu</td>
<td>1.240344247820560</td>
<td>1.036629662561714</td>
<td>9.372800515854234</td>
</tr>
<tr>
<td>Cu</td>
<td>10.103203224668693</td>
<td>-1.753094528727107</td>
<td>11.326730889843031</td>
</tr>
<tr>
<td>O</td>
<td>6.4677499999999970</td>
<td>-2.155919999999995</td>
<td>2.155909999999986</td>
</tr>
</tbody>
</table>
O 4.31830000000006 -0.000000000000025 0.000000000000000
O 8.623659999999980 0.000000000000012 0.000000000000000
O 2.155910000000011 2.155910000000011 2.155909999999986
O 6.46774000000000015 2.155919999999981 2.155909999999986
O 4.318299999999986 4.318299999999986 0.000000000000000
O 6.467749999999970 -2.155919999999981 6.4677799999999911
O 4.318300000000006 -0.000000000000025 4.31860000000000019
O 8.623659999999980 0.000000000000012 4.31860000000000019
O 2.155910000000011 2.155910000000011 6.4677799999999911
O 6.46774000000000015 2.1559199999999981 6.4677799999999911
O 4.318299999999986 4.318299999999986 4.31860000000000019
O 8.402258829078173 -2.157811246205210 11.798486486794626
O 4.293306295326938 -0.018069240697099 8.574865049289958
O 8.717115944121229 0.060160526936982 8.571388095268309
O 3.308822538373823 2.909547083689697 11.387352008588300
O 4.810231324057388 -1.837535012066797 11.29642391067034
O 12.810534937054964 -0.094900110406162 8.563726091951777
O 3.945887676021140 0.662146076701248 12.694090285616150
H 3.237990755105018 -0.010418497288660 12.644931209703998
H 3.562645052216784 1.522659426783829 12.344325222133987

H₂O ML
72
Lattice vectors: [8.632, -4.316, 0.000 ; 4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]
Cu 9.701619994703984 -1.077960007018801 3.233869869783788
Cu 7.545700037845587 -1.077960005272685 1.077960013796806
Cu 5.389789991189014 3.233870032584503 3.233869869783788
Cu 3.233869994750415 1.077959996473200 3.233869869783788
Cu 9.701620034330386 1.077960013796806
Cu 7.54569991235415 1.077960036076472 3.233869869783788
Cu 3.233869972371453 -1.077959984510274 1.077960013796806
Cu 5.389789951608811 1.07795994727084 1.077960013796806
Cu 5.389790041337557 -1.077960003503500 3.233869869783788
Cu 3.23386991212014 3.233869991212014 1.077960013796806
Cu 1.07795998242415 1.07795998242415 1.077960013796806
Cu 7.545700028448421 -3.233870012947065 3.233869869783788
Cu 9.70161994703984 -1.077960007018801 7.545729966357012
Cu 7.545700037845587 -1.077960005272685 5.389820140553167
Cu 5.389789991189014 3.233870032584503 7.545729966357012
Cu 3.23386994750415 1.07795996473200 7.545729966357012
Cu 9.701620034330386 1.07795999121214 5.389820140553167
Cu 7.54569991235415 1.077960036076472 7.545729966357012
Cu 3.233869972371453 -1.077959984510274 5.389820140553167
Cu 5.389789951608811 1.07795994727084 5.389820140553167
Cu 5.389790041337557 -1.077960003503500 7.545729966357012
Cu 3.233869991212014 3.233869991212014 5.389820140553167
Cu 1.07795998242415 1.07795998242415 5.389820140553167
Cu 7.545700028448421 -3.233870012947065 7.545729966357012
Cu 8.327495329698628 -3.89259684441143 11.379236961042102
Cu 7.207581801564060 -0.917400097593664 9.364582593469772
Cu 5.513623966539337 0.072721255570753 11.09808994555691
Cu 5.276939884215540 2.515758925939260 10.998678415851167
Cu 9.327438922601818 1.475243991333564 9.687167367570600
Cu 7.435180570654982 1.580966305571556 11.414319167246843

S77
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>2.852545452993586</td>
<td>-1.249896267872957</td>
<td>9.458890235871008</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>5.583552552773845</td>
<td>1.217357464541581</td>
<td>9.058413594105334</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>6.744938630525381</td>
<td>-2.012941166546491</td>
<td>11.468640588474681</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>3.106731918277973</td>
<td>2.821458642709537</td>
<td>9.283317201538171</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1.317053241812393</td>
<td>1.122990579159260</td>
<td>9.280887538820043</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>10.275181304300313</td>
<td>-1.758583345841263</td>
<td>11.255521698550581</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6.467749999953568</td>
<td>-2.155920003492000</td>
<td>2.155910006900938</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.311829953366426</td>
<td>-0.000000003515300</td>
<td>0.000000000000000</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.623660036087973</td>
<td>-0.000000000703030</td>
<td>0.000000000000000</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.155909992969599</td>
<td>2.155909992969599</td>
<td>2.155910006900938</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6.467739989500829</td>
<td>2.155919992946400</td>
<td>2.155910006900938</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.311829989454399</td>
<td>4.311829989454399</td>
<td>0.000000000000000</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6.467749999953568</td>
<td>-2.155920003492000</td>
<td>6.467779882704766</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.311829953366426</td>
<td>-0.000000003515300</td>
<td>4.311860096573439</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.623660036087973</td>
<td>-0.000000000703030</td>
<td>4.311860096573439</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>2.155909992969599</td>
<td>2.155909992969599</td>
<td>6.467779882704766</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6.467739989500829</td>
<td>2.155919992946400</td>
<td>6.467779882704766</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.311829989454399</td>
<td>4.311829989454399</td>
<td>4.311860096573439</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.566184698847657</td>
<td>-2.109387988453376</td>
<td>11.776265361176609</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.201690689535474</td>
<td>-0.105712451399148</td>
<td>8.578332017127535</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.709340792511325</td>
<td>0.070008726293146</td>
<td>8.594510204625054</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>3.450449845378492</td>
<td>2.968289193917159</td>
<td>11.353217430478759</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.931276364356452</td>
<td>-1.748538343616651</td>
<td>11.232959644298253</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>4.255582696192900</td>
<td>4.272744899008716</td>
<td>8.567859317399712</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>3.354288237748939</td>
<td>3.112842003157829</td>
<td>14.089314587506770</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>8.225239798510206</td>
<td>-1.39669357771234</td>
<td>14.288787933400393</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>6.049705000104472</td>
<td>3.420844084226559</td>
<td>13.957491748360974</td>
<td></td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>10.512761910784409</td>
<td>1.202046515827917</td>
<td>13.816472533791023</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>7.869389379151413</td>
<td>1.2111263235820435</td>
<td>13.437732990990733</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.767796312903587</td>
<td>1.337909959552401</td>
<td>15.358109519000404</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.309246821826450</td>
<td>2.875844163360210</td>
<td>13.121951389027647</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.843022421127055</td>
<td>2.414043778452340</td>
<td>14.589560401811248</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.483230720087329</td>
<td>-1.688164002283983</td>
<td>13.352354869937805</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.909456160376742</td>
<td>-1.807371522311887</td>
<td>14.868756247166907</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.110156148169725</td>
<td>3.121785032577400</td>
<td>14.104861643636148</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.646487854313056</td>
<td>2.635329859351231</td>
<td>13.963589886301170</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>6.843903060735845</td>
<td>-2.446938757982268</td>
<td>14.192775224136694</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>10.946185293732867</td>
<td>0.320647494441784</td>
<td>13.968618937352172</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>8.860375838098117</td>
<td>1.368343476245878</td>
<td>13.551163745296060</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>7.788709415412315</td>
<td>0.296304923177592</td>
<td>13.823291035428531</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.816150970711246</td>
<td>0.444708690640498</td>
<td>14.874734648329655</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.927574606567346</td>
<td>1.151855060084857</td>
<td>16.298818365869597</td>
<td></td>
</tr>
</tbody>
</table>

1:5 OH:H₂O ML

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>9.701619994703984</td>
<td>-1.077960007018801</td>
<td>3.233869869783788</td>
</tr>
<tr>
<td>Cu</td>
<td>7.545700037845587</td>
<td>-1.077960005272685</td>
<td>1.077960013796806</td>
</tr>
<tr>
<td>Cu</td>
<td>5.389789991189014</td>
<td>3.233870032584503</td>
<td>3.233869869783788</td>
</tr>
<tr>
<td>Cu</td>
<td>3.233869994750415</td>
<td>1.077959996473200</td>
<td>3.233869869783788</td>
</tr>
<tr>
<td>Cu</td>
<td>9.701620034330386</td>
<td>1.077959991212114</td>
<td>1.077960013796806</td>
</tr>
<tr>
<td>Cu</td>
<td>7.545699991235415</td>
<td>1.077960036076472</td>
<td>3.233869869783788</td>
</tr>
<tr>
<td>Cu</td>
<td>3.233869972371453</td>
<td>-1.077959984510274</td>
<td>1.077960013796806</td>
</tr>
<tr>
<td>Cu</td>
<td>5.389789951608811</td>
<td>1.077959994727084</td>
<td>1.077960013796806</td>
</tr>
</tbody>
</table>
Cu 5.389790041337557 -1.077960003503500 3.233869869783788
Cu 3.233869991212014 3.233869991212014 1.077960013796806
Cu 1.077959998242415 1.077959998242415 1.077960013796806
Cu 7.545700028448421 -3.233870012947065 3.233869869783788
Cu 9.701619994703984 -1.077960007018801 7.545729966357012
Cu 7.545700037845587 -1.077960005272685 5.389820140553167
Cu 5.389789991189014 3.233870032584503 7.545729966357012
Cu 3.233869947504145 1.077959994732000 7.545729966357012
Cu 9.701620034330386 1.077959991212114 5.389820140553167
Cu 7.545699991235415 1.077960036076472 7.545729966357012
Cu 3.233869972371453 -1.077959984510274 5.389820140553167
Cu 5.389789951608811 1.077959994727084 5.389820140553167
Cu 5.389790041337557 -1.077960003503500 7.545729966357012
Cu 5.389790041337557 -1.077960003503500 7.545729966357012
Cu 3.233869991212014 3.233869991212014 5.389820140553167
Cu 1.077959998242415 1.077959998242415 5.389820140553167
Cu 7.545700028448421 -3.233870012947065 7.545729966357012
Cu 7.762869205163559 -3.421346152897526 10.995565161954039
Cu 7.306016921122989 -0.494642166390922 9.863751401835382
Cu 5.718032862361789 -0.179784184691444 11.783146948243770
Cu 5.273648718148056 3.235987366314216 10.95398905902911
Cu 9.330492663481852 1.447142642386816 9.665761567689550
Cu 7.248069410403986 1.769657786176536 11.172162810906416
Cu 2.897872199042693 -1.026343462787857 9.357962108102948
Cu 5.553414678237105 1.329744084908751 9.425055001419123
Cu 5.464054129780339 -2.667705907259777 12.40622327127363
Cu 3.213186278015521 2.744792371386670 9.288804090831240
Cu 1.334147695921891 1.107122952234071 9.359527064340517
<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>9.978764838757456</td>
<td>-1.315825719059414</td>
<td>10.965234557833993</td>
</tr>
<tr>
<td>O</td>
<td>6.46774999953568</td>
<td>-2.155920003492000</td>
<td>2.155910006900938</td>
</tr>
<tr>
<td>O</td>
<td>4.31182953366426</td>
<td>-0.000000003515300</td>
<td>0.000000000000000</td>
</tr>
<tr>
<td>O</td>
<td>8.623660036087973</td>
<td>-0.000000007030300</td>
<td>0.000000000000000</td>
</tr>
<tr>
<td>O</td>
<td>2.155909992969599</td>
<td>2.155909992969599</td>
<td>2.155910006900938</td>
</tr>
<tr>
<td>O</td>
<td>6.467739989500829</td>
<td>2.155919992946400</td>
<td>2.155910006900938</td>
</tr>
<tr>
<td>O</td>
<td>4.311829989454399</td>
<td>4.311829989454399</td>
<td>0.000000000000000</td>
</tr>
<tr>
<td>O</td>
<td>6.46774999953568</td>
<td>-2.155920003492000</td>
<td>6.467779882704766</td>
</tr>
<tr>
<td>O</td>
<td>4.311829953366426</td>
<td>-0.000000003515300</td>
<td>4.311860096573439</td>
</tr>
<tr>
<td>O</td>
<td>8.623660036087973</td>
<td>-0.000000007030300</td>
<td>4.311860096573439</td>
</tr>
<tr>
<td>O</td>
<td>2.155909992969599</td>
<td>2.155909992969599</td>
<td>6.467779882704766</td>
</tr>
<tr>
<td>O</td>
<td>6.467739989500829</td>
<td>2.155919992946400</td>
<td>6.467779882704766</td>
</tr>
<tr>
<td>O</td>
<td>4.311829989454399</td>
<td>4.311829989454399</td>
<td>4.311860096573439</td>
</tr>
<tr>
<td>O</td>
<td>8.201267132237207</td>
<td>-1.656027235071581</td>
<td>11.187465074964756</td>
</tr>
<tr>
<td>O</td>
<td>4.342497588203540</td>
<td>0.049437020570763</td>
<td>8.578282902028196</td>
</tr>
<tr>
<td>O</td>
<td>8.716349270928395</td>
<td>0.072073835351453</td>
<td>8.552093039432380</td>
</tr>
<tr>
<td>O</td>
<td>11.784736567766252</td>
<td>-0.946165068337563</td>
<td>11.181937780758140</td>
</tr>
<tr>
<td>O</td>
<td>4.800110279929966</td>
<td>-1.611527597946025</td>
<td>11.047276451834142</td>
</tr>
<tr>
<td>O</td>
<td>12.894686406871806</td>
<td>-0.004170763304757</td>
<td>8.550154940056427</td>
</tr>
<tr>
<td>O</td>
<td>11.732290564523840</td>
<td>-1.182863574132331</td>
<td>13.789352718156922</td>
</tr>
<tr>
<td>O</td>
<td>8.116059969080531</td>
<td>-1.422402709301759</td>
<td>13.873926485404263</td>
</tr>
<tr>
<td>O</td>
<td>5.650881799237547</td>
<td>3.370919329957770</td>
<td>13.213996575077001</td>
</tr>
<tr>
<td>O</td>
<td>10.466568450446509</td>
<td>1.121585018466334</td>
<td>14.084513740560801</td>
</tr>
<tr>
<td>O</td>
<td>6.655217998884684</td>
<td>0.980065023828717</td>
<td>12.945204460107451</td>
</tr>
<tr>
<td>O</td>
<td>1.629162606910169</td>
<td>1.158080521072705</td>
<td>14.762692627933323</td>
</tr>
<tr>
<td>O</td>
<td>11.637099954154825</td>
<td>-1.233564994464179</td>
<td>12.779234828634774</td>
</tr>
<tr>
<td>O</td>
<td>2.662789549195098</td>
<td>2.326710135846446</td>
<td>14.188487916807658</td>
</tr>
<tr>
<td>H</td>
<td>8.195833991040814</td>
<td>-1.516562884301785</td>
<td>12.867684210913270</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>H</td>
<td>8.897549772759197</td>
<td>-1.890795551737068</td>
<td>14.251296865234920</td>
</tr>
<tr>
<td>H</td>
<td>4.715381910180513</td>
<td>3.197883352594816</td>
<td>13.551970064137558</td>
</tr>
<tr>
<td>H</td>
<td>6.125697045181663</td>
<td>2.477882035647999</td>
<td>13.300065339412305</td>
</tr>
<tr>
<td>H</td>
<td>6.910579760453339</td>
<td>-2.514226273214436</td>
<td>14.164708414686389</td>
</tr>
<tr>
<td>H</td>
<td>10.911393679561797</td>
<td>0.215167562032193</td>
<td>14.059963552869023</td>
</tr>
<tr>
<td>H</td>
<td>7.289491050871080</td>
<td>0.443523879050409</td>
<td>13.470798953798697</td>
</tr>
<tr>
<td>H</td>
<td>1.624285632539646</td>
<td>0.319506788839463</td>
<td>14.187595609431828</td>
</tr>
<tr>
<td>H</td>
<td>1.686270233908607</td>
<td>0.865421984602482</td>
<td>15.688014864042893</td>
</tr>
</tbody>
</table>

10.5. Low-energy c(2×2) structures

Structures for the low-energy c(2×2) surface reconstruction as displayed in Figure 12. Note that the structure for single H$_2$O adsorption is not shown in any figure.

Single H$_2$O adsorption

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Cu</th>
<th>0.400404017805987</th>
<th>3.197132022169984</th>
<th>12.22665399414278</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.400403987628330</td>
<td>1.04121698399700</td>
<td>10.07039037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.55588996968988</td>
<td>5.352317001332985</td>
<td>12.22665399414278</td>
</tr>
<tr>
<td>Cu</td>
<td>0.400404017805986</td>
<td>7.507501980495986</td>
<td>16.53848390790608</td>
</tr>
<tr>
<td>Cu</td>
<td>0.400404017805987</td>
<td>3.197132022169984</td>
<td>16.53848390790608</td>
</tr>
<tr>
<td>Cu</td>
<td>0.400403987628330</td>
<td>1.04121698399700</td>
<td>14.38256895102433</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754781004467987</td>
<td>3.196401980496018</td>
<td>10.07039037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.55588996968988</td>
<td>5.352317001332985</td>
<td>16.53848390790608</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>5.351587002769991</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754781004467987</td>
<td>3.196401980496014</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555589099023040</td>
<td>3.196402106736740</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754780961357015</td>
<td>5.352317001332985</td>
<td>16.538483907906087</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>7.507501980495986</td>
<td>12.226653994142788</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555589099023040</td>
<td>5.351587002769991</td>
<td>10.070739037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754780961357015</td>
<td>1.754780961357015</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>2.516673398461458</td>
<td>5.664848091251269</td>
<td>20.135249593275056</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.247057623902916</td>
<td>1.221829788217892</td>
<td>18.237337333897241</td>
</tr>
<tr>
<td>Cu</td>
<td>0.787376250326443</td>
<td>1.021498020359574</td>
<td>20.338672119951639</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.066556633112090</td>
<td>3.252325039216414</td>
<td>19.894186258422092</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.789124953963334</td>
<td>7.630972354953016</td>
<td>20.123718625726120</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.331572753109868</td>
<td>5.535245190621955</td>
<td>18.615325629941946</td>
</tr>
<tr>
<td>Cu</td>
<td>1.704587517064654</td>
<td>2.769716798772428</td>
<td>18.392229402568727</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.510725307242497</td>
<td>3.396082404590689</td>
<td>18.720179461804463</td>
</tr>
<tr>
<td>O</td>
<td>-1.385217941358627</td>
<td>4.373126487894861</td>
<td>17.585846864580230</td>
</tr>
<tr>
<td>O</td>
<td>0.722678057717448</td>
<td>6.603337934639864</td>
<td>19.733983401209031</td>
</tr>
<tr>
<td>O</td>
<td>1.772577234271656</td>
<td>3.857377160799202</td>
<td>20.558863437139497</td>
</tr>
<tr>
<td>O</td>
<td>2.771424104830123</td>
<td>4.221994672172173</td>
<td>17.546592127859476</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388993</td>
<td>6.429543974301008</td>
<td>11.14869696844098</td>
</tr>
<tr>
<td>O</td>
<td>2.832738967551994</td>
<td>4.274358995138007</td>
<td>8.992782011562335</td>
</tr>
<tr>
<td>O</td>
<td>-1.477630990774009</td>
<td>4.274358995138006</td>
<td>13.304611925325640</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388993</td>
<td>6.429543974301008</td>
<td>15.460526882207397</td>
</tr>
<tr>
<td>O</td>
<td>2.832738967551994</td>
<td>4.274358995138007</td>
<td>13.304611925325640</td>
</tr>
<tr>
<td>O</td>
<td>-1.477630990774009</td>
<td>4.274358995138006</td>
<td>8.992782011562335</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388992</td>
<td>2.119174015975005</td>
<td>15.460526882207397</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>O</td>
<td>0.67753988388992</td>
<td>2.119174015975005</td>
<td>11.148696968444098</td>
</tr>
<tr>
<td>O</td>
<td>1.677228629835612</td>
<td>1.743636982245612</td>
<td>22.021379744376567</td>
</tr>
<tr>
<td>H</td>
<td>1.737992496289887</td>
<td>2.710542149222023</td>
<td>21.627119273157355</td>
</tr>
<tr>
<td>H</td>
<td>1.1189151795551979</td>
<td>1.777257673126089</td>
<td>22.81885297545625</td>
</tr>
</tbody>
</table>

H₂O ML

48

Lattice vectors: [4.316, 4.316, 0.000 ; -4.316, 4.316, 0.000 ; 0.000, 0.000, 34.528]

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.400404017805987</td>
<td>3.197132022169984</td>
<td>12.226653994142788</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400403987628330</td>
<td>1.041216988399700</td>
<td>10.070739037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555588996968988</td>
<td>5.352317001332985</td>
<td>12.226653994142788</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>7.507501980495986</td>
<td>16.538483907906087</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805987</td>
<td>3.197132022169984</td>
<td>16.538483907906087</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400403987628330</td>
<td>1.041216988399700</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754781004467987</td>
<td>3.196401980496018</td>
<td>10.070739037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555588996968988</td>
<td>5.352317001332985</td>
<td>16.538483907906087</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>5.351587002769991</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754781004467987</td>
<td>3.196401980496018</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555589009902304</td>
<td>3.196402010673674</td>
<td>14.382568951024330</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754780961357015</td>
<td>5.352317001332985</td>
<td>16.538483907906087</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>7.507501980495986</td>
<td>12.226653994142788</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.400404017805986</td>
<td>5.351587002769991</td>
<td>10.070739037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.555589009902304</td>
<td>3.196402010673674</td>
<td>10.070739037261031</td>
</tr>
<tr>
<td>Cu</td>
<td>1.754780961357015</td>
<td>5.352317001332985</td>
<td>12.226653994142788</td>
</tr>
<tr>
<td>Cu</td>
<td>1.868597518357652</td>
<td>5.718360635614423</td>
<td>20.33332355943667</td>
</tr>
<tr>
<td>Cu</td>
<td>-0.234528187524567</td>
<td>1.232050462609547</td>
<td>18.406978589532248</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.791623942147061</td>
<td>5.529456618870396</td>
<td>20.112416885278765</td>
</tr>
</tbody>
</table>
Cu -0.210797759929270 2.966491967823445 20.067404497757085
Cu -0.567465923194246 8.040502142265884 20.416666183164875
Cu -0.461753920980675 5.557707097259990 18.616337882679513
Cu 1.599553197974703 2.973607629479409 18.408778107112273
Cu -2.542438281943734 3.391937984435132 18.59097117125375
O -1.380729293190815 4.361906570934378 17.554017505053448
O 0.532101118150026 6.769739529727144 19.586342654391533
O 2.674910137832964 4.660187334411251 21.590087193955079
O 2.817971935442501 4.270994998908292 17.594068171830898
O 0.677553988388993 6.429543974301008 11.14869696844098
O 2.832738967551994 4.274358995138007 8.992782011562335
O -1.477630990774009 4.274358995138006 13.30461925325640
O 0.677553988388993 6.429543974301008 15.460526882207397
O 2.832738967551994 4.274358995138007 13.30461925325640
O -1.477630990774009 4.274358995138006 8.992782011562335
O 0.677553988388992 2.119174015975005 15.460526882207397
O 0.677553988388992 2.119174015975005 11.14869696844098
O -0.758952201768274 6.824484746755264 23.212430200331042
O -2.280765521640701 2.461324359680079 23.13488663773393
O 0.405773195944408 3.459791794170963 21.947811237742311
O -2.248505126890183 5.099351910594399 21.967741331518180
H 3.342219413518896 3.380046736403611 22.777034387064880
H 0.231027526613335 6.756431617652089 23.226484605588339
H -2.134655772619464 4.171326462442117 22.294013696718551
H -1.558847364561966 5.696039552322675 22.435102983642032
H -1.844437029523218 2.483290322344996 24.00445254431005
H 0.572973532585200 2.598167209978384 22.380603156687279
\[\text{OH/H}_2\text{O ML} \]

48

Lattice vectors: [4.316, 4.316, 0.000; -4.316, 4.316, 0.000; 0.000, 0.000, 34.528]

\[
\begin{array}{cccc}
\text{Cu} & -0.400404017805987 & 3.197132022169984 & 12.226653994142788 \\
\text{Cu} & -0.400403987628330 & 1.041216988399700 & 10.070739037261031 \\
\text{Cu} & -2.555588996968988 & 5.352317001332985 & 12.226653994142788 \\
\text{Cu} & -0.400404017805986 & 7.507501980495986 & 16.538483907906087 \\
\text{Cu} & -0.400404017805987 & 3.197132022169984 & 16.538483907906087 \\
\text{Cu} & -0.400403987628330 & 1.041216988399700 & 14.382568951024330 \\
\text{Cu} & 1.754781004467987 & 3.196401980496018 & 10.070739037261031 \\
\text{Cu} & -2.555588996968988 & 5.352317001332985 & 16.538483907906087 \\
\text{Cu} & -0.400404017805986 & 5.351587002769991 & 14.382568951024330 \\
\text{Cu} & 1.754781004467987 & 3.196401980496018 & 14.382568951024330 \\
\text{Cu} & -2.555589009902304 & 3.196402010673674 & 14.382568951024330 \\
\text{Cu} & 1.754780961357015 & 5.352317001332985 & 16.538483907906087 \\
\text{Cu} & -0.400404017805986 & 7.507501980495986 & 12.226653994142788 \\
\text{Cu} & -0.400404017805986 & 5.351587002769991 & 10.070739037261031 \\
\text{Cu} & -2.555589009902304 & 3.196402010673674 & 10.070739037261031 \\
\text{Cu} & 1.754780961357015 & 5.352317001332985 & 12.226653994142788 \\
\text{Cu} & 1.452391124202813 & 5.531636503255721 & 20.516642879256278 \\
\text{Cu} & -0.210167469332714 & 1.264482741422360 & 18.403369400094242 \\
\text{Cu} & -2.814152505941375 & 5.555078209643457 & 20.10692772200766 \\
\text{Cu} & -0.0832982223830820 & 3.096354853418601 & 20.058646700819754 \\
\text{Cu} & 3.589484055115618 & 3.595030847822705 & 20.429481669046545 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>-0.577413490332366</td>
<td>5.407201706768427</td>
<td>18.607575121959020</td>
</tr>
<tr>
<td>Cu</td>
<td>1.618146772509159</td>
<td>3.010466793221605</td>
<td>18.400383976915350</td>
</tr>
<tr>
<td>Cu</td>
<td>-2.71284774464240</td>
<td>3.291976744677635</td>
<td>18.600162996590456</td>
</tr>
<tr>
<td>O</td>
<td>-1.516424732551301</td>
<td>4.227380645167631</td>
<td>17.560185297755178</td>
</tr>
<tr>
<td>O</td>
<td>0.353644975393266</td>
<td>6.655846906933862</td>
<td>19.570555100009351</td>
</tr>
<tr>
<td>O</td>
<td>2.702583741277536</td>
<td>4.735183830782271</td>
<td>21.608233840203933</td>
</tr>
<tr>
<td>O</td>
<td>2.847883757772666</td>
<td>4.304056135423895</td>
<td>17.600088727755178</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388993</td>
<td>6.429543974301008</td>
<td>11.148696968444098</td>
</tr>
<tr>
<td>O</td>
<td>2.832738967551994</td>
<td>4.274358995138007</td>
<td>8.992782011562335</td>
</tr>
<tr>
<td>O</td>
<td>-1.477630990774009</td>
<td>4.274358995138006</td>
<td>13.304611925325640</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388993</td>
<td>6.429543974301008</td>
<td>15.460526882207397</td>
</tr>
<tr>
<td>O</td>
<td>2.832738967551994</td>
<td>4.274358995138007</td>
<td>13.304611925325640</td>
</tr>
<tr>
<td>O</td>
<td>-1.477630990774009</td>
<td>4.274358995138006</td>
<td>8.992782011562335</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388992</td>
<td>2.119174015975005</td>
<td>15.460526882207397</td>
</tr>
<tr>
<td>O</td>
<td>0.677553988388992</td>
<td>2.119174015975005</td>
<td>11.148696968444098</td>
</tr>
<tr>
<td>O</td>
<td>0.422853919028265</td>
<td>6.888375950505584</td>
<td>23.010878153531294</td>
</tr>
<tr>
<td>O</td>
<td>-0.632857463306194</td>
<td>3.134552166810297</td>
<td>21.930915161355347</td>
</tr>
<tr>
<td>O</td>
<td>1.516791029052943</td>
<td>2.909088003972993</td>
<td>23.264658320039889</td>
</tr>
<tr>
<td>O</td>
<td>-2.443500400699644</td>
<td>4.841898939304048</td>
<td>21.902763424713829</td>
</tr>
<tr>
<td>H</td>
<td>-0.526771731016359</td>
<td>7.035971258171641</td>
<td>23.180996622764713</td>
</tr>
<tr>
<td>H</td>
<td>0.762649425381639</td>
<td>7.761609222158610</td>
<td>22.704034541836236</td>
</tr>
<tr>
<td>H</td>
<td>-1.618482589230993</td>
<td>4.169618022623811</td>
<td>21.994342108325927</td>
</tr>
<tr>
<td>H</td>
<td>-2.416880688699112</td>
<td>5.585673216617543</td>
<td>22.558829781617174</td>
</tr>
<tr>
<td>H</td>
<td>0.588936061728625</td>
<td>3.031487366472701</td>
<td>22.771980319451973</td>
</tr>
<tr>
<td>H</td>
<td>1.359477576894938</td>
<td>3.095480219834384</td>
<td>24.206375871161683</td>
</tr>
<tr>
<td>H</td>
<td>2.251022112488589</td>
<td>4.182738827400197</td>
<td>22.303097014750648</td>
</tr>
<tr>
<td>H</td>
<td>-1.056203253230199</td>
<td>2.247512611994362</td>
<td>22.045705802370829</td>
</tr>
</tbody>
</table>