Variation of Excited-State Dynamics in Trifluoromethyl Functionalized C$_{60}$ Fullerenes

Jaehong Parka,†, Jessica J. Ramireza,b,†, Tyler T. Clikemana,c, Bryon W. Larsona,c, Olga V. Boltalinac, Steven H. Straussc, and Garry Rumblesa,d,*

aChemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States

bDepartment of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, United States

cDepartment of Chemistry, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, United States

dDepartment of Chemistry and Biochemistry, and Renewable and Sustainable Energy Institute, University of Colorado at Boulder, Boulder, Colorado 80309, United States

†These authors have contributed equally.

*address correspondence to: Dr. Garry Rumbles (garry.rumbles@nrel.gov)
Fig. S1 Gaussian deconvolution fitting for ground-state electronic absorption spectra of a) C60/4-1 and b) C60/10-1 measured in toluene. The FWHM noted in the figure shows the FWHM results for the lowest-energy absorption peak.
Fig. S2 Photoluminescence excitation spectra of C60/4-1 and C60/6-2 in toluene. (a,c) Photoluminescence excitation spectra of C60/4-1 and C60/6-2 (blue, right y-axis), monitored at the emission wavelengths noted, are overlaid with electronic absorption spectra (black, left y-axis). (b,d) Photoluminescence excitation spectra of C60/4-1 and C60/6-2 in toluene monitored at the multiple emission wavelengths are normalized.
Fig. S3 Representative femtosecond pump/probe transient absorption spectra of a) PC_{61}BM and b) bis-PC_{61}BM in toluene obtained at the time delays noted. Experimental conditions: λ_{ex} = 400 nm, pulse energy = 300 nJ/pulse, room temperature.
Fig. S4 Representative femtosecond pump-probe transient absorption spectra of C60/10-1 in toluene, obtained at the time delays noted. Experimental conditions: $\lambda_{ex} = 400$ nm, pulse energy = 450 nJ/pulse, room temperature.
Fig. S5 Exponential fitting results of the transient decay signals for a) C60/4-1, b) C60/6-2, c) C60/10-1. Experimental conditions: \(\lambda_{\text{pr}} = \) a) 902 nm, b) 935 nm, and c) 1001 nm; \(\lambda_{\text{ex}} = \) a,b) 400 nm and c) 550 nm, pulse energy = 300 nJ/pulse, room temperature.
Fig. S6 Single-exponential fitting results of the transient signal rise for a) C60/4-1 and b) C60/6-2 using the method described earlier to determine the rise time constant of the T1→Tn transition (see the earlier section for the method). Experimental conditions: λex = 400 nm, pulse energy = 300 nJ/pulse, room temperature.
Fig. S7 Comparative femtosecond pump-probe transient absorption spectrum (solid black) of C60/10-1 in toluene obtained at the time delay noted. Inversed electronic absorption spectrum (dashed blue) of C60/10-1 in toluene is displayed for comparison. Experimental conditions: $\lambda_{ex} = 400$ nm, pulse energy $= 300$ nJ/pulse, room temperature.
Fig. S8 Exponential fitting results of the transient decay signals for a) C60/4-1 and b) C60/6-2, dispersed in a polystyrene matrix. Experimental conditions: λ_{pr} = a) 901 nm and b) 941 nm; λ_{ex} = 400 nm, pulse energy = 500 nJ/pulse, room temperature.