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Computational Methods

Approach-to-equilibrium molecular dynamics calculations

The approach-to-equilibrium molecular dynamics (AEMD) method1 is a practical alterna-

tive to the most common equilibrium and nonequilibrium molecular dynamics techniques.2

Rather than maintaining the system at equilibrium or in a steady-state non equilibrium

condition, it is first driven to a suitable nonequilibrium state and then is left free to reach

equilibrium. The transient of the temperature carries information on its thermal conduc-

tivity. An exhaustive description of the method, including a thorough assessment of the

convergence of the thermal conductivity with a number of parameters of the simulation, can

be found in the paper of Melis and coworkers.3

The nanowire geometry requires some additional care in the equilibration phase, thus

we adopted the following simulation protocol. At first we perform a preliminary structural

relaxation with a standard conjugate gradient algorithm, isotopes do not distort the lattice,
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but the nanowire is cut out of a bulk system and its geometry must be optimized. Next we

heat the system from 300 to 900 K in 600 ps and anneal it at 900 K for 400 ps; then we cool

it back to 300 K in 800 ps and than keep it for 200 ps at 300 K. All these steps are carried

out in a NVT ensemble, where a Nosé-Hoover thermostat is used to control the temperature

of the system. Next we perform a 400 ps NVE microcanonical run.

After this initial equilibration phase, which proved to be necessary in nanowires,4 we start

the real AEMD protocol. First we perform two separate runs in which half of the system

is equilibrated at a certain temperature by velocity rescaling, while the atoms of other half

are kept frozen. Each of these runs last 200 ps: in the first, half of the system is driven to

a temperature TH = T0 + ∆T/2; in the second, the other half is driven to a temperature

TC = T0 − ∆T/2. After these equilibration cycle the system has a step-like temperature

profile across the nanowire axis. Then we remove any constraint on the velocities, i.e. on

the temperature, and leave the system evolve in a NVE ensemble: in the long run the whole

system will reach equilibrium at T0. We calculate the average temperature of each half of the

nanowire every 200 fs and keep track of the time dependence of the temperature difference

between the two halves:

∆T (t) = 〈TH(t)〉 − 〈TC(t)〉. (1)

This last part of our simulation protocol last from 1 to 10 ns, because the accuracy of the

fit described below depends on how close ∆T (t) is to zero at the end of the NVE run and

the equilibration time depends on the size of the system.

We fit ∆T (t) to the analytical solution of the heat equation

∆T (t) =
∞∑
n=1

Cne
−(2πn/Lz)2κ̄t, (2)

where

Cn = 8(TH − TC)
[cos(πn)− 1]2

4π2n2
, (3)

and extract the thermal diffusivity, κ̄. We truncate the sum of 2 to the first 20 terms, a
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choice that has been shown to provide well converged values.3 The thermal conductivity, κ,

can be calculated from the fitted thermal diffusivity as

κ = ρCvκ̄ (4)

where ρ is the density and Cv is the specific heat capacity. Notice that it has been shown that

the estimate of κ is rather insensitive to the magnitude of the initial temperature step-like

profile, 200 K in our case.3

In the molecular dynamics simulations the atoms move classically, following Newton’s

laws. As a consequence, phonons population is described by a Maxwell-Boltzmann, rather

than a Bose-Einstein distribution. This approximation is in principle not very accurate at

low temperatures, where quantum effects cannot be neglected. Quantum corrections that

take into account the deviations from the Maxwell-Boltzmann distribution below the Debye

temperature5 can be included by renormalizing the classical heat capacity, Cv = 3NkB, by

a factor q̄ which is the ratio between the actual temperature and the Debye temperature.

The total energies and the force are calculated within the environment-dependent in-

teratomic potential (EDIP) developed and parameterized by Bazant and coworkers.6 The

superior, simultaneous description of liquid and solid diamond-like Si7 is not particular im-

portant for our work, but remarkably, EDIP exhibits an excellent conservation of the energy

with a rather large timestep of 2 fs (to be compared with the 0.5-0.7 fs required by the Tersoff

potential8), thus allowing spanning much longer simulation times for a given number of MD

steps. Notice also that, in general, EDIP potential gives estimate for the thermal conduc-

tivity of bulk Si in line with the predictions of Tersoff and Stillinger-Weber potentials.3

Nonequilibrum Green’s Functions

Thermal transport is analyzed in the ballistic regime using the Landauer formalism within

the nonequilibrium Green’s function (NEGF) approach.9,10 These calculations are performed
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in the harmonic approximation neglecting any kind of phonon-phonon or electron-phonon

interactions.

Following the typical procedure in NEGF calculations, we connect a nanowire section

(channel) to two reservoirs (contacts) that are held at a constant temperature. The channel

has a given isotopic blend while the contacts, being semi-infinite extensions of the channel

in shape, have pure 28Si composition (see 1).

In the limit of small temperature difference between the contacts, the thermal conduc-

tance of the system is given by the Landauer formula,

G(T ) =
h̄2

2πkBT 2

∫ ∞
0

dω ω2 Ξ(ω)
e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 , (5)

where Ξ(ω) is the phonon transmission function and the last factor arises from the tempera-

ture derivative of the Bose-Einstein phonon distribution function. The phonon transmission

function is calculated from the Caroli formula,11

Ξ(ω) = Tr [ΓL(ω) Gr(ω) ΓR(ω) Ga(ω)] , (6)

in which Gr(a)(ω) is the retarded (advanced) channel Green’s function and ΓL/R(ω) are

broadening functions describing the coupling between the contacts and the channel.

The retarded channel Green’s function (Ga(ω) = Gr(ω)†)) including the effect of the

contacts is given by

Gr(ω) =
[
ω2 I−HC −Σr

L(ω)−Σr
R(ω)

]−1
, (7)

here, I is the identity matrix, HC is the force-constant matrix of the atoms in the channel,

and Σr
L/R(ω) are the contacts retarded self-energies. The latter are also used to calculate

the broadening functions of 6 as follows,
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ΓL/R(ω) = i
(
Σr
L/R(ω)−Σa

L/R(ω)
)
. (8)

Obtaining the contacts self-energies is the most involved part of the NEGF approach as,

in principle, it involves the computation of the Green’s function for the semi-infinite contacts.

The task is however simplified if one takes into account that only a certain number of atoms

in the contact will effectively interact with any atom in the channel. We will refer to this

group of contact atoms as the surface principal layer. Following this reasoning, it suffices to

calculate the self-energies as,

Σr
L(ω) = τC,LS gLS(ω) τLS,C (9a)

Σr
R(ω) = τC,RS gRS(ω) τRS,C , (9b)

where gLS/RS(ω) are the surface Green’s functions of the contacts principal layers and τC,LS =

(τLS,C)† (τC,RS = (τRS,C)†) are force-constant matrices describing the interaction between

the atoms in the contact principal layer and the atoms in the channel.

To obtain the surface Green’s functions we use the Sancho-Rubio iterative method.12

Within this method, the contact is partitioned in principal layers that are assumed to be

equivalent and to interact only through first neighbor layers. In this regard, we note that in

the way we have partitioned the system (see 1) the surface principal layer of each contact

is not equivalent to the subsequent principal layers placed deeper in the contact, precisely

because it is the only one that interacts with the channel. By this reason, we proceed with

the Sancho-Rubio calculation to obtain the Green’s function of the second principal layer in

the contact, gL/R(ω), and then we can properly compute the surface Green’s function as
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gLS(ω) =
[
(ω2 + iη)I−HLS − τLS,L gL(ω) τL,LS

]−1
(10a)

gRS(ω) =
[
(ω2 + iη)I−HRS − τRS,R gR(ω) τR,RS

]−1
. (10b)

Here, HLS/RS is the force-constant matrix of the surface principal layer and τLS,L = (τL,LS)†

(τRS,R = (τR,RS)†) are force-constant matrices describing the interaction between the first

(surface) and second principal layers. 10 also includes an infinitesimal imaginary damping,

η.

In order to obtain the phonon transmission function we model a nanowire supercell as

the one shown in 1. The supercell is formed from the channel and three principal layers

per contact. The third or deepest principal layer is necessary to perform the Sancho-Rubio

iterative calculation as it requires force-constant matrix elements describing the interaction

between two equivalent layers. All together the supercell includes 2934 atoms distributed in

a nanowire of 3nm diameter, the channel has a length ∼ 2.82 nm, and the principal layers

in the contacts include 326 atoms and have a length ∼ 0.94 nm.

We use the generalized utility lattice program13 (GULP) with therein implemented inter-

atomic EDIP potential6 to relax the whole structure, assuming periodic boundary conditions

in the axial direction, and to calculate the force-constant matrix elements.
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LC=2.82 nmLLS=0.94 nm LRS=0.94 nm

D=3 nm

L=8.46 nm

Figure 1: Schematic atomistic structure of the modeled supercell. Beige (green) balls are
used for 28Si (30Si). The two transverse planes show the position of the channel-contact
interfaces.
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