Supplementary materials

The possible formation of magnetic FeS\textsubscript{2} phase in two-dimensional MoS\textsubscript{2} matrix

L.Yu. Antipina1,2,3, A.G. Kvashnin1,4, P.B. Sorokin1,2,3, L.A. Chernozatonskii4

1 Emanuel Institute of Biochemical Physics, Russian Academy of Science., 4 Kosigin Street, Moscow, 119334, Russian Federation

2 Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow, 142190, Russian Federation

3 National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation

4 Skolkovo Institute of Science and Technology (Skoltech), Skolkovo Innovation Center 143026, 3 Nobel Street, Moscow, Russian Federation

Corresponding author. E.mail: cherno@sky.chph.ras.ru
Figure S 1 – The chosen atomic geometries of cluster FeS$_2$ in MoS$_2$ structure for different concentration. a) 2H-MoS$_2$ uniform structure, b) 2H cluster FeS$_2$ in 2H MoS$_2$ structure, c) 1H cluster FeS$_2$ in 2H MoS$_2$ structure, d) 1H cluster FeS$_2$ in 1H MoS$_2$ structure. The molybdenum, iron and sulfur atoms are presented in red, blue and green, respectively.
Figure S 2 – The atomic geometries of the most stable $\text{Fe}_{x}\text{Mo}_{1-x}\text{S}_2$ structures, predicted by evolutionary algorithm USPEX. The molybdenum, iron and sulfur atoms are presented in red, blue and green, respectively.