Electronic Supplementary Information (ESI)

Can multi–biaxial mesogenic mixtures favour biaxial nematics?
A computer simulation study

Lara Querciagrossa, Matteo Ricci, Roberto Berardi(*) and Claudio Zannoni

Department of Industrial Chemistry “Toso Montanari”,
University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy

This journal is © the Owner Societies 2016
Figure S1: The homogeneous side-by-side and end-to-end pair potential energy profiles for some of the various GB ellipsoids (the cutoff radius is $r_c = 5 \sigma_0$).
Figure S2: Representative radial correlation functions for the $s = 0.00$ species in the isotropic I, nematic N, biaxial nematic N_b, and biaxial smectic S_b phases observed for the $s_{\text{max}} = 0.20$ sample.

Figure S3: Snapshots of the N_b phase at $T^* = 2.5$ for the $s_{\text{max}} = 0.20$ sample. The three views have been taken along the l (plate A), m (plate B), and n (plate C), directors. Particles have been colour coded according as $s = -0.20$ yellow, $s = -0.15$ cyan, $s = 0.00$ gray, $s = 0.15$ pink, $s = 0.20$ green.
Figure S4: The average potential energy per particle $\langle U_{GB} \rangle$ at various dimensionless (plate A), and reduced (plate B) temperatures for the five non-uniform mixtures with $s_{\text{max}} = 0.10$ (blue squares), 0.15 (red circles), 0.20 (green diamonds), 0.25 (orange triangles), and 0.30 (purple diamonds). The data for the reference system with $s_{\text{max}} = 0.00$ (black pentagons) are also plotted.

Figure S5: The average number density $\langle \rho \rangle$ at various dimensionless (plate A), and reduced (plate B) temperatures for the five non-uniform mixtures. See caption of Figure S4 for further details.
Figure S6: The phase sequence observed with respect to the average number density values. See caption of Figure 4 for details.

Figure S7: The average number density $\langle \rho \rangle$ plotted with respect to the $\langle R^2_{00} \rangle$ (plate A), and $\langle R^2_{22} \rangle$ (plate B) order parameters measured for the reference ellipsoids with $s = 0.00$ in the five non-uniform mixtures. See caption of Figure S4 for further details.
Figure S8: Pictorial representation of the changes in temperature stability ranges of the N and Nb phases (plate A), and reduction of the T_{NbSb}^* transition temperature (plate B) for the five non-uniform mixtures with respect to the reference system with $s_{\text{max}} = 0.00$.

Figure S9: The average $\langle R^2_{00}\rangle$ (plate A), and $\langle R^2_{22}\rangle$ (plate B) order parameters for the reference ellipsoids with $s = 0.00$, at various reduced temperatures for the five non-uniform mixtures. See caption of Figure S4 for further details.
Figure S10: The average potential energy $\langle U_{GB} \rangle$ plotted with respect to the $\langle R_{22}^2 \rangle$ order parameter measured for the reference ellipsoids with $s = 0.00$ in the five non-uniform mixtures. See caption of Figure S4 for further details.