Supplementary information

The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy

Yusaku Hontani¹†, Keiichi Inoue²,³,⁴†, Miroslav Kloz¹, Yoshitaka Kato², Hideki Kandori²,³, and John T.M. Kennis¹*

¹Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

²Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan

³OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan

⁴PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

† These authors contributed equally to this work.

* Corresponding author: j.t.m.kennis@vu.nl
Figure S1. DADS of transient absorption spectra of WT KR2 in NaCl. DADS of WT KR2 in NaCl. The first five (top) and the following four (bottom) time components are shown separately. Spectra at 510–530 nm on the transient absorption spectra are cut because of the strong pump light scattering. The components of 20 fs and 170 fs are scaled down by a factor of 10 and 2, respectively. The 29-ps component is shown on both of the top and the bottom figures for reference.
Figure S2. Selected time traces of transient absorption spectra of WT KR2 in NaCl. Raw data (blue line) and globally fitted time traces (red line) in ΔOD (normalized) are shown. The values written in bold on the vertical axis show wavelengths in nm. The time axis is linear until 1 ps, and logarithmic thereafter. The horizontal gray line shows ΔOD = 0.
Figure S3. Selected time traces of transient absorption spectra of KR2/D102N in NaCl. Raw data (blue line) and globally fitted time traces (red line) in ΔOD (normalized) are shown. The values written in bold on the vertical axis show wavelengths in nm. The time axis is linear until 1 ps, and logarithmic thereafter. The horizontal gray line shows ΔOD = 0.
Figure S4. Selected time traces of transient absorption spectra of WT KR2 in CsCl. Raw data (blue line) and globally fitted time traces (red line) in ΔOD (normalized) are shown. The values written in bold on the vertical axis show wavelengths in nm. The time axis is linear until 1 ps, and logarithmic thereafter. The horizontal gray line shows ΔOD = 0.
Figure S5. Globally fitted transient absorption spectra of KR2/D102N in NaCl at 430–730 nm. (a) EADS and (b) DADS of transient absorption KR2/D102N in NaCl. The first five (top) and the following four (bottom) time components are shown separately. Spectra at 510–530 nm are cut because of the strong pump light scattering. The first and the second components of are scaled down. The 28-ps component is shown on both of the top and the bottom figures for reference.
Figure S6. Globally fitted transient absorption spectra of WT KR2 in CsCl at 430–730 nm. (a) EADS and (b) DADS of transient absorption WT KR2 in CsCl. The first five (top) and the following four (bottom) time components are shown separately. Spectra at 510–530 nm are cut because of the strong pump light scattering. The first and the second components of are scaled down. The 34-ps component is shown on both of the top and the bottom figures for reference.

Table S1. Time constants of global fitting on transient absorption spectra in WT KR2 in NaCl, KR2/D102N in NaCl and WT KR2 in CsCl.

<table>
<thead>
<tr>
<th>Transient absorption</th>
<th>(\tau_1)</th>
<th>(\tau_2)</th>
<th>(\tau_3)</th>
<th>(\tau_4)</th>
<th>(\tau_5)</th>
<th>(\tau_6)</th>
<th>(\tau_7)</th>
<th>(\tau_8)</th>
<th>(\tau_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT KR2 in NaCl</td>
<td>20 fs</td>
<td>170 fs</td>
<td>420 fs</td>
<td>2.4 ps</td>
<td>29 ps</td>
<td>6.5 ns</td>
<td>370 ns</td>
<td>18 (\mu)s</td>
<td>inf.</td>
</tr>
<tr>
<td>KR2/D102N in NaCl</td>
<td>20 fs</td>
<td>190 fs</td>
<td>570 fs</td>
<td>3.0 ps</td>
<td>28 ps</td>
<td>6.5 ns</td>
<td>450 ns</td>
<td>19 (\mu)s</td>
<td>inf.</td>
</tr>
<tr>
<td>WT KR2 in CsCl</td>
<td>20 fs</td>
<td>180 fs</td>
<td>500 fs</td>
<td>4.0 ps</td>
<td>34 ps</td>
<td>6.5 ns</td>
<td>320 ns</td>
<td>20 (\mu)s</td>
<td>inf.</td>
</tr>
</tbody>
</table>
Figure S7. Selected time traces and transient spectra of transient stimulated Raman experiments in WT KR2 in NaCl. a, Selected time traces with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show wavenumbers in cm⁻¹. The time axis is linear until 1 ps, and logarithmic thereafter. Note that the vertical axis is normalized differently before and after 1 ps. The horizontal gray line shows ΔOD = 0. b, Selected transient stimulated Raman spectra with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show time delays in ps. The horizontal gray line shows ΔOD = 0.
Figure S8. Selected time traces and transient spectra of transient stimulated Raman experiments in KR2/D102N in NaCl.

a, Selected time traces with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show wavenumbers in cm⁻¹. The time axis is linear until 1 ps, and logarithmic thereafter. Note that the vertical axis is normalized differently before and after 1 ps. The horizontal gray line shows ΔOD = 0.

b, Selected transient stimulated Raman spectra with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show time delays in ps. The horizontal gray line shows ΔOD = 0.
Figure S9. Selected time traces and transient spectra of transient stimulated Raman experiments in WT KR2 in CsCl. a, Selected time traces with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show wavenumbers in cm\(^{-1}\). The time axis is linear until 1 ps, and logarithmic thereafter. Note that the vertical axis is normalized differently before and after 1 ps. The horizontal gray line shows ΔOD = 0. b, Selected transient stimulated Raman spectra with raw data (blue line) and globally fitted data (red line) in ΔOD (normalized). The values written in bold on the vertical axis show time delays in ps. The horizontal gray line shows ΔOD = 0.
Figure S10. DADS of transient stimulated Raman spectra of WT KR2 in NaCl at selected wavelengths. The signal evolves as 260 fs (black), 3.4 ps (red), 22 ps (blue), 25 ns (green), 21 μs (magenta) and an infinite time constant (cyan) in order. The 260-fs and 3.4-ps components are scaled down. The first three (top) and the following three (bottom) time components are shown separately.

Fig. S11 Transient absorption spectra of WT KR2 in NaCl with a 150-fs time delay in the near-infrared spectral region. The signal at 780–825 nm is cut.
Figure S12. Globally fitted transient stimulated Raman spectra of KR2/D102N in NaCl. (a) EADS and (b) DADS at 1100–1300 cm$^{-1}$. (c) EADS and (d) DADS in 1400–1650 cm$^{-1}$. The first component (decaying with 20 fs) is not shown on the figures. The 310-fs component is scaled down by a factor of 5.

Figure S13. Globally fitted transient stimulated Raman spectra of WT KR2 in CsCl. (a) EADS and (b) DADS in 1100–1300 cm$^{-1}$. (c) EADS and (d) DADS in 1400–1650 cm$^{-1}$. The first component (decaying with 10 fs) is not shown on the figures. The 270-fs component is scaled down by a factor of 10.
Table S2. Time constants of global fitting on transient stimulated Raman spectra in WT KR2 in NaCl, KR2/D102N in NaCl and WT KR2 in CsCl.

<table>
<thead>
<tr>
<th>Transient Raman</th>
<th>τ_1</th>
<th>τ_2</th>
<th>τ_3</th>
<th>τ_4</th>
<th>τ_5</th>
<th>τ_6</th>
<th>τ_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT KR2 in NaCl</td>
<td>20 fs</td>
<td>260 fs</td>
<td>3.4 ps</td>
<td>22 ps</td>
<td>25 ns</td>
<td>21 μs</td>
<td>inf.</td>
</tr>
<tr>
<td>KR2/D102N in NaCl</td>
<td>20 fs</td>
<td>310 fs</td>
<td>2.8 ps</td>
<td>10 ps</td>
<td>58 ns</td>
<td>21 μs</td>
<td>inf.</td>
</tr>
<tr>
<td>WT KR2 in CsCl</td>
<td>10 fs</td>
<td>270 fs</td>
<td>3.0 ps</td>
<td>10 ps</td>
<td>57 ns</td>
<td>21 μs</td>
<td>inf.</td>
</tr>
</tbody>
</table>

Figure S14. Time trace of Raman peak position at 1510–1521 cm$^{-1}$ up to 6 ps. Time trace of the Raman peak position in the 1510–1521 cm$^{-1}$ spectral region up to 6 ps is plotted. The plots were fitted (red line) with bi-exponential components; 140 \pm 60 fs and 2.0 \pm 0.7 ps.
Figure S15. Structural difference with/without Na\(^+\) binding to Asp102\(^1\) (PDB ID: 4XTL and 4XTN).

a, Overlapping structures of the monomeric form (blue) at pH 4.3 and the pentameric form (magenta) at pH 4.9. **b**, Close-up crystal structures near all-trans retinal. Asn112, Trp113 (green in monomeric form and orange in pentameric form) and all-trans retinal are shown.

Reference