Electronic supplementary information for “Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems”

Arnfinn Hykkerud Steindala, Maarten T. P. Beerepoota, Magnus Ringholma, Nanna Holmgaard Listb†, Kenneth Ruuda, Jacob Kongstedb and Jógvam Magnus Haugaard Olsenabc

aCentre of Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø, Norway

bDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark. E-mail: jmo@sdu.dk

cLaboratory of Computational Chemistry and Biochemistry, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

†Present address: Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden

This electronic supplementary information (ESI) contains numerical data (excitation energies and multiphoton absorption (MPA) strengths) for the results presented in the figures and text in the main article. All calculations have been done with CAM-B3LYP/6-31+G* using an embedding potential derived from B3LYP/6-31+G* calculations. Unless otherwise specified, calculations are done using the polarizable embedding scheme including the external effective field (EEF) effect, on the medium quantum region (Fig. 1b in the main text), with redistribution of charges (and removal of other parameters) from classical sites that are within 1.4 Å from any quantum-region atom (charges are distributed to all other classical sites).
<table>
<thead>
<tr>
<th>snapshot</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1E+6)</td>
<td>(1E+9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.47</td>
<td>1.95</td>
<td>626</td>
<td>8.63</td>
<td>19.6</td>
</tr>
<tr>
<td>2</td>
<td>3.46</td>
<td>1.88</td>
<td>698</td>
<td>9.16</td>
<td>34.3</td>
</tr>
<tr>
<td>3</td>
<td>3.44</td>
<td>2.09</td>
<td>1125</td>
<td>10.45</td>
<td>35.8</td>
</tr>
<tr>
<td>4</td>
<td>3.52</td>
<td>2.06</td>
<td>716</td>
<td>10.23</td>
<td>31.1</td>
</tr>
<tr>
<td>5</td>
<td>3.52</td>
<td>1.87</td>
<td>251</td>
<td>9.04</td>
<td>15.1</td>
</tr>
<tr>
<td>MAPD</td>
<td>2.9%</td>
<td>76.5%</td>
<td>3.7%</td>
<td>72.0%</td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.48</td>
<td>1.85</td>
<td>387</td>
<td>7.95</td>
<td>9.8</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>1.83</td>
<td>552</td>
<td>8.40</td>
<td>23.3</td>
</tr>
<tr>
<td>3</td>
<td>3.46</td>
<td>2.03</td>
<td>941</td>
<td>10.05</td>
<td>33.6</td>
</tr>
<tr>
<td>4</td>
<td>3.53</td>
<td>1.97</td>
<td>450</td>
<td>9.22</td>
<td>17.4</td>
</tr>
<tr>
<td>5</td>
<td>3.52</td>
<td>1.80</td>
<td>135</td>
<td>8.13</td>
<td>5.7</td>
</tr>
<tr>
<td>MAPD</td>
<td>1.6%</td>
<td>16.4%</td>
<td>4.7%</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td>large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.49</td>
<td>1.89</td>
<td>355</td>
<td>8.34</td>
<td>9.4</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>1.80</td>
<td>441</td>
<td>8.54</td>
<td>21.5</td>
</tr>
<tr>
<td>3</td>
<td>3.47</td>
<td>2.06</td>
<td>899</td>
<td>10.48</td>
<td>33.7</td>
</tr>
<tr>
<td>4</td>
<td>3.54</td>
<td>2.00</td>
<td>410</td>
<td>9.67</td>
<td>16.2</td>
</tr>
<tr>
<td>5</td>
<td>3.52</td>
<td>1.83</td>
<td>101</td>
<td>8.88</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Table S1 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five snapshots with neutral chromophore in protein. The mean absolute percentage deviations (MAPD) are calculated with the large quantum region as reference.
<table>
<thead>
<tr>
<th>snapshot</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1E+6)</td>
<td>(1E+9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.97</td>
<td>3.06 (0.67)</td>
<td>1418</td>
<td>0.48</td>
<td>56.4</td>
</tr>
<tr>
<td>2</td>
<td>2.95</td>
<td>3.18 (0.69)</td>
<td>839</td>
<td>0.75</td>
<td>66.3</td>
</tr>
<tr>
<td>3</td>
<td>2.96</td>
<td>3.24 (0.70)</td>
<td>960</td>
<td>0.42</td>
<td>66.4</td>
</tr>
<tr>
<td>4</td>
<td>3.03</td>
<td>3.23 (0.72)</td>
<td>1317</td>
<td>0.49</td>
<td>52.5</td>
</tr>
<tr>
<td>5</td>
<td>2.95</td>
<td>3.25 (0.70)</td>
<td>1284</td>
<td>1.40</td>
<td>164.1</td>
</tr>
<tr>
<td>MAPD</td>
<td>0.4%</td>
<td>14.6%</td>
<td>98.4%</td>
<td>29.9%</td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.02</td>
<td>3.01 (0.67)</td>
<td>1533</td>
<td>1.20</td>
<td>49.8</td>
</tr>
<tr>
<td>2</td>
<td>2.98</td>
<td>3.15 (0.69)</td>
<td>995</td>
<td>0.22</td>
<td>77.3</td>
</tr>
<tr>
<td>3</td>
<td>2.98</td>
<td>3.19 (0.70)</td>
<td>1098</td>
<td>0.26</td>
<td>72.3</td>
</tr>
<tr>
<td>4</td>
<td>3.05</td>
<td>3.19 (0.72)</td>
<td>1378</td>
<td>0.78</td>
<td>55.3</td>
</tr>
<tr>
<td>5</td>
<td>3.00</td>
<td>3.22 (0.71)</td>
<td>1412</td>
<td>0.36</td>
<td>84.2</td>
</tr>
<tr>
<td>MAPD</td>
<td>1.2%</td>
<td>5.4%</td>
<td>26.6%</td>
<td>4.0%</td>
<td></td>
</tr>
<tr>
<td>large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.03</td>
<td>3.03 (0.67)</td>
<td>1580</td>
<td>1.64</td>
<td>46.3</td>
</tr>
<tr>
<td>2</td>
<td>2.99</td>
<td>3.19 (0.70)</td>
<td>1064</td>
<td>0.23</td>
<td>81.5</td>
</tr>
<tr>
<td>3</td>
<td>2.98</td>
<td>3.24 (0.71)</td>
<td>1181</td>
<td>0.39</td>
<td>75.7</td>
</tr>
<tr>
<td>4</td>
<td>3.06</td>
<td>3.23 (0.73)</td>
<td>1444</td>
<td>1.13</td>
<td>54.3</td>
</tr>
<tr>
<td>5</td>
<td>3.01</td>
<td>3.26 (0.72)</td>
<td>1497</td>
<td>0.59</td>
<td>84.8</td>
</tr>
</tbody>
</table>

Table S2 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five snapshots with anionic chromophore in protein. The mean absolute percentage deviations (MAPD) are calculated with the large quantum region as reference.
<table>
<thead>
<tr>
<th>redist</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1E+6)</td>
<td>(1E+9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*</td>
<td>3.47</td>
<td>1.87</td>
<td>497</td>
<td>8.32</td>
<td>14.3</td>
</tr>
<tr>
<td>1</td>
<td>3.47</td>
<td>1.96</td>
<td>726</td>
<td>8.97</td>
<td>25.1</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>1.96</td>
<td>709</td>
<td>8.92</td>
<td>24.1</td>
</tr>
<tr>
<td>3</td>
<td>3.47</td>
<td>1.96</td>
<td>714</td>
<td>8.91</td>
<td>24.0</td>
</tr>
<tr>
<td>all</td>
<td>3.47</td>
<td>1.95</td>
<td>626</td>
<td>8.63</td>
<td>19.6</td>
</tr>
<tr>
<td>1*</td>
<td>-2.4%</td>
<td>-18.8%</td>
<td>-8.1%</td>
<td>-17.8%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.2%</td>
<td>40.2%</td>
<td>2.4%</td>
<td>65.9%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.4%</td>
<td>50.9%</td>
<td>2.9%</td>
<td>77.7%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.5%</td>
<td>56.7%</td>
<td>2.6%</td>
<td>80.6%</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>3.1%</td>
<td>76.2%</td>
<td>3.5%</td>
<td>108.6%</td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*</td>
<td>3.48</td>
<td>1.86</td>
<td>635</td>
<td>6.99</td>
<td>78.1</td>
</tr>
<tr>
<td>1</td>
<td>3.47</td>
<td>1.94</td>
<td>604</td>
<td>8.49</td>
<td>17.2</td>
</tr>
<tr>
<td>2</td>
<td>3.47</td>
<td>1.95</td>
<td>646</td>
<td>8.62</td>
<td>19.4</td>
</tr>
<tr>
<td>3</td>
<td>3.47</td>
<td>1.95</td>
<td>628</td>
<td>8.57</td>
<td>18.6</td>
</tr>
<tr>
<td>all</td>
<td>3.48</td>
<td>1.85</td>
<td>387</td>
<td>7.95</td>
<td>9.8</td>
</tr>
<tr>
<td>1*</td>
<td>-3.4%</td>
<td>3.7%</td>
<td>-22.9%</td>
<td>349.4%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0%</td>
<td>16.7%</td>
<td>-3.0%</td>
<td>13.7%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9%</td>
<td>37.4%</td>
<td>-0.6%</td>
<td>42.8%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6%</td>
<td>37.7%</td>
<td>-1.3%</td>
<td>39.7%</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>-2.1%</td>
<td>8.9%</td>
<td>-4.7%</td>
<td>5.0%</td>
<td></td>
</tr>
<tr>
<td>large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*</td>
<td>3.45</td>
<td>1.92</td>
<td>612</td>
<td>9.06</td>
<td>17.4</td>
</tr>
<tr>
<td>1</td>
<td>3.47</td>
<td>1.94</td>
<td>518</td>
<td>8.76</td>
<td>15.1</td>
</tr>
<tr>
<td>2</td>
<td>3.48</td>
<td>1.93</td>
<td>470</td>
<td>8.67</td>
<td>13.6</td>
</tr>
<tr>
<td>3</td>
<td>3.49</td>
<td>1.93</td>
<td>456</td>
<td>8.68</td>
<td>13.3</td>
</tr>
<tr>
<td>all</td>
<td>3.49</td>
<td>1.89</td>
<td>355</td>
<td>8.34</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Table S3: Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five different redistribution schemes using one snapshot with neutral chromophore in protein. The charges on classical sites closer than 1.4 Å from any quantum-region atom have been redistributed to one, two or three of the closest neighboring classical sites, or redistributed to all the other classical sites. The higher-order multipoles and polarizabilities have been redistributed to the closest classical site only in the calculations indicated with 1* and removed in all other cases. The percentage deviations (PD) are relative to the MPA strength calculated for the large quantum region.
<table>
<thead>
<tr>
<th>redist</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1e+6)</td>
<td>(1e+9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small</td>
<td>1*</td>
<td>3.00</td>
<td>2.99</td>
<td>1450</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.00</td>
<td>3.03</td>
<td>1447</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.00</td>
<td>3.03</td>
<td>1451</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.99</td>
<td>3.04</td>
<td>1463</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>2.97</td>
<td>3.06</td>
<td>1418</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>1*</td>
<td>-2.4%</td>
<td>-6.9%</td>
<td>-25.1%</td>
<td>-19.5%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.4%</td>
<td>-5.6%</td>
<td>-33.8%</td>
<td>-8.2%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.7%</td>
<td>-8.1%</td>
<td>-50.2%</td>
<td>9.3%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.2%</td>
<td>-8.5%</td>
<td>-56.9%</td>
<td>18.1%</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>1.2%</td>
<td>-10.3%</td>
<td>-70.5%</td>
<td>21.8%</td>
</tr>
<tr>
<td>medium</td>
<td>1*</td>
<td>3.00</td>
<td>2.99</td>
<td>1497</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.99</td>
<td>3.06</td>
<td>1461</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.00</td>
<td>3.05</td>
<td>1463</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.00</td>
<td>3.05</td>
<td>1461</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>3.02</td>
<td>3.01</td>
<td>1533</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1*</td>
<td>-2.5%</td>
<td>-3.9%</td>
<td>-35.7%</td>
<td>-18.8%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.4%</td>
<td>-4.6%</td>
<td>-45.7%</td>
<td>5.7%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.2%</td>
<td>-7.3%</td>
<td>-52.5%</td>
<td>13.1%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.4%</td>
<td>-8.6%</td>
<td>-61.2%</td>
<td>21.8%</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>-0.5%</td>
<td>-3.0%</td>
<td>-26.8%</td>
<td>7.7%</td>
</tr>
<tr>
<td>large</td>
<td>1*</td>
<td>2.98</td>
<td>3.07</td>
<td>1558</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.01</td>
<td>3.05</td>
<td>1532</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.02</td>
<td>3.05</td>
<td>1579</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.02</td>
<td>3.04</td>
<td>1599</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>3.03</td>
<td>3.03</td>
<td>1580</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Table S4 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five different redistribution schemes using one snapshot with anionic chromophore in protein. The charges on classical sites closer than 1.4 Å from any quantum-region atom have been redistributed to one, two or three of the neighboring classical sites, or redistributed to all the other classical sites. The higher-order multipoles and polarizabilities have been redistributed to the closest classical site only in the calculations indicated with 1* and removed in all other cases. The percentage deviations (PD) are relative to the MPA strength calculated for the large quantum region.
<table>
<thead>
<tr>
<th>snapshot</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S5 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five snapshots of the neutral (medium) quantum region without (DFT) and with (PE-DFT) the protein environment.

<table>
<thead>
<tr>
<th>snapshot</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA</th>
<th>4PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S6 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) for five snapshots of the anionic (medium) quantum region without (DFT) and with (PE-DFT) the protein environment.
<table>
<thead>
<tr>
<th>state</th>
<th>environment</th>
<th>E (eV)</th>
<th>1PA</th>
<th>2PA</th>
<th>3PA (1E+6)</th>
<th>4PA (1E+9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutral</td>
<td>vacuum</td>
<td>3.60</td>
<td>2.80 (0.74)</td>
<td>687</td>
<td>21.84</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>3.57</td>
<td>2.63 (0.69)</td>
<td>495</td>
<td>19.07</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>PE(GS)</td>
<td>3.60</td>
<td>2.80 (0.74)</td>
<td>580</td>
<td>19.25</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>PE(−EEF)</td>
<td>3.48</td>
<td>3.39 (0.87)</td>
<td>1235</td>
<td>45.83</td>
<td>89.3</td>
</tr>
<tr>
<td></td>
<td>PE(+EEF)</td>
<td>1.85 (0.47)</td>
<td>387</td>
<td>7.95</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>-6.2</td>
<td>-27.9</td>
<td>-12.7</td>
<td>-44.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE(GS)</td>
<td>-0.2</td>
<td>-15.6</td>
<td>-11.8</td>
<td>-59.3</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>PE(−EEF)</td>
<td>20.8</td>
<td>79.8</td>
<td>109.9</td>
<td>369.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE(+EEF)</td>
<td>-34.1</td>
<td>-43.6</td>
<td>-63.6</td>
<td>-48.3</td>
<td></td>
</tr>
<tr>
<td>anionic</td>
<td>vacuum</td>
<td>3.02</td>
<td>4.73 (1.05)</td>
<td>1098</td>
<td>4.49</td>
<td>171.9</td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>3.14</td>
<td>4.52 (1.04)</td>
<td>1602</td>
<td>0.54</td>
<td>119.1</td>
</tr>
<tr>
<td></td>
<td>PE(GS)</td>
<td>3.20</td>
<td>4.38 (1.03)</td>
<td>1892</td>
<td>1.14</td>
<td>119.3</td>
</tr>
<tr>
<td></td>
<td>PE(−EEF)</td>
<td>3.02</td>
<td>5.35 (1.19)</td>
<td>4677</td>
<td>5.52</td>
<td>515.1</td>
</tr>
<tr>
<td></td>
<td>PE(+EEF)</td>
<td>3.01 (0.67)</td>
<td>1533</td>
<td>1.20</td>
<td>49.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>-4.4</td>
<td>45.9</td>
<td>-88.1</td>
<td>-30.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE(GS)</td>
<td>-7.3</td>
<td>72.4</td>
<td>-74.6</td>
<td>-30.6</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>PE(−EEF)</td>
<td>13.2</td>
<td>326.0</td>
<td>22.9</td>
<td>199.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE(+EEF)</td>
<td>-36.4</td>
<td>39.6</td>
<td>-73.3</td>
<td>-71.0</td>
<td></td>
</tr>
</tbody>
</table>

Table S7 Excitation energies (in eV), one-, two-, three and four-photon absorption strengths (in atomic units), and one-photon oscillator strength (in parentheses, dimensionless) without the protein environment (vacuum), with protein but no polarization (i.e. electrostatic embedding (EE)), with protein but only ground-state polarization [PE(GS)], with protein and full polarization but without effective external field effects [PE(−EEF)], and with protein, full polarization, and effective external field effects [PE(+EEF)] for one snapshot. For each state (neutral and anionic), the calculations were performed with the same (medium) quantum region. The percentage changes (PC) are relative to the MPA strength calculated for the (medium) quantum region in vacuum.