SUPPLEMENTARY INFORMATION

Competition between quasi-planar and cage-like structures in the B₂₉⁻ cluster: photoelectron spectroscopy and *ab initio* calculations[†]

Hai-Ru Li,^a Tian Jian,^b Wei-Li Li,^b Chang-Qing Miao,^c Ying-Jin Wang,^a Qiang Chen,^{ac} Xue-Mei Luo,^a Kang Wang,^a Hua-Jin Zhai,^{*ad} Si-Dian Li^{*a} and Lai-Sheng Wang^{*b}

^a Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China. E-mail: hj.zhai@sxu.edu.cn, lisidian@sxu.edu.cn
^b Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA. E-mail: lai-sheng_wang@brown.edu
^c Institute of Materials Science, Xinzhou Teachers' University, Xinzhou 034000, China ^d State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi

University, Taiyuan 030006, China

- **Table S1.** Comparisons of the experimental vertical detachment energies (VDEs, in eV) of B_{29}^- with the calculated VDEs at the time-dependent PBE0/6-311+G* (TD-PBE0)and ROVGF/6-311+G* levels for isomers 1–5.
- **Table S2.** Cartesian coordinates of isomers 1-3 of B_{29}^{-} at PBE0/6-311+G* level.
- Figure S1. Optimized structures for B_{29}^{-} anion cluster within ~1 eV of the global minimum at PBE0/6-311+G* level. Relative energies are shown in eV, along with those for top five lowest-lying isomers at single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level (in parenthesis). Zero-point energy corrections are done at PBE0/6-311+G*.

- Figure S2. Comparison of the experimental photoelectron spectrum of B_{29}^{-} at 193 nm (6.424 eV) with those simulated for isomers 4 and 5. The simulations were done by fitting the calculated vertical detachment energies (VDEs) at the time-dependent PBE0/6-311+G* (TD-PBE0) level with unit-area Gaussian functions of 0.05 eV half-width.
- Figure S3. Comparisons of the simulated photoelectron spectra for top three lowest-lying isomers (1, 2, and 3) of B_{29}^{-} anion cluster at (a) time-dependent PBE0/6-311+G* (TD-PBE0) and (b) OVGF/6-311+G* levels. The two levels of theory are qualitatively consistent with each other, confirming the fact that these three isomers are coexisting in experiment. The overall performance of TD-PBE0 appears to be better than OVGF for the current system.
- **Figure S4.** An alternative version of the adaptive natural density partitioning (AdNDP) schemes at PBE0/6-31G level for (a) $C_s B_{29}^-$ and (b) $C_{2v} C_{18}H_{10}$. This version features the Clar type π bonds, as compared to the Kekule type in Fig. 5. Kekule type π scheme is closer to the truth of bonding for the systems.

Table S1. Comparisons of the experimental vertical detachment energies (VDEs, in eV) of B_{29}^- with the calculated VDEs at the time-dependent PBE0/6-311+G* (TD-PBE0)and ROVGF/6-311+G* levels for isomers 1–5.

Feature	VDE	Final state and electronic configuration	VDE(theo.)	
	(exptl.)		TD-PBE0 ^a	ROVGF ^b
		Isomer 1 ($C_{\rm s}$, ¹ A')		
X	4.37 ± 0.03	² A"{…20a' ² 17a" ² 21a' ² 22a' ² 18a" ² 23a' ² 19a" ² 24a' ² 20a" ¹ }	4.17	4.14
А	4.84	² A'{···20a' ² 17a'' ² 21a' ² 22a' ² 18a'' ² 23a' ² 19a'' ² 24a' ¹ 20a'' ² }	4.74	4.83
В	4.97	² A"{…20a' ² 17a'' ² 21a' ² 22a' ² 18a'' ² 23a' ² 19a'' ¹ 24a' ² 20a'' ² }	4.83	4.57
		² A'{···20a' ² 17a'' ² 21a' ² 22a' ² 18a'' ² 23a' ¹ 19a'' ² 24a' ² 20a'' ² }	4.88	4.65
С	5.44	² A"{…20a' ² 17a" ² 21a' ² 22a' ² 18a" ¹ 23a' ² 19a" ² 24a' ² 20a" ² }	5.58	5.46
D	5.70	² A'{···20a' ² 17a'' ² 21a' ² 22a' ¹ 18a'' ² 23a' ² 19a'' ² 24a' ² 20a'' ² }	5.69	5.69
		² A'{···20a' ² 17a'' ² 21a' ¹ 22a' ² 18a'' ² 23a' ² 19a'' ² 24a' ² 20a'' ² }	5.87	5.86
Е	6.04	² A"{···20a' ² 17a" ¹ 21a' ² 22a' ² 18a" ² 23a' ² 19a" ² 24a' ² 20a" ² }	6.17	6.27
		² A'{···20a' ¹ 17a'' ² 21a' ² 22a' ² 18a'' ² 23a' ² 19a'' ² 24a' ² 20a'' ² }	6.19	6.33
-		Isomer $2(C_{\rm s}, {}^{1}{\rm A'})$		
Χ'	~3.4	² A'{···22a" ² 15a' ² 23a' ² 16a" ² 24a' ² 17a" ² 25a" ² 18a' ² 26a' ¹ }	3.54	3.36
		² A'{···22a" ² 15a' ² 23a' ² 16a" ² 24a' ² 17a" ² 25a" ² 18a' ¹ 26a' ² }	4.14	3.90
-		² A"{···22a" ² 15a' ² 23a' ² 16a" ² 24a' ² 17a" ² 25a" ¹ 18a' ² 26a' ² }	4.16	3.85
		² A"{···22a" ² 15a' ² 23a' ² 16a" ² 24a' ² 17a" ¹ 25a" ² 18a' ² 26a' ² }	4.73	4.48
		² A'{···22a" ² 15a' ² 23a' ² 16a" ² 24a' ¹ 17a" ² 25a" ² 18a' ² 26a' ² }	4.95	4.87
-		² A"{···22a" ² 15a' ² 23a' ² 16a" ¹ 24a' ² 17a" ² 25a" ² 18a' ² 26a' ² }	5.19	5.00
		² A'{···22a" ² 15a' ² 23a' ¹ 16a" ² 24a' ² 17a" ² 25a" ² 18a' ² 26a' ² }	5.25	5.08
		² A'{···22a" ² 15a' ¹ 23a' ² 16a" ² 24a' ² 17a" ² 25a" ² 18a' ² 26a' ² }	5.61	5.64
-		² A"{···22a" ¹ 15a' ² 23a' ² 16a" ² 24a' ² 17a" ² 25a" ² 18a' ² 26a' ² }	5.69	5.58
-		Isomer 3 (C_1 , ¹ A)		
X"	~3.9	${}^{2}A{\cdots 37a^{2} 38a^{2} 39a^{2} 40a^{2} 41a^{2} 42a^{2} 43a^{2} 44a^{1}}$	3.89	3.92
		${}^{2}A{\cdots 37a^{2} 38a^{2} 39a^{2} 40a^{2} 41a^{2} 42a^{2} 43a^{1} 44a^{2}}$	4.34	4.34
		${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{1}\ 43a^{2}\ 44a^{2}\}$	4.64	4.30

 · · · · · · · · · · · · · · · · · · ·		
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{1}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	4.75	4.53
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{1}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	4.89	4.76
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{1}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	5.40	5.40
${}^{2}A\{\cdots 37a^{2}\ 38a^{1}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	6.18	6.09
${}^{2}A\{\cdots 37a^{1}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	6.37	6.58
Isomer 4 (C_1 , ¹ A)		
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{1}\}$	3.71	3.75
$^{2}A \{ \cdots 37a^{2} \ 38a^{2} \ 39a^{2} \ 40a^{2} \ 41a^{2} \ 42a^{2} \ 43a^{1} \ 44a^{2} \}$	4.07	3.98
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{1}\ 43a^{2}\ 44a^{2}\}$	4.74	4.42
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{1}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	5.00	4.67
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{2}\ 40a^{1}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	5.20	5.26
${}^{2}A\{\cdots 37a^{2}\ 38a^{2}\ 39a^{1}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	5.62	5.72
${}^{2}A\{\cdots 37a^{2}\ 38a^{1}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	5.91	6.05
${}^{2}A\{\cdots 37a^{1}\ 38a^{2}\ 39a^{2}\ 40a^{2}\ 41a^{2}\ 42a^{2}\ 43a^{2}\ 44a^{2}\}$	6.13	6.60
Isomer 5 (C_2 , ¹ A)		
${}^{2}B\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{1}\}$	3.46	3.29
${}^{2}A\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{1}\ 22b^{2}\}$	3.88	3.68
${}^{2}A\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{1}\ 22a^{2}\ 22b^{2}\}$	4.35	4.18
${}^{2}B\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{1}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	4.44	4.19
${}^{2}A\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{1}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	4.84	4.66
${}^{2}B\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{1}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	4.98	4.92
${}^{2}B\{\cdots 18b^{2}\ 18a^{2}\ 19a^{2}\ 19b^{1}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	5.24	5.15
$^{2}A\{\dots 18b^{2}\ 18a^{2}\ 19a^{1}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	5.41	5.27
${}^{2}A\{\cdots 18b^{2}\ 18a^{1}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	5.60	5.53
${}^{2}B\{\cdots 18b^{1}\ 18a^{2}\ 19a^{2}\ 19b^{2}\ 20b^{2}\ 20a^{2}\ 21b^{2}\ 21a^{2}\ 22a^{2}\ 22b^{2}\}$	6.34	6.55

^a VDEs were calculated at the TD-PBE0/6-311+G* level.

^b VDEs were calculated at the ROVGF/6-311+G* level.

Figure S1. Optimized structures for B₂₉⁻ anion cluster within ~1 eV of the global minimum at PBE0/6-311+G* level. Relative energies are shown in eV, along with those for top five lowest-lying isomers at single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level (in parenthesis). Zero-point energy corrections are done at PBE0/6-311+G*.

(continued)

(continued)

(continued)

Figure S2. Comparison of the experimental photoelectron spectrum of B₂₉⁻ at 193 nm (6.424 eV) with those simulated for isomers 4 and 5. The simulations were done by fitting the calculated vertical detachment energies (VDEs) at the time-dependent PBE0/6-311+G* (TD-PBE0) level with unit-area Gaussian functions of 0.05 eV half-width.

Figure S3. Comparisons of the simulated photoelectron spectra for top three lowest-lying isomers (1, 2, and 3) of B₂₉⁻ anion cluster at (a) time-dependent PBE0/6-311+G* (TD-PBE0) and (b) OVGF/6-311+G* levels. The two levels of theory are qualitatively consistent with each other, confirming the fact that these three isomers are coexisting in experiment. The overall performance of TD-PBE0 appears to be better than OVGF for the current system.

Figure S4. An alternative version of the adaptive natural density partitioning (AdNDP) schemes at PBE0/6-31G level for (a) $C_s B_{29}^-$ and (b) $C_{2v} C_{18}H_{10}$. This version features the Clar type π bonds, as compared to the Kekule type in Fig. 5. Kekule type π scheme is closer to the truth of bonding for the systems.

Table S2. Cartesian coordinates of isomers 1–3 of B_{29}^- at PBE0/6-311+G* level.

Isomer 1, $C_{\rm s}$ (¹A')

В	0.91809900	-0.38999200	3.21186900
В	-0.61760600	-0.51902000	4.00762900
В	2.58574400	-0.02824700	2.85093500
В	2.88841400	0.55219100	1.40099000
В	-0.43525600	-0.03898500	2.34113200
В	-0.42559800	0.58523300	-0.82425800
В	3. 43209300	0.94305100	0.00000000
В	-0.42559800	0.58523300	0.82425800
В	-2.01899100	-0.28218100	3.20863800
В	0.91809900	-0.38999200	-3.21186900
В	-2.01899100	-0.28218100	-3.20863800
В	1.11327400	0.09333700	-1.50209900
В	-1.90734500	0.66486100	0.00000000
В	-1.91747300	0.33998000	-1.62051900
В	-3.32756200	-0.08391900	-2.35408500
В	-0.61760600	-0. 51902000	-4.00762900
В	-3.43255100	0.24737200	-0.82957300
В	-3.32756200	-0.08391900	2.35408500
В	-3.43255100	0.24737200	0.82957300
В	1.11327400	0.09333700	1.50209900
В	-0.43525600	-0.03898500	-2.34113200
В	-1.91747300	0.33998000	1.62051900
В	0.73734700	-0.75693600	-4.81711100
В	2.16493400	-0.51314700	-4.28430300
В	2.88841400	0.55219100	-1.40099000
В	2.58574400	-0.02824700	-2.85093500
В	0.73734700	-0.75693600	4.81711100
В	2.16493400	-0.51314700	4.28430300
В	2.00970600	-0.01928100	0.00000000

Isomer 2, *C*_s (¹A')

В	0.77403500	2.41573200	0.00000000
В	1.08894700	1.00622700	2.50969400
В	1.70553400	-0.45598100	-1.53674900
В	-0.71918800	2.50956800	0.86579800
В	-1.90893600	-0. 43506200	0.00000000
В	0.70050500	2.31822800	1.66771300
В	0.92438400	-0. 47206600	3.06729700
В	-0.44285200	-1.07477500	-2.20895800
В	-2.09538800	2.41650800	0.00000000
В	-0.64752300	-3.04790500	0.00000000
В	1.59712400	1.13650900	0.85647500
В	-0.44285200	-1.07477500	2.20895800
В	-1.32523500	-1.75284800	0.89574300
В	0.70050500	2.31822800	-1.66771300
В	-1.32523500	-1.75284800	-0.89574300
В	-1.80233800	-0.35509100	-1.66287500
В	-2.08103300	1.05184400	-0.87703600
В	-2.08103300	1.05184400	0.87703600
В	-1.80233800	-0.35509100	1.66287500
В	1.07646700	-1.86215300	-2.35185100
В	0.14045600	-2.63267400	-1.32249600
В	1.08894700	1.00622700	-2.50969400
В	1.59712400	1.13650900	-0.85647500
В	0.14045600	-2.63267400	1.32249600
В	-0.71918800	2.50956800	-0.86579800
В	1.07646700	-1.86215300	2.35185100
В	0.92438400	-0. 47206600	-3.06729700
В	1.70553400	-0. 45598100	1.53674900
В	2.15226800	-0.18284800	0.00000000

Isomer 3, *C*₁ (¹A)

В	-2. 56827100	-1.26174900	0.26629900
В	0.93404000	3. 46115500	-0.26990600
В	0.52848900	-2.26932100	0.87106600
В	3.69199500	0.20277200	-0.71616300
В	-0.36553600	2.54842000	0.35580400
В	-1.45699300	-0.18619300	0.94531600
В	-3.96382800	-0.74050800	-0.66876600
В	1.05644200	-3.13796700	-0.70479800
В	-3. 43558800	-2.22272400	-0.75360600
В	2.12975600	-2.06037900	0.19060100
В	2.71774300	-0.46405100	0. 53318900
В	-3.09925700	1.97136900	-0.33521700
В	1.58601100	-1.18603800	1.54261000
В	0.05251700	-0.61557700	1.31337500
В	1.21924900	2.01541400	0.74702700
В	-0.92281600	-1.66263300	0.31732500
В	-1.60116800	1.49524100	0.38866700
В	2.46811900	-2.71969800	-1.25615300
В	3.21574000	-1.36634600	-0.96255400
В	1.40954000	0.45860700	1.24199500
В	3. 58194200	1.76792700	-0.90454000
В	-1.82568100	3.07385300	-0.26784000
В	-4.10599600	0.84952800	-0.72135000
В	2.33392900	1.04719500	-0.07056000
В	2.35396600	2.69255500	-0. 44450500
В	-0.47025000	-3.22527500	-0.09827800
В	-0.55877400	3.96948200	-0. 47642000
В	-2.86905200	0.42744800	0.32196100
В	-2.03627000	-2.86250600	-0.38457700