Supplementary Information

Microwave-Gated Dynamic Nuclear Polarization

Aurélien Borneta, Arthur Pinona, Aditya Jhajhariab,c, Mathieu Baudina,b,c, Xiao Jia,b,c, Lyndon Emsleya, Geoffrey Bodenhausenb,c, Jan Henrik Ardenkjær-Larsend,e and Sami Jannina,f,g* \\

a Ecole Polytechnique Fédérale de Lausanne, Institut des Sciences et Ingénierie Chimiques, 1015 Lausanne, Switzerland. \\
b Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France. \\
c Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), Paris, France. \\
d Department of Electrical Engineering, Technical University of Denmark, Lyngby 2800, Denmark. \\
e GE Healthcare, Brøndby 2605, Denmark. \\
f Bruker BioSpin AG, Industriestrasse 26, 8117 Fällanden, Switzerland. \\
g Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France. \\

\textbf{Corresponding Author} \\

* Sami Jannin: sami.jannin@univ-lyon1.fr
Relaxation rate constant

\[
R_{1p} = \frac{1}{r^6}\frac{16}{15}\frac{\mu_0^2}{(4\pi)^2}g_H^2(g_\mu_B^2)S(S + 1)\left\{\frac{4\tau_{s1}}{1 + \omega_1^2\tau_{s1}^2} + \frac{13\tau_{s2}}{1 + \omega_S^2\tau_{s2}^2} + \frac{3\tau_{s1}}{1 + \omega_I^2\tau_{s1}^2}\right\}
\]

(S1)

where \(\omega_1\), \(\omega_S\) and \(\omega_I\) are the nuclear angular nutation frequencies in the rotating frame (in our case \(\omega_1/(2\pi) \approx 20\) kHz), the electron angular frequency in the laboratory frame (in our case \(\omega_I/(2\pi) \approx 285\) MHz for \(^1\)H). In the case of isolated electron-nucleus spin pairs in the solid state at low temperature (no rotational or translational diffusion), \(\tau_{s1} = T_{1e}\) and \(\tau_{s2} = T_{2e}\). However, in our experiment the electron concentration is high (25 mM) which gives rise to electron-electron dipolar couplings on the order of several MHz. Therefore, the apparent transition rate of the electron spin seen by the nuclear spins is not \(T_{1e}\) but the flip-flop rate that is close to \(T_{2e}\).

As shown in Figure S1, for all values of \(\tau_{s1}\) and \(\tau_{s2}\) in the range of 0.1 \(\mu\)s to 0.1 s, it is the first term in Eq. (S1), i.e., \(\frac{4\tau_{s1}}{1 + \omega_1^2\tau_{s1}^2}\) (blue curve in Fig. S1) that dominates over the second and third terms in Eq. (S1) (green and yellow curves in Fig. S1) by at least two orders of magnitude.
We can therefore simplify equation S1 to:

\[R_{1\rho} = \frac{C \tau_{s1}}{r^{\rho1} + \omega_1^2 \tau_{s1}^2} \]
\[(S2) \]

with

\[C = \frac{4}{15} \left(\frac{\mu_0}{4\pi} \right)^2 \gamma^2 \left(g_e^2 g_B^2 \right)^2 S(S + 1) = 4.92 \times 10^{-8} \mu m^6 s^{-2} \].

Fitting of cross-polarization curves

A simple stretched exponential can describe the CP build-up as a function of \(\tau_{\text{CP}} \):

\[I^{(13C)} = 1 - e^{-\left(t/\tau_{\text{CP}} \right)^\beta} \]
\[(S2) \]

Numerical fitting yields \(\tau_{\text{CP}} = 2.68 \) ms and \(\beta = 0.66 \).

A similar stretched exponential multiplied by a decaying stretched exponential can describe CP with continuous microwave irradiation,

\[I^{(13C)} = \left(1 - e^{-\left(t/\tau_{\text{CP}} \right)^\beta} \right) e^{-\left(t/T_{1\rho} \right)^\gamma} \]
\[(S3) \]

Numerical fitting yields \(\tau_{\text{CP}} = 2.68 \) ms, \(\beta = 0.66 \), \(T_{1\rho} = 7.4 \) ms and \(\gamma = 0.64 \).