Supplementary Information

for

The segregation resistance of the sandwich \(\text{Pt}_2\text{ML}/\text{Os/Pd}_3\text{Al}\) catalyst for oxygen reduction reaction: A Density Functional Theory Study

B. B. Xiao\(^a\), X. B. Jiang\(^b\), X. L. Yang\(^a\)*, Q. Jiang\(^c\)*, F. Zheng\(^a,d\)

\(^a\)School of Energy and Power Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

\(^b\)School of Materials Science and Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

\(^c\)Key Laboratory of Automobile Materials, Ministry of Education, and Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China

\(^d\)Research Center of Zhongjing New Energy Science & Technology, 212003, Zhenjiang, Jiangsu, China

* Corresponding authors.
Prof. Jiang, Q. E-mail: jiangq@jlu.edu.cn; Fax: +86-431-85095371
Prof. Yang, X. L. E-mail: hcyangxl2010@just.edu.cn; Fax: +86-511-84411906
Figure S1. Schematic showing the Al segregation paths under different O adsorption sites. The different Al configuration in the N layer, denoted as N-M. The possibility paths are five and three for O adsorption on F₁ and F₂ sites, respectively.