The effect of GME topology on the multicomponent adsorption in ZIFs

Anastasios Gotzias*

NCSR Demokritos

E-mail: a.gotzias@inn.demokritos.gr
Phone: +30 (0)210 6503408. Fax: +30 (0)210 6503408

Supporting Information

Table 1: atom atom interaction parameters

<table>
<thead>
<tr>
<th>ZIF atoms</th>
<th>adsorbate atoms</th>
<th>atom</th>
<th>σ(A)</th>
<th>ε/k_B(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>Carbon CO_2^a</td>
<td>Carbon</td>
<td>3.43</td>
<td>40.27</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Oxygen CO_2^a</td>
<td>Oxygen</td>
<td>3.12</td>
<td>21.75</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Nitrogen N_2^b</td>
<td>Hydrogen</td>
<td>2.57</td>
<td>14.14</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Oxygen O_2^c</td>
<td>Nitrogen</td>
<td>3.26</td>
<td>22.72</td>
</tr>
<tr>
<td>Zinc</td>
<td>CH_4</td>
<td>Zinc</td>
<td>2.46</td>
<td>53.4</td>
</tr>
<tr>
<td>Cl</td>
<td>O(H_2O)^d</td>
<td>Cl</td>
<td>3.52</td>
<td>99.23</td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td>Br</td>
<td>3.73</td>
<td>126.31</td>
</tr>
<tr>
<td></td>
<td>Carbon CO_2^a</td>
<td>Carbon</td>
<td>2.76</td>
<td>28.13</td>
</tr>
<tr>
<td></td>
<td>Oxygen CO_2^a</td>
<td>Oxygen</td>
<td>3.03</td>
<td>80.51</td>
</tr>
<tr>
<td></td>
<td>Nitrogen N_2^b</td>
<td>Nitrogen</td>
<td>3.31</td>
<td>36.00</td>
</tr>
<tr>
<td></td>
<td>Oxygen O_2^c</td>
<td>Oxygen</td>
<td>3.01</td>
<td>49.05</td>
</tr>
<tr>
<td></td>
<td>CH_4</td>
<td>CH_4</td>
<td>3.73</td>
<td>148.00</td>
</tr>
<tr>
<td></td>
<td>O(H_2O)^d</td>
<td>O(H_2O)</td>
<td>3.15</td>
<td>76.58</td>
</tr>
</tbody>
</table>

^a C-O distance (Å): 1.18; ^b N-N distance (Å): 1.1; ^c O-O distance (Å): 1.21;
^d O-H distance (Å): 0.9572, H-O-H angle 104.52°; ^com center of mass charge;
^H hydrogen atom charge;

*To whom correspondence should be addressed
Table 2: Atomic charges (e) on $Im – Zn – nIm$ fragments for ZIFs 68-78

<table>
<thead>
<tr>
<th></th>
<th>ZIF68</th>
<th>ZIF69</th>
<th>ZIF70</th>
<th>ZIF78</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.225591</td>
<td>Zn1</td>
<td>0.7317525</td>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
<td>0.350384</td>
<td>O11</td>
<td>-0.478251</td>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
<td>0.179233</td>
<td>N2</td>
<td>-0.1558705</td>
<td>C3</td>
</tr>
<tr>
<td>C4</td>
<td>0.174222</td>
<td>N8</td>
<td>-0.3714605</td>
<td>C4</td>
</tr>
<tr>
<td>C6</td>
<td>-0.1565715</td>
<td>N98</td>
<td>0.731731</td>
<td>H1</td>
</tr>
<tr>
<td>C8</td>
<td>-0.143245</td>
<td>C6</td>
<td>0.061975</td>
<td>H2</td>
</tr>
<tr>
<td>H1</td>
<td>-0.015756</td>
<td>C4</td>
<td>-0.074958</td>
<td>H3</td>
</tr>
<tr>
<td>H4</td>
<td>0.013269625</td>
<td>C3</td>
<td>0.092504</td>
<td>N1</td>
</tr>
<tr>
<td>H6</td>
<td>0.0190095</td>
<td>C13</td>
<td>0.092504</td>
<td>N2</td>
</tr>
<tr>
<td>H8</td>
<td>0.128247</td>
<td>C89</td>
<td>0.350589</td>
<td>N3</td>
</tr>
<tr>
<td>N1</td>
<td>-0.284354</td>
<td>C14</td>
<td>-0.17425</td>
<td>O1</td>
</tr>
<tr>
<td>N2</td>
<td>-0.3847325</td>
<td>C58</td>
<td>-0.078663</td>
<td>Zn1</td>
</tr>
<tr>
<td>N5</td>
<td>0.588478</td>
<td>C85</td>
<td>0.032752</td>
<td>H4</td>
</tr>
<tr>
<td>O1</td>
<td>-0.513472</td>
<td>C82</td>
<td>0.0008315</td>
<td>H5</td>
</tr>
<tr>
<td>Zn1</td>
<td>0.78809075</td>
<td>H86</td>
<td>0.0677</td>
<td>N1</td>
</tr>
<tr>
<td>H10</td>
<td>0.08801225</td>
<td>N2</td>
<td>0.637037</td>
<td></td>
</tr>
<tr>
<td>H17</td>
<td>0.100886</td>
<td>N3</td>
<td>-0.1615285</td>
<td></td>
</tr>
<tr>
<td>H15</td>
<td>0.02653</td>
<td>N4</td>
<td>-0.335407</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>0.025733</td>
<td>N5</td>
<td>-0.142997</td>
<td></td>
</tr>
<tr>
<td>Cl7</td>
<td>-0.153309</td>
<td>O1</td>
<td>-0.469039</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>-0.417138</td>
<td>O2</td>
<td>-0.417138</td>
<td>Zn1</td>
</tr>
</tbody>
</table>
Table 3: Atomic charges (e) on \(Im - Zn - nIm \) fragments for ZIFs 79-82

<table>
<thead>
<tr>
<th></th>
<th>ZIF79</th>
<th>ZIF80</th>
<th>ZIF81</th>
<th>ZIF82</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.032906518</td>
<td>C1</td>
<td>0.006586474</td>
<td>Br1</td>
</tr>
<tr>
<td>C2</td>
<td>-0.060596982</td>
<td>C2</td>
<td>-0.112881026</td>
<td>C1</td>
</tr>
<tr>
<td>C3</td>
<td>0.022409018</td>
<td>C3</td>
<td>0.398487974</td>
<td>C2</td>
</tr>
<tr>
<td>C4</td>
<td>-0.022760982</td>
<td>C4</td>
<td>0.032632474</td>
<td>C3</td>
</tr>
<tr>
<td>C5</td>
<td>0.294764982</td>
<td>C5</td>
<td>-0.104059276</td>
<td>C4</td>
</tr>
<tr>
<td>C6</td>
<td>-0.262450982</td>
<td>H1</td>
<td>0.160282974</td>
<td>C5</td>
</tr>
<tr>
<td>C7</td>
<td>0.142721018</td>
<td>H2</td>
<td>0.074763974</td>
<td>C6</td>
</tr>
<tr>
<td>C8</td>
<td>0.246174018</td>
<td>N1</td>
<td>0.428308974</td>
<td>C7</td>
</tr>
<tr>
<td>C9</td>
<td>0.144435018</td>
<td>N3</td>
<td>-0.051962026</td>
<td>C8</td>
</tr>
<tr>
<td>H1</td>
<td>0.100044018</td>
<td>O1</td>
<td>-0.396090026</td>
<td>H1</td>
</tr>
<tr>
<td>H2</td>
<td>0.033027185</td>
<td>Zn1</td>
<td>0.696742974</td>
<td>H2</td>
</tr>
<tr>
<td>H3</td>
<td>0.075918018</td>
<td></td>
<td></td>
<td>H3</td>
</tr>
<tr>
<td>H4</td>
<td>0.009615018</td>
<td></td>
<td></td>
<td>H4</td>
</tr>
<tr>
<td>H5</td>
<td>0.037820018</td>
<td></td>
<td></td>
<td>H5</td>
</tr>
<tr>
<td>H6</td>
<td>0.164021018</td>
<td></td>
<td></td>
<td>H6</td>
</tr>
<tr>
<td>N1</td>
<td>0.525830018</td>
<td></td>
<td></td>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
<td>-0.315941482</td>
<td></td>
<td></td>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
<td>-0.119002982</td>
<td></td>
<td></td>
<td>N3</td>
</tr>
<tr>
<td>O1</td>
<td>-0.423880482</td>
<td></td>
<td></td>
<td>O1</td>
</tr>
<tr>
<td>Zn1</td>
<td>0.664874018</td>
<td></td>
<td></td>
<td>Zn1</td>
</tr>
</tbody>
</table>
Figure 1: CO_2 adsorption isotherms computed at 298K in this work, compared with a set of experimental and simulated isotherms provided in the literature. The citing articles are included in the reference list of the manuscript.
Figure 2: CH_4 and N_2 adsorption isotherms computed at 298K in this work, for ZIF68, ZIF69, ZIF78 and ZIF79, compared with a set of experimental and simulated isotherms provided in the literature. The citing articles are included in the reference list of the manuscript.
Figure 3: \(CO_2 \) adsorption in the unit cell, the \textit{kno} and \textit{gme} channels of ZIF70, for single and multicomponent systems.
Figure 4: CO_2 adsorption in the unit cell, the *kno* and *gme* channels of ZIF80, for single and multicomponent systems.
Figure 5: CO$_2$ adsorption in the unit cell, the kno and gme channels of ZIF82, for single and multicomponent systems.