Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Material accompanying Quantum tunneling during interstellar surface-catalyzed formation of water: the reaction  $H+H_2O_2 \longrightarrow H_2O+OH$ 

Thanja Lamberts<sup>1</sup>, Pradipta Kumar Samanta, Andreas Köhn, and Johannes Kästner Institute of Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany. Tel: +49 (0)711 685 64833



**Figure 1** Visualization of the orbitals that contribute to the main configurations to the CASSCF wavefunction for the transition states. Panels (a)-(c) concern the reaction  $H + H_2O_2 \longrightarrow H_2O + OH$ , (d)-(f) concern  $H + H_2O_2 \longrightarrow HO_2 + H_2$ . More specifically, panels (a) and (d) refer to the doubly occupied bonding sigma orbital, (b) and (e) to the singly occupied orbital with the main contribution from the hydrogen 1s, and (c) and (f) correspond to the doubly occupied anti-bonding sigma orbital.

<sup>&</sup>lt;sup>1</sup>Corresponding author, E-mail: lamberts@theochem.uni-stuttgart.de

Table 1 Coordinates of stationary points in the gas-phase reactions in Å.

|                                     | R1:                                                                                                                          | H+1                      | $H_2O_2 \longrightarrow H_2O + OH$ , MPW1B95/M                 | 1GS                   |                                                                                                                                                                  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H <sub>2</sub> O                    |                                                                                                                              | PRO                      |                                                                | TS                    | l                                                                                                                                                                |
| 0 1                                 | -2.566047 0.007215 -1.672615                                                                                                 | 0                        | -2.523978 0.059220 -1.915333                                   | 0                     | -2.456521 0.538181 -0.592586                                                                                                                                     |
| 0                                   | -2.560618 0.459818 -0.325739                                                                                                 | 0                        | -2.537889 0.491148 -0.561685                                   | 0                     | -2.649201 -0.051250 -1.972562                                                                                                                                    |
| Н                                   | -1.774615 0.027550 0.016493                                                                                                  | Н                        | -3.312566 -0.487467 -1.948096                                  | Н                     | -3.509128 -0.462642 -1.845152                                                                                                                                    |
| Н                                   | -3.352004 -0.544067 -1.684347                                                                                                | Н                        | -1.759731 0.049346 -0.213814                                   | Н                     | -1.668072 0.055232 -0.332188                                                                                                                                     |
|                                     |                                                                                                                              | Η                        | -3.314133 -1.480655 -4.901822                                  | Η                     | -2.516195 -0.515257 -3.485223                                                                                                                                    |
| H <sub>2</sub> O                    |                                                                                                                              | OH                       |                                                                |                       |                                                                                                                                                                  |
| 0                                   | -0.984226 0.010059 0.010222                                                                                                  | 0                        | -4.417126 -1.035022 -3.648612                                  |                       |                                                                                                                                                                  |
| Н                                   | -0.984226 0.956868 -0.116238                                                                                                 | Η                        | -4.417126 -0.118977 -3.333217                                  |                       |                                                                                                                                                                  |
| Η                                   | -0.984226 -0.116510 0.957017                                                                                                 |                          |                                                                |                       |                                                                                                                                                                  |
|                                     | R                                                                                                                            | 2 H +                    | $-H_2O_2 \longrightarrow H_2 + HO_2$ , M05-2X/MG               | S                     |                                                                                                                                                                  |
| H <sub>2</sub> O                    |                                                                                                                              |                          |                                                                | TS                    | )                                                                                                                                                                |
| 0                                   |                                                                                                                              |                          |                                                                | 102                   |                                                                                                                                                                  |
| Õ                                   | -200004/ 0.00721.0-1.07201.0                                                                                                 |                          |                                                                | 0                     | -2.540125 -0.086097 -1.981867                                                                                                                                    |
|                                     | -2.560618 0.459818 -0.325739                                                                                                 |                          |                                                                | 0<br>0                | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057                                                                                                    |
| Н                                   | -2.560618 0.459818 -0.325739<br>-1.774615 0.027550 0.016493                                                                  |                          |                                                                | 0<br>0<br>H           | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260                                                                   |
| н<br>Н                              | -2.560618 0.459818 -0.325739<br>-1.774615 0.027550 0.016493<br>-3.352004 -0.544067 -1.684347                                 |                          |                                                                | 0<br>0<br>H<br>H      | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260<br>-1.992564 -0.286630 -0.218672                                  |
| H<br>H                              | -2.560618 0.459818 -0.325739<br>-1.774615 0.027550 0.016493<br>-3.352004 -0.544067 -1.684347                                 |                          |                                                                | 0<br>0<br>H<br>H      | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260<br>-1.992564 -0.286630 -0.218672<br>-4.505798 -0.872040 -2.069527 |
| H<br>H<br>HO <sub>2</sub>           | -2.560647 0.007213 -1.072013<br>-2.560618 0.459818 -0.325739<br>-1.774615 0.027550 0.016493<br>-3.352004 -0.544067 -1.684347 | Ha                       |                                                                | 0<br>0<br>H<br>H<br>H | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260<br>-1.992564 -0.286630 -0.218672<br>-4.505798 -0.872040 -2.069527 |
| н<br>н<br>нО <sub>2</sub>           | -2.56047 0.007213 -1.072013<br>-2.560618 0.459818 -0.325739<br>-1.774615 0.027550 0.016493<br>-3.352004 -0.544067 -1.684347  | H <sub>2</sub><br>H      | -4.417126 -0.948657 -3.648560                                  | О<br>О<br>Н<br>Н      | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260<br>-1.992564 -0.286630 -0.218672<br>-4.505798 -0.872040 -2.069527 |
| н<br>н<br>нО <sub>2</sub><br>0<br>0 | -2.564350 0.023913 -1.617960<br>-2.561233 0.438269 -0.379893                                                                 | H <sub>2</sub><br>H<br>H | -4.417126 -0.948657 -3.648560<br>-4.417126 -0.207583 -3.648560 | О<br>О<br>Н<br>Н      | -2.540125 -0.086097 -1.981867<br>-2.428133 0.423187 -0.702057<br>-3.582191 -0.471690 -2.053260<br>-1.992564 -0.286630 -0.218672<br>-4.505798 -0.872040 -2.069527 |

**Table 2** Coordinates of stationary points of the reaction  $H + H_2O_2 \longrightarrow H_2O + OH$  with spectator molecules in Å. The labeling refers to Fig. 4 of the paper.

|                  | One spectator water molecule                 |         |                                                                 |        |                                  |  |  |  |
|------------------|----------------------------------------------|---------|-----------------------------------------------------------------|--------|----------------------------------|--|--|--|
| · · · ·          |                                              |         |                                                                 |        |                                  |  |  |  |
| $H_2$            | $D_2 - H_2 O A$                              | PR      | C-H <sub>2</sub> OA                                             | TS     | -H <sub>2</sub> OA               |  |  |  |
| 0                | -5.125237 -0.357020 -0.778591                | 0       | -5.123255 -0.499367 -0.864485                                   | 0      | -5.048236 -0.386637 -0.764551    |  |  |  |
| Н                | -4.585890 0.177561 -0.190993                 | Н       | -4.687525 0.048184 -0.206667                                    | Н      | -4.482890 0.077572 -0.142012     |  |  |  |
| Н                | -5.506749 -1.044859 -0.236535                | Н       | -5.540549 -1.213000 -0.385296                                   | Н      | -5.398800 -1.141630 -0.295854    |  |  |  |
| 0                | -2 576310 -0 173817 -1 894599                | 0       | -2 510508 -0 011082 -1 719634                                   | 0      | -2 594953 -0 059260 -1 996704    |  |  |  |
| õ                | -2 419354 0 529414 -0 666455                 | õ       | -2 547431 0 602982 -0 434853                                    | õ      | -2 394081 0 581132 -0 644841     |  |  |  |
| ч                | -3 400102 -0 482836 -1 801743                | ч       | -3 386325 -0 425001 -1 741413                                   | ч      | -3 505027 -0 377126 -1 866834    |  |  |  |
| и<br>П           | 1 607006 0 0/2001 0 261665                   | и<br>П  | 1 853862 0 124421 0 025205                                      | и<br>П | 1 631230 0 078254 0 350556       |  |  |  |
| п                | -1.097900 0.043091 -0.201003                 | п<br>11 | -1.633602  0.124421  0.023293                                   | п      | -1.031230 $0.078234$ $-0.330330$ |  |  |  |
|                  |                                              | п       | -5.020533 -1.185/13 -5./82503                                   | п      | -2.4/292/ -0.540019 -3.522098    |  |  |  |
| H <sub>a</sub> ( | $D_{a} = H_{a} O B$                          |         |                                                                 | TS     | -H <sub>2</sub> OB               |  |  |  |
| 0                | $_{-0.318076}$ $_{-1.212014}$ $_{-0.570610}$ |         |                                                                 | 0      | -0.366035 -1.207674 -0.632668    |  |  |  |
| U<br>U           | 0.57205 0.022624 0.761009                    |         |                                                                 | U<br>U | -0.300033 -1.20707 + -0.032000   |  |  |  |
| п                | 0.3/2203 -0.922024 -0./01098                 |         |                                                                 | п      | 0.349430 -0.972030 -0.773722     |  |  |  |
| П                | -0./50050 -1.294041 -1.421550                |         |                                                                 | П      | -0./4/114 -1.322400 -1.5050/5    |  |  |  |
| 0                | -2.632015 -0.18/59/ -1.869851                |         |                                                                 | 0      | -2.088004 -0.103423 -1.955435    |  |  |  |
| 0                | -2.4/5941 0.55/4/2 -0.66/333                 |         |                                                                 | 0      | -2.492581 0.635180 -0.642629     |  |  |  |
| Н                | -3.480492 -0.611818 -1.722743                |         |                                                                 | Н      | -3.554133 -0.488517 -1.788891    |  |  |  |
| Η                | -1.707185 0.109292 -0.282768                 |         |                                                                 | Η      | -1.713126 0.145986 -0.334401     |  |  |  |
|                  |                                              |         |                                                                 | Η      | -2.638670 -0.530672 -3.454237    |  |  |  |
|                  |                                              |         | m 1 1                                                           |        |                                  |  |  |  |
|                  |                                              |         | Two spectator water molecules                                   |        |                                  |  |  |  |
| ц                | D H O A and P                                | סס      | C H O A and P                                                   | тс     | H O A and P                      |  |  |  |
| п <sub>2</sub> , | $J_2 = \Pi_2 O R all O B$                    |         | $C = \Pi_2 O A and B$                                           | 0      | $-\Pi_2 O A and B$               |  |  |  |
| 0                | -5.052208 -0.411020 -0.702301                | 0       | -5.052208 -0.411020 -0.702301                                   | 0      | -5.052208 -0.411020 -0.702501    |  |  |  |
| п                | -4.4/1248 0.098995 -0.189/41                 | п       | -4.4/1248 0.098995 -0.189/41                                    | п      | -4.4/1248 0.098995 -0.189/41     |  |  |  |
| Н                | -5.3/310/ -1.141146 -0.236406                | Н       | -5.3/310/ -1.141146 -0.236406                                   | Н      | -5.3/310/ -1.141146 -0.236406    |  |  |  |
| 0                | -0.3/4193 -1.2104/6 -0.616959                | 0       | -0.3/4193 -1.2104/6 -0.616959                                   | 0      | -0.3/4193 -1.2104/6 -0.616959    |  |  |  |
| Н                | 0.530795 -0.990987 -0.830916                 | Н       | 0.530795 -0.990987 -0.830916                                    | Н      | 0.530795 -0.990987 -0.830916     |  |  |  |
| Η                | -0.831642 -1.294604 -1.457202                | Η       | -0.831642 -1.294604 -1.457202                                   | Η      | -0.831642 -1.294604 -1.457202    |  |  |  |
| 0                | -2.570985 -0.089453 -1.970360                | 0       | -2.573700 -0.104418 -1.970376                                   | 0      | -2.614762 -0.105739 -1.983349    |  |  |  |
| 0                | -2.442095 0.640165 -0.752382                 | 0       | -2.443565 0.633823 -0.757516                                    | 0      | -2.467158 0.651642 -0.678011     |  |  |  |
| Η                | -3.467036 -0.445645 -1.867521                | Η       | -3.472348 -0.454193 -1.865314                                   | Η      | -3.519935 -0.441149 -1.848034    |  |  |  |
| Η                | -1.687747 0.180127 -0.353156                 | Η       | -1.686892 0.177263 -0.358348                                    | Η      | -1.691103 0.179774 -0.336076     |  |  |  |
|                  |                                              | Η       | -3.530839 -1.479906 -4.928228                                   | Η      | -2.535703 -0.515154 -3.508159    |  |  |  |
|                  |                                              |         |                                                                 |        |                                  |  |  |  |
|                  |                                              |         | Inree spectator water molecules                                 |        |                                  |  |  |  |
| н                | HOHOABand C DDCHOABand C TSHOABand C         |         |                                                                 |        |                                  |  |  |  |
| 0                | -4.806379 -0.676185 -1.020491                | 0       | -4 812028 -0 721008 -1 032874                                   | 0      | -4.806379 -0.676185 -1.020491    |  |  |  |
| U<br>U           | = 442425 - 0.070103 - 1.020401               | U<br>U  | -4.012020 -0.721000 -1.033074<br>= 545421 - 0.247209 - 0.646226 | U<br>U | -4.000379 -0.070103 -1.020401    |  |  |  |
| п                | -5.442425 -0.105454 -0.592460                | п       |                                                                 | п      |                                  |  |  |  |
| H                | -4.359460 -1.154685 -0.309/10                | Н       | -4.361410 -1.165212 -0.304065                                   | Н      | -4.359460 -1.154685 -0.309/10    |  |  |  |
| 0                | -0.757202 -1.608931 -0.896299                | 0       | -0.80//58 -1.6103/1 -0.94/913                                   | 0      | -0.757202 -1.608931 -0.896299    |  |  |  |
| Н                | 0.145162 -1.376953 -0.685917                 | Н       | 0.119664 -1.432568 -0.806421                                    | Н      | 0.145162 -1.376953 -0.685917     |  |  |  |
| Η                | -1.153507 -0.819453 -1.291686                | Η       | -1.200998 -0.784148 -1.274892                                   | Η      | -1.153507 -0.819453 -1.291686    |  |  |  |
| 0                | -2.851068 -1.609262 0.830244                 | 0       | -2.835769 -1.548592 0.849564                                    | 0      | -2.851068 -1.609262 0.830244     |  |  |  |
| Η                | -2.841822 -2.123021 1.635008                 | Η       | -2.812565 -2.064158 1.652907                                    | Η      | -2.841822 -2.123021 1.635008     |  |  |  |
| Η                | -2.047368 -1.837413 0.328419                 | Η       | -2.049155 -1.790900 0.325681                                    | Η      | -2.047368 -1.837413 0.328419     |  |  |  |
| 0                | -2.394200 0.566795 -1.381494                 | 0       | -2.416444 0.602948 -1.352822                                    | 0      | -2.445660 0.615431 -1.450338     |  |  |  |
| 0                | -2.465767 1.123051 -0.076254                 | 0       | -2.480406 1.190758 -0.061981                                    | 0      | -2.501926 1.178943 -0.037112     |  |  |  |
| Н                | -3.308474 0.254573 -1.515981                 | Н       | -3.331310 0.292281 -1.482807                                    | Н      | -3.357284 0.256582 -1.515001     |  |  |  |
| Н                | -2.501589 0.334944 0.484601                  | Н       | -2.512060 0.414811 0.515376                                     | Н      | -2.486160 0.355436 0.471795      |  |  |  |
|                  |                                              | Н       | -3.301150 -0.958459 -4.559923                                   | Η      | -2.115470 0.398469 -2.958102     |  |  |  |

| Temp. (K) | $H + H_2O_2 \longrightarrow$ | $H + D_2O_2 \longrightarrow$ | $D + H_2O_2 \longrightarrow$ | $D + D_2O_2 \longrightarrow$ | $\mathrm{H} + \mathrm{H}_{2}^{18}\mathrm{O}_{2} \longrightarrow$ | $H + H_2O_2 \longrightarrow$ |
|-----------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------------------------------------|------------------------------|
|           | $H_2O + OH$                  | HDO + OD                     | HDO + OH                     | $D_2O + OD$                  | $H_2^{18}O + {}^{18}O$                                           | $H_2 + HO_2$                 |
| 50.3      | 3.69E-19                     | 2.74E-19                     | 2.07E-21                     | 1.57E-21                     | 2.58E-19                                                         |                              |
| 54.7      | 3.68E-19                     | 2.85E-19                     | 2.36E-21                     | 1.78E-21                     | 2.64E-19                                                         |                              |
| 59.9      | 4.64E-19                     | 3.75E-19                     | 3.49E-21                     | 2.63E-21                     | 3.48E-19                                                         |                              |
| 66.2      | 6.70E-19                     | 5.44E-19                     | 5.04E-21                     | 3.85E-21                     | 4.81E-19                                                         |                              |
| 74.0      | 7.70E-19                     | 6.11E-19                     | 8.33E-21                     | 6.45E-21                     | 5.71E-19                                                         |                              |
| 83.8      | 1.21E-18                     | 9.66E-19                     | 1.68E-20                     | 1.29E-20                     | 9.21E-19                                                         |                              |
| 96.7      | 1.83E-18                     | 1.47E-18                     | 3.97E-20                     | 3.10E-20                     | 1.36E-18                                                         |                              |
| 114.2     | 3.78E-18                     | 3.09E-18                     | 1.30E-19                     | 1.03E-19                     | 2.88E-18                                                         | 2.31E-20                     |
| 139.4     | 9.87E-18                     | 8.13E-18                     | 7.06E-19                     | 5.61E-19                     | 7.64E-18                                                         | 1.39E-19                     |
| 179.0     | 4.81E-17                     | 4.01E-17                     | 9.85E-18                     | 8.00E-18                     | 3.85E-17                                                         | 2.12E-18                     |
| 200.0     | 9.60E-16                     | 8.15E-16                     |                              |                              | 8.63E-16                                                         |                              |
| 250.0     |                              |                              | 3.95E-17                     | 3.27E-17                     |                                                                  | 1.08E-16                     |
| 414.3     |                              |                              |                              |                              |                                                                  | 1.80E-14                     |
| 450.0     |                              |                              |                              |                              |                                                                  | 3.84E-14                     |
|           |                              |                              |                              |                              |                                                                  |                              |

Table 3 Gas-phase bimolecular rate constants (cm<sup>3</sup> s<sup>-1</sup>) for hydrogenation and deuteration of peroxide.

Table 4 Eley-Rideal bimolecular rate constants (cm<sup>3</sup> s<sup>-1</sup>) for hydrogenation and deuteration of peroxide with and without spectator  $H_2O$  molecules.

| Temp. (K) | No H <sub>2</sub> O                   | 1 H <sub>2</sub> O A | 1 H <sub>2</sub> O B           | 2 H <sub>2</sub> O | 3 H <sub>2</sub> O |  |  |
|-----------|---------------------------------------|----------------------|--------------------------------|--------------------|--------------------|--|--|
|           |                                       | $H + H_{2}$          | $_2O_2 \longrightarrow H_2O_2$ | O + OH             |                    |  |  |
| 50.3      | 1.09E-19                              | 3.14E-19             | 3.81E-20                       | 8.63E-20           | 1.85E-20           |  |  |
| 54.7      | 1.09E-19                              | 3.00E-19             | 4.74E-20                       | 1.11E-19           | 1.53E-20           |  |  |
| 59.9      | 1.39E-19                              | 3.16E-19             | 5.54E-20                       | 1.28E-19           | 1.80E-20           |  |  |
| 66.2      | 2.02E-19                              | 7.99E-19             | 6.11E-20                       | 1.69E-19           | 2.32E-20           |  |  |
| 74.0      | 2.35E-19                              | 6.39E-19             | 7.93E-20                       | 2.55E-19           | 2.85E-20           |  |  |
| 83.8      | 3.74E-19                              | 1.01E-18             | 1.23E-19                       | 3.45E-19           | 3.86E-20           |  |  |
| 96.7      | 5.72E-19                              | 1.68E-18             | 2.07E-19                       | 5.26E-19           | 5.71E-20           |  |  |
| 114.2     | 1.20E-18                              | 3.72E-18             | 4.03E-19                       | 9.19E-19           | 1.14E-19           |  |  |
| 139.4     | 3.18E-18                              | 1.09E-17             | 1.11E-18                       | 2.81E-18           | 3.10E-19           |  |  |
| 179.0     | 1.58E-17                              | 5.37E-17             | 5.90E-18                       | 1.51E-17           | 1.66E-18           |  |  |
| 250.0     | 3.18E-16                              | 9.87E-16             | 1.36E-16                       | 2.72E-16           | 4.37E-17           |  |  |
|           | $D + H_2O_2 \longrightarrow HDO + OH$ |                      |                                |                    |                    |  |  |
| 50.3      | 4.76E-22                              |                      |                                | 4.28E-22           | 3.55e-23           |  |  |
| 54.7      | 5.49E-22                              |                      |                                | 5.50E-22           | 4.99e-23           |  |  |
| 59.9      | 8.21E-22                              |                      |                                | 7.30E-22           | 6.69e-23           |  |  |
| 66.2      | 1.20E-21                              |                      |                                | 1.14E-21           | 8.72E-23           |  |  |
| 74.0      | 2.01E-21                              |                      |                                | 1.99E-21           | 1.39E-22           |  |  |
| 83.8      | 4.11E-21                              |                      |                                | 3.98E-21           | 2.64E-22           |  |  |
| 96.7      | 9.92E-21                              |                      |                                | 9.98E-21           | 6.50E-22           |  |  |
| 114.2     | 3.31E-20                              |                      |                                | 3.47E-20           | 2.27E-21           |  |  |
| 139.4     | 1.84E-19                              |                      |                                | 2.09E-19           | 1.36E-20           |  |  |
| 179.0     | 2.62E-18                              |                      |                                | 3.10E-18           | 2.31E-19           |  |  |
| 200.0     | 1.06E-17                              |                      |                                | 1.28E-17           | 1.10E-18           |  |  |

Table 5 Langmuir-Hinshelwood unimolecular rate constants (s<sup>-1</sup>) for hydrogenation and deuteration of peroxide with and without spectator  $H_2O$  molecules.

| Tomp (V)                              | No H O              | 1404                                           | 240                               | 240         |  |
|---------------------------------------|---------------------|------------------------------------------------|-----------------------------------|-------------|--|
| Temp. (K)                             | 1011 <sub>2</sub> 0 |                                                | $\frac{2}{120}$                   | 51120       |  |
| F0.2                                  | 2 10E + 04          | $\frac{1}{5}\frac{1}{7}\frac{1}{5}\frac{1}{2}$ | $\rightarrow$ n <sub>2</sub> 0+0n | 0.20E + 02  |  |
| 50.3                                  | $3.18E \pm 04$      | 5.71E+04                                       | 0.170 + 0.4                       | 8.32E+03    |  |
| 54.7                                  | 2.66E+04            | 4.70E+04                                       | 3.1/E+04                          | E 0 4E + 00 |  |
| 59.9                                  | 2.82E+04            | 4.24E+04                                       |                                   | 5.84E+03    |  |
| 66.2                                  | $3.39E \pm 04$      | 9.07E+04                                       | 2.42E + 04                        | 6.36E + 03  |  |
| 74.0                                  | 3.22E + 04          | 6.06E+04                                       | 2.61E + 04                        | 6.56E + 03  |  |
| 83.8                                  | 4.13E+04            | 7.86E+04                                       | 2.76E + 04                        | 7.37E+03    |  |
| 96.7                                  | 5.02E+04            | 1.05E + 05                                     | 3.74E+04                          | 8.95E+03    |  |
| 114.2                                 | 8.14E+04            | 1.81E + 05                                     | 5.43E+04                          | 1.43E + 04  |  |
| 139.4                                 | 1.60E + 05          | 3.96E+05                                       | 1.18E + 05                        | 3.01E+04    |  |
| 179.0                                 | 5.52E + 05          | 1.36E + 06                                     | 3.99E+05                          | 1.18E + 05  |  |
| 250.0                                 | 6.92E+06            | 1.54E+07                                       | 4.99E+06                          | 2.02E+06    |  |
| $D + H_2O_2 \longrightarrow HDO + OH$ |                     |                                                |                                   |             |  |
| 50.3                                  | 1.61E + 02          |                                                | 8.53E+01                          | 6.96e+00    |  |
| 54.7                                  | 1.63E + 02          |                                                | 9.33E+01                          | 9.18e+00    |  |
| 59.9                                  | 2.11E + 02          |                                                | 1.05E + 02                        | 1.14e+01    |  |
| 66.2                                  | 2.67E + 02          |                                                | 1.38E + 02                        | 1.38E + 01  |  |
| 74.0                                  | 3.80E+02            |                                                | 2.00E + 02                        | 2.01E + 01  |  |
| 83.8                                  | 6.53E+02            |                                                | 3.28E+02                          | 3.43E+01    |  |
| 96.7                                  | 1.29E+03            |                                                | 6.63E+02                          | 7.46E+01    |  |
| 114.2                                 | 3.44E+03            |                                                | 1.81E + 03                        | 2.23E+02    |  |
| 139.4                                 | 1.45E + 04          |                                                | 8.20E+03                          | 1.10E + 03  |  |
| 179.0                                 | 1.47E + 05          |                                                | 8.54E+04                          | 1.43E + 04  |  |
| 200.0                                 | 5.12E + 05          |                                                | 3.03E+05                          | 6.00E+04    |  |