Supporting Information

Basis Set Convergence of the Binding Energies of Strongly Hydrogen-Bonded Atmospheric Clusters

Jonas Elma,* and Kasper Kristensenb

aDivision of Atmospheric Sciences, Department of Physics, Helsinki University, Finland.
bqLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Denmark.

E-mail: jonas.elm@helsinki.fi
Figure S1: Minimum structures of the studied clusters optimized at the MP2/aug-cc-pVTZ level of theory. Color coding: yellow = sulfur, green = carbon, blue = nitrogen and white = hydrogen.
<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>1.43</td>
<td>1.23</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>1.25</td>
<td>1.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>1.28</td>
<td>1.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.28</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-12.71</td>
<td>-12.67</td>
<td>-10.48</td>
<td>-12.35</td>
<td>-11.24</td>
<td>-12.41</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-12.97</td>
<td>-12.67</td>
<td>-11.84</td>
<td>-12.54</td>
<td>-12.10</td>
<td>-12.56</td>
<td>-11.98</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>-12.84</td>
<td>-12.63</td>
<td>-12.24</td>
<td>-12.55</td>
<td>-12.33</td>
<td>-12.56</td>
<td>-12.41</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>-0.03</td>
<td>—</td>
<td>0.14</td>
<td>—</td>
<td>0.06</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-0.02</td>
<td>—</td>
<td>-0.03</td>
<td>—</td>
<td>-0.03</td>
<td>—</td>
<td>-0.05</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>0.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.01</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>-0.02</td>
<td>—</td>
<td>0.15</td>
<td>—</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-0.01</td>
<td>—</td>
<td>-0.01</td>
<td>—</td>
<td>-0.02</td>
<td>—</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

Table S1: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ^{(T)} contributions for the (H$_2$SO$_4$)(H$_2$O) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QZ</td>
<td>-20.86</td>
<td>-20.70</td>
<td>-20.24</td>
<td>-20.62</td>
<td>-20.31</td>
<td>-20.63</td>
<td>-20.45</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>3.92</td>
<td>3.83</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>3.85</td>
<td>3.90</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.86</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>3.94</td>
<td>3.92</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.96</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-16.95</td>
<td>-16.95</td>
<td>-14.31</td>
<td>-16.54</td>
<td>-15.31</td>
<td>-16.63</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>-16.92</td>
<td>-16.78</td>
<td>-16.29</td>
<td>-16.70</td>
<td>-16.36</td>
<td>-16.71</td>
<td>-16.49</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>0.53</td>
<td>—</td>
<td>0.66</td>
<td>—</td>
<td>0.60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>0.45</td>
<td>—</td>
<td>0.41</td>
<td>—</td>
<td>0.41</td>
<td>—</td>
<td>0.37</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>0.06</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.06</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>0.57</td>
<td>—</td>
<td>0.70</td>
<td>—</td>
<td>0.64</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>0.51</td>
<td>—</td>
<td>0.47</td>
<td>—</td>
<td>0.47</td>
<td>—</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table S2: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ^{(T)} contributions for the (H$_2$SO$_4$)(NH$_3$) cluster. All values are in kcal/mol.
<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>-94.96</td>
<td>-95.88</td>
<td>-89.90</td>
<td>-95.11</td>
<td>-91.05</td>
<td>-95.25</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-96.08</td>
<td>-96.16</td>
<td>-93.61</td>
<td>-95.89</td>
<td>-93.98</td>
<td>-95.93</td>
<td>-93.99</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>-96.28</td>
<td>-96.20</td>
<td>-95.02</td>
<td>-96.08</td>
<td>-95.14</td>
<td>-96.09</td>
<td>-95.52</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>73.16</td>
<td>74.10</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>74.20</td>
<td>74.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>74.26</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>74.48</td>
<td>74.42</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>74.50</td>
</tr>
<tr>
<td>Δ\text{int,CCSD(T)}</td>
<td>DZ</td>
<td>1.98</td>
<td>—</td>
<td>2.19</td>
<td>—</td>
<td>2.10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>1.52</td>
<td>—</td>
<td>1.37</td>
<td>—</td>
<td>1.38</td>
<td>—</td>
<td>1.26</td>
</tr>
<tr>
<td>Δ\text{rel,CCSD(T)}</td>
<td>DZ</td>
<td>-0.78</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-0.39</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-0.34</td>
</tr>
<tr>
<td>Δ\text{bind,CCSD(T)}</td>
<td>DZ</td>
<td>1.20</td>
<td>—</td>
<td>1.41</td>
<td>—</td>
<td>1.33</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>1.13</td>
<td>—</td>
<td>0.98</td>
<td>—</td>
<td>0.99</td>
<td>—</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table S3: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ\text{(T)} contributions for the (H$_2$SO$_4$)((CH$_3$)$_2$NH) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>-110.76</td>
<td>-111.22</td>
<td>-104.90</td>
<td>-110.33</td>
<td>-106.27</td>
<td>-110.50</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-111.70</td>
<td>-111.44</td>
<td>-108.72</td>
<td>-111.12</td>
<td>-109.20</td>
<td>-111.17</td>
<td>-109.13</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>-111.68</td>
<td>-111.46</td>
<td>-110.20</td>
<td>-111.31</td>
<td>-110.34</td>
<td>-111.33</td>
<td>-110.72</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>84.29</td>
<td>85.52</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>85.58</td>
<td>85.77</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>85.65</td>
</tr>
<tr>
<td></td>
<td>QZ</td>
<td>85.91</td>
<td>85.88</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>85.96</td>
</tr>
<tr>
<td>Δ\text{int,CCSD(T)}</td>
<td>DZ</td>
<td>2.46</td>
<td>—</td>
<td>2.70</td>
<td>—</td>
<td>2.61</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>1.89</td>
<td>—</td>
<td>1.74</td>
<td>—</td>
<td>1.75</td>
<td>—</td>
<td>1.60</td>
</tr>
<tr>
<td>Δ\text{rel,CCSD(T)}</td>
<td>DZ</td>
<td>-1.36</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>-0.86</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-0.79</td>
</tr>
<tr>
<td>Δ\text{bind,CCSD(T)}</td>
<td>DZ</td>
<td>1.10</td>
<td>—</td>
<td>1.34</td>
<td>—</td>
<td>1.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>TZ</td>
<td>1.03</td>
<td>—</td>
<td>0.88</td>
<td>—</td>
<td>0.89</td>
<td>—</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Table S4: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ\text{(T)} contributions for the (H$_2$SO$_4$)((CH$_3$)$_2$NH) cluster. All values are in kcal/mol.
Table S5: Interaction, relaxation, and binding energies for MP2 and the corresponding $\Delta^{(T)}$ contributions for the (H$_2$SO$_4$)((CH$_3$)$_3$N) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>-90.06</td>
<td>-89.03</td>
<td>-83.26</td>
<td>-88.00</td>
<td>-85.29</td>
<td>-88.20</td>
<td>—</td>
</tr>
<tr>
<td>MP2/int</td>
<td>TZ</td>
<td>-89.86</td>
<td>-89.04</td>
<td>-86.54</td>
<td>-88.68</td>
<td>-87.18</td>
<td>-88.74</td>
<td>-86.92</td>
</tr>
<tr>
<td>MP2/int</td>
<td>QZ</td>
<td>-89.47</td>
<td>-89.01</td>
<td>-87.85</td>
<td>-88.84</td>
<td>-88.06</td>
<td>-88.66</td>
<td>-88.32</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>61.50</td>
<td>62.25</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>TZ</td>
<td>62.31</td>
<td>62.51</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>62.37</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>QZ</td>
<td>62.63</td>
<td>62.60</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>62.67</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-28.36</td>
<td>-26.78</td>
<td>-21.76</td>
<td>-25.75</td>
<td>-23.79</td>
<td>-25.95</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{int},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>1.68</td>
<td>—</td>
<td>1.96</td>
<td>—</td>
<td>1.82</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{int},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>1.33</td>
<td>—</td>
<td>1.19</td>
<td>—</td>
<td>1.20</td>
<td>—</td>
<td>1.08</td>
</tr>
<tr>
<td>$\Delta^{\text{rel},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>-0.61</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{rel},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>-0.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-0.28</td>
</tr>
<tr>
<td>$\Delta^{\text{bind},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>1.07</td>
<td>—</td>
<td>1.36</td>
<td>—</td>
<td>1.22</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{bind},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>1.01</td>
<td>—</td>
<td>0.87</td>
<td>—</td>
<td>0.88</td>
<td>—</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table S6: Interaction, relaxation, and binding energies for MP2 and the corresponding $\Delta^{(T)}$ contributions for the (H$_2$SO$_4$)(H$_2$N(CH$_3$)$_2$NH$_2$) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>-94.42</td>
<td>-93.86</td>
<td>-87.86</td>
<td>-92.94</td>
<td>-89.73</td>
<td>-93.12</td>
<td>—</td>
</tr>
<tr>
<td>MP2/int</td>
<td>TZ</td>
<td>-94.56</td>
<td>-94.01</td>
<td>-91.45</td>
<td>-93.67</td>
<td>-92.01</td>
<td>-93.73</td>
<td>-91.82</td>
</tr>
<tr>
<td>MP2/int</td>
<td>QZ</td>
<td>-94.34</td>
<td>-94.00</td>
<td>-92.80</td>
<td>-93.84</td>
<td>-92.98</td>
<td>-93.86</td>
<td>-93.29</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>66.55</td>
<td>67.11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>TZ</td>
<td>67.25</td>
<td>67.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>67.29</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>QZ</td>
<td>67.50</td>
<td>67.42</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>67.53</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-27.87</td>
<td>-26.75</td>
<td>-21.31</td>
<td>-25.84</td>
<td>-23.19</td>
<td>-26.01</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{int},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>1.69</td>
<td>—</td>
<td>2.00</td>
<td>—</td>
<td>1.86</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{int},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>1.36</td>
<td>—</td>
<td>1.23</td>
<td>—</td>
<td>1.23</td>
<td>—</td>
<td>1.12</td>
</tr>
<tr>
<td>$\Delta^{\text{rel},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>-0.49</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{rel},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>-0.17</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>-0.13</td>
</tr>
<tr>
<td>$\Delta^{\text{bind},\text{CCSD}(T)}$</td>
<td>DZ</td>
<td>1.20</td>
<td>—</td>
<td>1.51</td>
<td>—</td>
<td>1.37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\Delta^{\text{bind},\text{CCSD}(T)}$</td>
<td>TZ</td>
<td>1.19</td>
<td>—</td>
<td>1.06</td>
<td>—</td>
<td>1.06</td>
<td>—</td>
<td>0.99</td>
</tr>
<tr>
<td>Model</td>
<td>Basis</td>
<td>UC</td>
<td>UC-F12</td>
<td>CP</td>
<td>CP-F12</td>
<td>SNOOP</td>
<td>SNOOP-F12</td>
<td>EXTR</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>4.52</td>
<td>3.90</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MP2/int</td>
<td>TZ</td>
<td>4.00</td>
<td>3.88</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.99</td>
</tr>
<tr>
<td>MP2/int</td>
<td>QZ</td>
<td>3.97</td>
<td>3.88</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.97</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-17.58</td>
<td>-17.73</td>
<td>-14.09</td>
<td>-17.22</td>
<td>-15.40</td>
<td>-17.31</td>
<td>—</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>TZ</td>
<td>-18.44</td>
<td>-17.76</td>
<td>-16.47</td>
<td>-17.53</td>
<td>-17.00</td>
<td>-17.58</td>
<td>-16.65</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>QZ</td>
<td>-18.15</td>
<td>-17.68</td>
<td>-17.10</td>
<td>-17.56</td>
<td>-17.26</td>
<td>-17.57</td>
<td>-17.32</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>-0.30</td>
<td>—</td>
<td>-0.04</td>
<td>—</td>
<td>-0.18</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>TZ</td>
<td>-0.25</td>
<td>—</td>
<td>-0.26</td>
<td>—</td>
<td>-0.28</td>
<td>—</td>
<td>-0.30</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>TZ</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.11</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>-0.18</td>
<td>—</td>
<td>0.09</td>
<td>—</td>
<td>-0.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>TZ</td>
<td>-0.14</td>
<td>—</td>
<td>-0.15</td>
<td>—</td>
<td>-0.17</td>
<td>—</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Table S7: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ(T) contributions for the \((H_2SO_4)(HCOOH)\) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>DZ</td>
<td>5.22</td>
<td>4.60</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MP2/int</td>
<td>TZ</td>
<td>4.70</td>
<td>4.59</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.70</td>
</tr>
<tr>
<td>MP2/int</td>
<td>QZ</td>
<td>4.69</td>
<td>4.59</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.68</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-18.47</td>
<td>-18.46</td>
<td>-14.71</td>
<td>-17.94</td>
<td>-16.15</td>
<td>-18.03</td>
<td>—</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>TZ</td>
<td>-19.25</td>
<td>-18.48</td>
<td>-17.14</td>
<td>-18.24</td>
<td>-17.70</td>
<td>-18.29</td>
<td>-17.33</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>QZ</td>
<td>-18.89</td>
<td>-18.40</td>
<td>-17.78</td>
<td>-18.26</td>
<td>-17.96</td>
<td>-18.28</td>
<td>-18.01</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>-0.34</td>
<td>—</td>
<td>-0.07</td>
<td>—</td>
<td>-0.21</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>TZ</td>
<td>-0.28</td>
<td>—</td>
<td>-0.31</td>
<td>—</td>
<td>-0.32</td>
<td>—</td>
<td>-0.34</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>TZ</td>
<td>0.11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.11</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>-0.22</td>
<td>—</td>
<td>0.05</td>
<td>—</td>
<td>-0.09</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>TZ</td>
<td>-0.17</td>
<td>—</td>
<td>-0.20</td>
<td>—</td>
<td>-0.21</td>
<td>—</td>
<td>-0.23</td>
</tr>
</tbody>
</table>

Table S8: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ(T) contributions for the \((H_2SO_4)(CH_3COOH)\) cluster. All values are in kcal/mol.
<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>TZ</td>
<td>-19.78</td>
<td>-18.87</td>
<td>-17.81</td>
<td>-18.66</td>
<td>-18.34</td>
<td>-18.70</td>
<td>-17.98</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>5.51</td>
<td>5.72</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.59</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>TZ</td>
<td>5.55</td>
<td>5.71</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.59</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>QZ</td>
<td>5.67</td>
<td>5.69</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.72</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-14.62</td>
<td>-13.09</td>
<td>-10.72</td>
<td>-12.64</td>
<td>-12.15</td>
<td>-12.71</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>-0.63</td>
<td>—</td>
<td>-0.29</td>
<td>—</td>
<td>-0.44</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>TZ</td>
<td>-0.48</td>
<td>—</td>
<td>-0.48</td>
<td>—</td>
<td>-0.49</td>
<td>—</td>
<td>-0.50</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>TZ</td>
<td>0.15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.14</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>-0.47</td>
<td>—</td>
<td>-0.14</td>
<td>—</td>
<td>-0.29</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>TZ</td>
<td>-0.33</td>
<td>—</td>
<td>-0.33</td>
<td>—</td>
<td>-0.35</td>
<td>—</td>
<td>-0.36</td>
</tr>
</tbody>
</table>

Table S9: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ(T) contributions for the (H₂SO₄)(HCO₃H) cluster. All values are in kcal/mol.

<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/int</td>
<td>QZ</td>
<td>-20.96</td>
<td>-20.36</td>
<td>-19.89</td>
<td>-20.23</td>
<td>-20.08</td>
<td>-20.25</td>
<td>-20.09</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>7.02</td>
<td>7.08</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.02</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>TZ</td>
<td>6.99</td>
<td>7.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.09</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>QZ</td>
<td>7.05</td>
<td>7.05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.09</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-14.82</td>
<td>-13.31</td>
<td>-10.68</td>
<td>-12.83</td>
<td>-12.17</td>
<td>-12.91</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>DZ</td>
<td>-0.65</td>
<td>—</td>
<td>-0.31</td>
<td>—</td>
<td>-0.46</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{int,CCSD(T)}</td>
<td>TZ</td>
<td>-0.49</td>
<td>—</td>
<td>-0.50</td>
<td>—</td>
<td>-0.51</td>
<td>—</td>
<td>-0.53</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>DZ</td>
<td>0.14</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{rel,CCSD(T)}</td>
<td>TZ</td>
<td>0.12</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.11</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>DZ</td>
<td>-0.51</td>
<td>—</td>
<td>-0.17</td>
<td>—</td>
<td>-0.32</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Δ_{bind,CCSD(T)}</td>
<td>TZ</td>
<td>-0.38</td>
<td>—</td>
<td>-0.38</td>
<td>—</td>
<td>-0.40</td>
<td>—</td>
<td>-0.41</td>
</tr>
</tbody>
</table>

Table S10: Interaction, relaxation, and binding energies for MP2 and the corresponding Δ(T) contributions for the (H₂SO₄)(CH₃CO₃H) cluster. All values are in kcal/mol.
<table>
<thead>
<tr>
<th>Model</th>
<th>Basis</th>
<th>UC</th>
<th>UC-F12</th>
<th>CP</th>
<th>CP-F12</th>
<th>SNOOP</th>
<th>SNOOP-F12</th>
<th>EXTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP2/rel</td>
<td>DZ</td>
<td>4.85</td>
<td>3.47</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>TZ</td>
<td>3.64</td>
<td>3.31</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.62</td>
</tr>
<tr>
<td>MP2/rel</td>
<td>QZ</td>
<td>3.45</td>
<td>3.27</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3.42</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>DZ</td>
<td>-17.57</td>
<td>-17.64</td>
<td>-13.30</td>
<td>-17.05</td>
<td>-14.87</td>
<td>-17.15</td>
<td>—</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>TZ</td>
<td>-18.77</td>
<td>-17.79</td>
<td>-16.42</td>
<td>-17.53</td>
<td>-17.08</td>
<td>-17.58</td>
<td>-16.61</td>
</tr>
<tr>
<td>MP2/bind</td>
<td>QZ</td>
<td>-18.39</td>
<td>-17.72</td>
<td>-17.14</td>
<td>-17.56</td>
<td>-17.37</td>
<td>-17.58</td>
<td>-17.36</td>
</tr>
<tr>
<td>(\Delta_{\text{int,CCSD(T)}})</td>
<td>DZ</td>
<td>-0.51</td>
<td>—</td>
<td>-0.14</td>
<td>—</td>
<td>-0.32</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta_{\text{int,CCSD(T)}})</td>
<td>TZ</td>
<td>-0.35</td>
<td>—</td>
<td>-0.33</td>
<td>—</td>
<td>-0.35</td>
<td>—</td>
<td>-0.35</td>
</tr>
<tr>
<td>(\Delta_{\text{rel,CCSD(T)}})</td>
<td>DZ</td>
<td>0.07</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta_{\text{rel,CCSD(T)}})</td>
<td>TZ</td>
<td>0.04</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.04</td>
</tr>
<tr>
<td>(\Delta_{\text{bind,CCSD(T)}})</td>
<td>DZ</td>
<td>-0.45</td>
<td>—</td>
<td>-0.08</td>
<td>—</td>
<td>-0.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\Delta_{\text{bind,CCSD(T)}})</td>
<td>TZ</td>
<td>-0.30</td>
<td>—</td>
<td>-0.28</td>
<td>—</td>
<td>-0.30</td>
<td>—</td>
<td>-0.31</td>
</tr>
</tbody>
</table>

Table S11: Interaction, relaxation, and binding energies for MP2 and the corresponding \(\Delta^{(T)}\) contributions for the \((\text{H}_2\text{SO}_4)_2\) cluster. All values are in kcal/mol.