Supporting Information

Non-scaling behavior for ionic transport in voltage-gated nanopores

Cheng Lian¹,²§, Alejandro Gallegos²§, Honglai Liu¹*, and Jianzhong Wu²*

¹ State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China

² Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA

* Email: jwu@engr.ucr.edu or hlliu@ecust.edu.cn

§ These authors made equal contribution to this work
Solvent velocity profiles for different pore sizes

Figure S1. The solvent velocity distribution in the nanochannels with width varying from $H=2.5$ to 0.6 nm. Here the gating voltage is fixed at 0.1 V.

Figure S2. The solvent velocity distribution in the nanochannels with width varying from $H=2.5$ to 0.6 nm. Here the gating voltage is fixed at 0.5 V.
Excess chemical potential in DFT

The excess chemical potential for ith ion μ_i^{ex} in Eq. (4) consists of three parts that result from the external potential, hard-sphere repulsions and electrostatic correlations. The external potential accounts for the hard wall effect of the electrode model and is given by

$$V_i(z) = \begin{cases} \infty, & z \geq 2R \text{ or } z \leq 0 \\ 0, & 0 < z < 2R \end{cases} \quad * \text{MERGEFORMAT (S1)}$$

The local excess chemical potential due to hard-sphere repulsions is calculated from the modified fundamental measure theory (MFMT)

$$\mu_i^{HS}(q) = \sum_\alpha \phi_\alpha \int dq' \phi_\alpha (q' - q') \quad * \text{MERGEFORMAT (S2)}$$

where q is the coordinate vector. The summation applies to the six indices for the weighted functions $\omega_i^{(a)}(q)$. Two scalar weight functions are related to the volume and the surface area of a spherical particle of diameter σ_i:

$$\omega_i^{(3)}(q) = \theta(q - \sigma_i / 2) \quad * \text{MERGEFORMAT (S3)}$$

$$\omega_i^{(2)}(q) = \delta(q - \sigma_i / 2) \quad * \text{MERGEFORMAT (S4)}$$

and a surface vector weight function is related to the variance across the particle surface

$$\omega_i^{(v,2)}(q) = \frac{q}{|q|} \delta(q - \sigma_i / 2) \quad * \text{MERGEFORMAT (S5)}$$

where $q = |q|$, $\delta(q)$ is the Dirac delta function, and $\Theta(q)$ is the Heaviside step function. Other weight functions in FMT are given by
\[\omega_i(0)(q) = \omega_i(2)(q) / (\pi \sigma_i^2), \quad \omega_i(1)(q) = \omega_i(2)(q) / (2\pi \sigma_i), \quad \omega_i(V)(q) = \omega_i(V2)(q) / (2\pi \sigma_i) \]

In Eq.\(* \text{MERGEFORMAT} \) (S2), the coefficients are defined by the functional derivatives of the local excess Helmholtz energy density with respect to the six weighted densities:

\[\phi_0 = -\ln(1-n_3) \quad \text{* MERGEFORMAT (S7)} \]

\[\phi_i = n_i / (1-n_3) \quad \text{* MERGEFORMAT (S8)} \]

\[\phi_2 = \frac{n_i}{1-n_3} + \frac{n_i(1-n_3)^2 \ln(1-n_3)}{12\pi n_i^2 (1-n_3)^2} n_i^2 (1-\xi^2 - \xi^4 + \xi^6) \quad \text{* MERGEFORMAT (S9)} \]

\[\phi_3 = \frac{n_0}{1-n_3} + \frac{n_1 n_3}{(1-n_3)^2} (1-\xi^2) - \frac{n_1^3 (1-\xi^2)^3}{36\pi} \left[\frac{2-5n_3 + n_3^2}{(1-n_3)^3} n_3^3 + \frac{2 \ln(1-n_3)}{n_3} \right] \quad \text{* MERGEFORMAT (S10)} \]

\[\phi_1 = -\frac{n_3}{1-n_3} \quad \text{* MERGEFORMAT (S11)} \]

\[\phi_2 = -\frac{n_3}{1-n_3} - \frac{n_i(1-n_3)^2 \ln(1-n_3)}{6\pi n_i^2 (1-n_3)^2} n_i^2 n_2 (1-\xi^2) \quad \text{* MERGEFORMAT (S12)} \]

where \(\xi = n_2 / n_3 \), and the weighted densities are

\[n_\alpha(q) = \sum_i n_{\alpha,i}(q) = \sum_i \int dq' \rho_i(q') \omega_i(\alpha)(q-q') \quad \text{* MERGEFORMAT (S13)} \]

For systems with slab geometry, the ionic density profiles vary only in the direction perpendicular to the surface, \(\text{\textit{viz}, } \rho_i(q) = \rho_i(z) \). In that case, the weighted densities are
Similarly, the local excess chemical potentials are

$$\phi_{0,i}(z) = \frac{\phi_{0,i}(z)}{\pi \sigma_i^2} \quad \text{\scriptsize * MERGEFORMAT (S20)}$$

$$\phi_{1,i}(z) = \frac{\phi_{2,i}(z)}{2 \pi \sigma_i} \quad \text{\scriptsize * MERGEFORMAT (S21)}$$

$$\phi_{2,i}(z) = \pi \sigma_i \int_{z-\sigma_i/2}^{z+\sigma_i/2} dz' \phi_2(z') \quad \text{\scriptsize * MERGEFORMAT (S22)}$$

$$\phi_{3,i}(z) = \pi \int_{z-\sigma_i/2}^{z+\sigma_i/2} dz' \phi_3(z')[\sigma_i^2 / 4 - (z'-z)^2] \quad \text{\scriptsize * MERGEFORMAT (S23)}$$

$$\phi_{1,1,i}(z) = \frac{\phi_{1,1,i}(z)}{2 \pi \sigma_i} \quad \text{\scriptsize * MERGEFORMAT (S24)}$$
\[\phi_{i,j}(z) = \pi \sigma \int_{z-z_i}^{z+z_i/2} \phi_{i,j}(z')(z'-z)dz' \] \text{(S25)}

The reduced excess chemical potential due to the electrostatic correlations is given by

\[\beta \mu_i^{EL}(q) = \beta \mu_i^{EL}[\rho_i(z = R, x)] - \sum_{j=1}^{N} \int \Delta \rho_j(q') c_{ij}^{EL}(|q-q'|) dq' \] \text{(S26)}

According to the mean-spherical approximation (MSA)\(^3\), the direct correlation function (DCF) for the range of \(0 \leq q \leq |\sigma_i - \sigma_j|/2\) is

\[c_{ij}^{EL}(q) = -2l_B \left[-Z_i N_j + X_i (N_i + \Gamma X_i) - (\sigma_i/3)(N_i + \Gamma X_i)^2 \right] \] \text{(S27)}

and for \(|\sigma_i - \sigma_j|/2 \leq q \leq \sigma_j \),

\[c_{ij}^{EL}(q) = l_B \left[(\sigma_i - \sigma_j) L_1 - rL_2 + q^2 L_3 + q^4 L_4 \right] \] \text{(S28)}

where

\[L_1 = \frac{X_i + X_j}{4} (S_i - S_j) - \frac{\sigma_i - \sigma_j}{16} \left[(S_i + S_j)^2 - 4N_i N_j \right] \]
\[L_2 = \left(X_i - X_j \right) \left(N_i - N_j \right) + \left(X_i^2 + X_j^2 \right) \Gamma + \left(\sigma_i + \sigma_j \right) N_i N_j \]
\[+ \left[\sigma_i S_i^2 + \sigma_j S_j^2 \right] / 3 \] \text{(S29)}

and

\[L_3 = \frac{X_i}{\sigma_i} S_j + \frac{X_j}{\sigma_j} S_i + N_i N_j - \left[S_i^2 + S_j^2 \right] / 2 \]
\[L_4 = \frac{S_i^2}{6\sigma_i^2} + \frac{S_j^2}{6\sigma_j^2} \]
\[S_i = N_i + \Gamma X_i \]
\[\Gamma = \left(\pi l_b \sum \rho_i(z = R, x) X_i^2 \right)^{1/2} \]
and the parameter \(N_i \) can be obtained from
\[N_i = \frac{X_i - Z_i}{\sigma_i} \]

where \(X_i \) is solved from the following non-linear equations
\[(1 + \Gamma \sigma_i) X_i + \alpha \sigma_i^2 \sum_j \rho_j(z = R, x) X_j = Z_i \]
\[\alpha \equiv \left(\frac{\pi}{2} \right) \left[1 - \left(\frac{\pi}{6} \right) \sum \rho_i(z = R, x) \sigma_i^3 \right]^{-1} \]

As shown in our previous work\(^4\), the quadratic expansion is sufficient to capture counter-intuitive electrostatic phenomena such as attraction between like charges and charge inversion in the presence of multivalent ions, which defy the conventional mean-field theories.

References