Supporting Information

Investigating the behavior of various cocatalysts on LaTaON$_2$ photoanode for visible light water splitting

Wenping Si,a Daniele Pergolesi,a Fatima Haydous,a Aline Fluri,a Alexander Wokauna and Thomas Lipperta,b,*

a Thin Films and Interfaces, Research with Neutrons and Muons Department, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

b Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Fig. S1 Kubelka−Munk absorbance for LaTaON$_2$, NiO$_x$−LaTaON$_2$, Ni$_{0.7}$Fe$_{0.3}$O$_x$−LaTaON$_2$, and CoO$_x$−LaTaON$_2$ as well as post−loaded IrO$_x$−LaTaON$_2$.

In comparison with the bare LaTaON$_2$, only slight changes occur in the absorbance at 405 nm (light source for PEC measurement) for the cocatalysts loaded LaTaON$_2$. This is understandable if considering quite low nominal loading amount (2 wt%) of these cocatalysts. In addition, the absorption edge is also slightly blue shifted after loading cocatalysts, which could be due to the shading effect of cocatalysts.
Fig. S2 Potentiodynamic measurements in 0.5 M NaOH (pH=13.0) for NiO$_x$–LaTaON$_2$ after treatment in air and under NH$_3$.

Fig. S3 Potentiodynamic measurements in 0.5 M NaOH (pH=13.0) for sputtered Ni–LaTaON$_2$ and CuO$_x$–LaTaON$_2$ in comparison to as prepared–LaTaON$_2$.

H$_2$O$_2$ as hole scavenger

H$_2$O$_2$/O$_2$ has a relatively negative oxidation potential (0.682 V$_{RHE}$) and its rate constant is 10 to 100 times higher than that of water.1 Thus, H$_2$O$_2$ is an efficient hole scavenger in electrolyte to suppress surface recombination. Holes that come to the surface will be immediately captured and participate in the oxidation of H$_2$O$_2$. Assuming that all samples have the same bulk recombination, any difference seen in the photocurrent of H$_2$O$_2$ oxidation should therefore be due to the recombination at the interfaces between LaTaON$_2$ and the cocatalysts as well as the electrolyte.

As shown in Fig. S3, the photocurrent of NiO$_x$–LaTaON$_2$ is the highest followed by that of Ni$_{0.7}$Fe$_{0.3}$O$_x$–LaTaON$_2$, both higher than that of bare LaTaON$_2$. The improvement in the photocurrent indicates a reduced recombination and good passivation at the interface of LaTaON$_2$ and the cocatalysts, which is consistent with our conclusions.

CoO$_x$– and IrO$_x$–loaded LaTaON$_2$ exhibit huge background cathodic and anodic currents, which makes the chopped photocurrent characteristics undetectable. This is probably due to their high catalytic activity for H$_2$O$_2$ oxidation and the photocurrent–doubling phenomena, which causes the oxidized form of H$_2$O$_2$ to be oxidized again through injection of an electron into the conduction band of the semiconductor.$^{1-4}$ The oxidation procedures can be described as follows: H$_2$O$_2$ + h$^+ \rightarrow 2H^+$ + O$_2$ and O$_2$ + e$^- \rightarrow O_2$ + e$^-$. In comparison to NiO$_x$– and Ni$_{0.7}$Fe$_{0.3}$O$_x$–LaTaON$_2$, CoO$_x$– and IrO$_x$–loaded LaTaON$_2$ have higher background currents, which is also consistent with the PEC measurement without H$_2$O$_2$, indicating the more dependency of the system’s photocurrent on the catalytic effect of CoO$_x$ and IrO$_x$.

1−4
However, the presence of a hole scavenger and cocatalyst still did not significantly enhance the photocurrent up to the mA cm$^{-2}$ range, implying that the PEC performance is not limited by surface or interface recombination, but rather by the recombination or low electronic conductivity in the bulk of LaTaON$_2$.

![PEC performance](image)

Fig. S4 PEC performance under chopped light in 0.5 M NaOH with the presence of 0.1 M H$_2$O$_2$ for pre-loaded NiO$_x$-LaTaON$_2$, Ni$_{0.7}$Fe$_{0.3}$O$_x$-LaTaON$_2$, and CoO$_x$-LaTaON$_2$ as well as post-loaded IrO$_x$-LaTaON$_2$. (a). Zoomed-in view of PEC performance. (b). PEC performance between 0.6–1.8 V$_{RHE}$, calculated based on the illuminated area of 3 mm2.

References