Supplementary information

Title: Size-Dependent Hardness of Five-fold Twin Structured Ag Nanowires

Joo Young Jung1,#, Nadeem Qaiser1,#, Gang Feng2, Byung-il Hwang1, TaeGeon Kim1, Jae Hyun Kim1, Seung Min Han1*

1 Graduate School of EEWS, KAIST, Daejeon, Republic of Korea
2 Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
* Corresponding Author: smhan01@kaist.ac.kr
These authors contributed equally to this work

Double Contact Model

The details of this model can be found in the work by Feng et al.[22, 29] and only the key ideas will be presented here to help understanding of the results. To apply the model, the required inputs are indentation load P, indentation stiffness S, tip radius $R_1 (=112\text{nm})$, nanowire radius R_2, as well as reduced moduli for contacts 1 and 2, i.e., E_{r1} and E_{r2}, where E_{r1} and E_{r2} can be determined by the moduli of substrate (E_s), indenter (E_i) and nanowire (E_n). The following are the key set of analytical equations for solving the nanowire indentation hardness H_n.

\[
H_n = H_1 = \frac{P}{A_{k_1}} = \frac{P}{\pi k_1 a_1^2} \quad k_1 = \frac{b_1}{a_1} = \left(1 + \frac{R_1}{R_2}\right)^{-2/3} \tag{S1}
\]

\[
\frac{1}{S} = \frac{1}{S_1} + \frac{1}{S_2}, \quad S_1 = \lambda_1 2E_{r1}a_1\sqrt{k_1}, \quad S_2 = \lambda_2 2E_{r2}\sqrt{a_2b_2} \tag{S2}
\]

\[
\lambda_1 = \frac{\pi}{2\sqrt{k_1 K_1'}}, \quad K_1' = \int_0^{\pi} \frac{1}{\sqrt{1 - (1 - k_1^2)\sin^2 \theta}} d\theta \tag{S3}
\]

\[
\lambda_2 = \frac{\pi}{2\sqrt{k_2 K_2'}}, \quad K_2' = \int_0^{\pi} \frac{1}{\sqrt{1 - (1 - k_2^2)\sin^2 \theta}} d\theta \quad k_2 = \frac{b_2}{a_2} \tag{S4}
\]

\[
H_2 = \frac{P}{A_{k_2}} = \frac{P}{\pi a_2b_2}, \quad b_2 = \sqrt{\frac{2PR_2}{\pi a_2E_{r2}}}, \quad a_2 = 2R_2 \left[\frac{2.2 - \alpha}{1+\alpha}\right]^{0.342} + \frac{s}{m^{2-m-1}} \left(\frac{a_1}{2R_2}\right)^m \tag{S5}
\]
\[\alpha = \frac{E_s - E_{sp}}{E_s + E_{sp}},\ E_s = \frac{E_n}{1 - v_n^2},\ E_{sp} = \frac{E_n}{1 - v_s^2}\]

(S6)

\[s = 0.8756(\alpha + 0.89)^{0.2311} - 0.11\alpha,\ m = 1.672 - 0.45\alpha + 0.066\alpha^2 + 0.111\alpha^3\]

(S7)

\[h_{e1} = 3P/2S_1,\ h_{e2} = 3P/2S_2\]

(S8)

where \(S_1\) and \(S_2\) are the contact stiffnesses for contacts 1 and 2, respectively; \(h_{e1}\) is the elastic displacement of the indenter for contact 1. \(E_{r1}\) and \(E_{r2}\) are the reduced moduli for contacts 1 and 2, respectively, where the reduced modulus is defined in Equation S2. \(a_1\) and \(b_1\) are major and minor radii of contact 1 (shown in Figure 3); \(a_2\) and \(b_2\) are major and minor radii of contact 2 (shown in Figure 3). \(R_1\) is the tip radius, and \(R_2\) is the nanowire radius.

As aforementioned, the nanowire’s hardness \(H_n\) can be determined by \(H_1\) at contact 1, and based on Equation S1, \(k_1\) and \(a_1\) need to be solved to calculate \(H_1\). Here, \(k_1\) can be easily solved by the known indenter radius \(R_1\) and nanowire radius \(R_2\). The solving of \(a_1\) needs to jointly solve Equation S2-S7, which is quite involved as discussed below. First, based on Equation S3, \(\lambda_1\) can be solved only based on \(R_1\) and \(R_2\), and thus, based on Equation S2, the contact stiffness for contact 1, i.e., \(S_1\), becomes a function only of \(a_1\). Then, based on Equation S5 and the required inputs, the contact radii \((a_2\) and \(b_2\)) of elliptical contact 2 are function only of \(a_1\), and thus based on Equations S2 and S4, the contact stiffness of contact 2, i.e., \(S_2\), becomes a function only of \(a_1\) in Equation S2. Consequently, both \(S_1\) and \(S_2\) are functions only of \(a_1\), and then the stiffness equation \((1/S = 1/S_1 + 1/S_2)\) in Equation S2 and experimentally measured stiffness total stiffness \(S\) can be used to solve \(a_1\). Here, \(S\) is fitted with a power law against the measured maximum load at the point of unload \((S = AP^n)\) for each partial unloading. Finally, the nanowire hardness \(H_n\), i.e., the contact pressure in contact 1, can be determined by the solved \(a_1\) and measure load \(P\) by Equation S1.
Reference
