Supporting Information for:

Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic Density Functional Theory studies using localized atomic basis and the role of exact exchange.

A. Ramírez-Solís,* a C. M. Zicovich-Wilson, a R. Hernández-Lamonedab and A. J. Ochoa-Callec

aDepto. de Física, Centro de Investigación en Ciencias, IICBA. Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca. Morelos 62209, México. Corresponding author: alex@uaem.mx.
bCentro de Investigaciones Químicas, IICBA. Universidad Autónoma del Estado de Morelos.
cDepartamento de Ciencias Físicas, Universidad EAFIT, Carrera 49 No. 7 Sur-50, Medellín – Colombia
Supplementary Material

The following figures show the pressure evolution of the intramolecular angle in the unit cell for the antiferromagnetic (AF1, AF2) and non-magnetic (NM) unit cell models. Note that this angle remains ca. 90° for the completely non-magnetic structure at all pressures in good agreement with the experimental $C2/m$ crystal group for the ϵ phase of solid oxygen.

![Intramolecular angle graph](image)

Fig. S1 Intramolecular angle in the $(O_2)_4$ unit cell for the AF1 (red up triangles), AF2 (red down triangles) and non-magnetic (black squares) models for the ϵ phase at the PBE level of theory. The experimental value is 90°.
Fig. S2 Intramolecular angle in the \((O_2)_4\) unit cell for the AF1 (red up triangles), AF2 (red down triangles) and non-magnetic (black squares) models for the \(\varepsilon\) phase at the B3LYP level of theory. The experimental value is 90°.
Fig. S3 Intramolecular angle in the \((O_2)_4\) unit cell for the AF1 (red up triangles), AF2 (red down triangles) and non-magnetic models (black squares) for the \(\varepsilon\) phase at the PBE0 level of theory. The experimental value is 90°.