Electronic Supporting Information **Probing nonlinear optical coefficients in selfassembled peptide nanotubes**

Soma Khanra¹, Kartik Ghosh², Fabio F. Ferreira³, Wendel A. Alves³, Francesco Punzo⁴, Ping

Yu¹, and Suchismita Guha¹¹

¹Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA

²Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897,

USA

³Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09219-580 Santo

Andre, Sao Paulo, Brazil

⁴Dipartimento di Scienze del Farmaco, Sezione Chimica, Università degli Studi di Catania, Viale

Andrea Doria 6, 95125 Catania, Italy

¹ E-mail address: guhas@missouri.edu

I. SHG data at incident angles of 45° and 0° degree.

0.5 0.5 s polarization 0 degree 45 degree p polarization • 0 degree . . SHG Intensity (a.u.) 0 0 0 45 degree 0.4 0.0 0.0 200 300 100 200 300 -100 0 100 -100 0 Angle ψ (degree) Angle ψ (degree)

The tubes were oriented parallel to the plane of incidence.

Figure S1 (a): *p*- and *s*- polarization data from a FF-MNT at 45° and 0° degree. There is a slight change in the SHG intensity due to the Fresnel coefficients of fundamental and SHG waves.

Figure S1 (b): *p*-polarization data at 0° degree fit with d_{31} and d_{33} having the same sign (left) and opposite sign (right).

II. SHG polarimetry from different orientations of FF-MNTs. *s* polarization data was fitted with Eq. (3a) to determine the orientation angle of the tubes. A small DC background had to be applied. The modified eq. used for the fits is: $P_x = (A\sin 2(\Psi + \varphi))^2 + C_x$, where A and C are fitting parameters.

Figure S2. (a) Symbols are the experimental *s* polarization SHG data for two tube orientation. The solid lines are a fit to the square of Eq. (3 a). (b) Optical image of FF-MNT (Tube 1) (in white) where the angle was measured as 43° with respect to the laboratory frame of reference. For tube 2, the measured angle was 169° .

Table S1. SHG intensity was measured from individual FF-MNTs oriented at different angles. The second column shows the measured angle from the optical image and the third column shows the calculated angle from eq 3(a), confirming the $P6_1$ symmetry of the tubes.

Sample	Measured angle φ (°) from optical image	Calculate angle φ (°) from fit
FF-MNT 1	43±1	41.0±0.2
FF-MNT 2	169±1	168.0±0.5
FF-MNT 3	133±1	136.0±0.7
FF-MNT 4	77±1	76.0±0.5
FF-MNT 5	35±1	32.0±0.4
FF-MNT 6	82±1	82.0±0.2

III. SEM and SHG polarimetry of two FF-MNTs with approximately similar lengths but different diameters, where the SHG polarization pattern changes with the diameter.

Figure S3: (a) and (b) are the SEM images from a FF-MNT with O.D. =13.2 μ m. (c) and (d) are SEM images from a FF-MNT with O.D.=5.8 μ m. (e) and (f) p-polarization and s-polarization SHG from the two tubes. The red curve represents the FF-NT with O.D. = 5.8 μ m and the black curve represents the FF-MNT with O.D. =13.2 μ m

 $\begin{array}{c} 0.16 \\ (1)$

IV. Absorption spectrum

Figure S4. Absorption spectrum of FF-MNT.

V. XRD measurements from FF-MNT powder with different annealing conditions and Rietveld refinement

Table S2. Profile-weighed parameters (R_{wp}) extracted from Rietveld refinement. The first column lists the annealing temperatures. a, b, c and V are the unit cell parameters. B_{iso} and $B_{iso_{-}H}$ are the isotropic displacement parameters of non-hydrogen and hydrogen atoms, respectively. The last column shows the calculated density from the X-ray data.

sample ID	R _{wp} (%)	a (Å)	c (Å)	Vol (Å ³)	B _{iso}	B_{iso_H}	Density (g cm ⁻³)
RT	2.502	24.104(2)	5.4460(5)	2740.1(5)	3.5(6)	4.2(7)	1.212(4)
80 °C	2.477	24.106(1)	5.4419(4)	2738.7(4)	3.7(4)	4.5(5)	1.208(3)
135 °C	2.606	24.118(1)	5.4424(3)	2741.7(3)	4.6(3)	5.5(4)	1.208(2)
sample ID	R _{wp} (%)	a (Å)	b (Å)	c (Å)	Vol (Å ³)	B_{iso}/B_{iso_H}	Density (g cm ⁻³)
150 °C	2.369	6.164(3)	10.315(6)	23.840(11)	1515.7(14)	5.1(11)/6.1(13)	1.290(1)

IFABEW (Hex-I)						
hkl	Multiplicity	Area	% Area	Total area	% Total area	
{0 1 0}	6	4.01.104	16.083	2.406·10 ⁵	96.50	
{1 -1 1}	6	727.11	0.292	4.363·10 ³	1.75	
{1 -1 -1}	6	727.11	0.292	$4.363 \cdot 10^3$	1.75	
	CCDC #1494530 (Hex-II)					
h]_1	Multiplicity	A #22	0/ A roo	Total area	0/ Total area	
IIKI	Multiplicity	Alea	70 Alea	Total alea	% Total alea	
{0 1 0}	6	3.64.104	16.120	2.182·10 ⁵	96.72	
{1 -1 1}	6	616.34	0.273	3.698·10 ³	1.64	
{1 -1 -1}	6	616.34	0.273	3.698·10 ³	1.64	
	DUZDUX (Orthorhombic)					
hkl	Multiplicity	Area	% Area	Total area	% Total area	
(0, 0, 2)	2	1 51 104	21.140	2.020.104	42.29	
$\{0 \ 0 \ 2\}$	2	1.51.104	21.140	3.029.10	42.28	
$\{0 - 1 \ 1\}$	4	$7.15 \cdot 10^3$	9.985	$2.861 \cdot 10^4$	39.94	
$\{1 \ 0 \ 0\}$	2	4.86·10 ³	6.781	9.714·10 ³	13.56	
{1 0 1}	4	755.40	1.055	$3.021 \cdot 10^3$	4.22	

Table S3. Morphology Predictions for IFABEW, CCDC #1494530 and DUZDUX. % of Total Facet Area ($Å^2$) is Calculated as 100 × (hkl facet area)/(total surface area)

Table S4. Summarized properties of the predicted crystal morphologies. Apical faces area is calculated for one side only of the regular polyhedron.

	IFABEW	CCDC #1494530	DUZDUX
Aspect ratio	14.513	15.508	3.326
Volume (Å ³)	$4.225 \cdot 10^{6}$	$3.527 \cdot 10^{6}$	$1.233 \cdot 10^{6}$
Apical Faces area (Å ²)	$4.362 \cdot 10^3$	3.698·10 ³	$6.370 \cdot 10^3$

VI. Raman Scattering:

Figure S5. Displacement pattern of a FF molecule at (a) 80 cm⁻¹, (b) 104 cm⁻¹, and (c) 113 cm⁻¹.

Figure S6: Peak fit of Raman scattering from individual FF-MNTs with varying O.D.s.

Diameter (µm)	Peak Position	FWHM	Intensity ratio (80 cm ⁻¹ /107 cm ⁻¹)	Intensity ratio (107 cm ⁻¹ /122 cm ⁻¹)
	No peak			
7	107	14		1.4
	122	11.5		
	No peak			
10	106.5	15.3		1.3
	122.6	13	-	
	77.8	13.8		
11	107.8	13	0.9	1.7
	122.3	10.2		
	77.6	14.5		
12	108.3	12.3	1.2	1.7
	122.5	9.7	-	
	77.1	16.5		
13	109.1	10.7	1.8	2.2
	122.8	9.2		

Table S5. Peak fit parameters from diameter dependent Raman data

Figure S6: Peak fit of Raman spectra from FF-MNT (O.D. = $11 \mu m$) at different annealing temperatures. Annealing the tube beyond 145 °C results in the orthorhombic phase.

Temperature (C)	Peak Position (cm ⁻¹)	FWHM (cm ⁻¹)	Ratio of the intensity of two peaks	
80	106.0±0.7	24.4±2.8	1.2	
	125.4±0.9	25.5±2.3		
125	106.6±0.4	20.5±1.9	12	
	124.0±0.7	24.3±1.6	1.2	
137	108.3±0.5	25.0±2.0	18	
	126.0±1.1	26.0±2.5	1.0	
145	108.9±0.8	30.7±3.2	2 /	
	127.0±1.5	25.2±3.9	<i>2</i> .٦	

Table S6. Peak fit parameters from temperature dependent Raman data