Ab Initio Molecular Dynamics Relaxation and Intersystem Crossing Mechanisms of 5-Azacytosine

Antonio Carlos Borin ${ }^{* 1}$, Sebastian Mai ${ }^{\dagger 2}$, Philipp Marquetand ${ }^{\ddagger 2}$ and Leticia González ${ }^{\S 2}$
${ }^{1}$ Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, NAP-PhotoTech the USP Consortium for Photochemical Technology, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
${ }^{2}$ Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.

Cartesian coordinates of the optimized points

Optimized with MRCIS

Stationary points, conical intersections, and intersystem crossing were optimized at the MRCIS level of theory and the def2-SVP basis sets, with a CAS $(6,5)$ reference space (MRCIS $(6,5)$) based on a SA $(3 S+2 T)$ CASSCF $(12,9$) orbitals (averaging over 3 singlet and 2 triplet states in a single CASSCF (complete-activespace self-consisent-field) calculation). All geometries are given in .xyz format in \AA.

```
12
S0 minimum
C +0.935445 +0.841721 -0.001999
C -0.259672 -1.102571 +0.004465
C -1.447353 +0.785618 +0.004022
N -0.308212 +1.490692 +0.000655
N +0.882127 -0.506338 +0.000772
N -0.294771 -2.443873 +0.006775
N -1.464034 -0.502014 +0.006118
0 +1.967265 +1.522002 -0.006279
H -2.378925 +1.340745 +0.005207
H -0.310211 +2.491343-0.001789
H -1.174328 -2.910534 +0.011478
H +0.559062 -2.957426 +0.007013
```

12
S1 minimum (1pipi*)
C +0.888321 +0.806950 -0.002767
C $-0.382071-1.127271+0.038820$
C $-1.480746+0.839174+0.146849$
N $-0.283220+1.508776-0.059506$
$\mathrm{N}+0.900226-0.499149+0.097660$
N -0.272204 -2.469598 -0.099260
$\mathrm{N}-1.480895-0.527572+0.105429$
$0+1.971923+1.509660-0.033796$
H $-2.398527+1.390555+0.023599$
H $-0.236615+2.504992-0.119700$
H -1.106896 -3.006082 +0.010234
H +0.591971 $-2.889991+0.167944$

[^0]S1 minimum (1nNpi*)
$\mathrm{C}+0.985426+0.975323+0.010694$
C -0. $359534-1.186024-0.032026$
C $-1.476407+0.818969-0.041707$
N $-0.252591+1.535524+0.129648$
$\mathrm{N}+0.795914-0.437992-0.083996$
N -0.261498-2.549538-0.109657
N -1. $508079-0.540602+0.015567$
$0+2.012486+1.500370-0.002114$
H $-2.380871+1.376642+0.137375$
H $-0.263362+2.535056+0.105821$
H $-1.129373-3.013292+0.075326$ $\mathrm{H}+0.518963-2.959317+0.365695$

12
T1 minimum (3pipi*)
$\mathrm{C}+0.908597+0.847181-0.126423$
C $-0.382193-1.116004+0.084433$
C $-1.467825+0.824700+0.188750$
$\mathrm{N}-0.281332+1.513514-0.020862$
$\mathrm{N}+0.827873-0.432704+0.422884$
N -0.209206-2.437500 -0. 195006
N -1.470303 -0.513210 +0.111145
$0+1.947708+1.347450-0.560532$
H $-2.384171+1.390094+0.183783$
H $-0.293056+2.473580-0.304696$
H -1. $062628-2.950737-0.291242$
$\mathrm{H}+0.510919-2.906703+0.317099$
12
S1/S2 CoIn (1nNpi*/1pipi*)
$\mathrm{C}+0.920616+0.847720+0.007961$
C - 0. $375374-1.146254-0.002914$
C $-1.476037+0.833959+0.003368$
N $-0.276428+1.530804+0.001358$
$\mathrm{N}+0.874679-0.481430-0.010991$
N -0.263682-2.494591-0.049014
N -1.458741-0.525862 +0.011950
$0+1.993424+1.511635+0.026444$
H $-2.401093+1.382326+0.041282$
H $-0.242587+2.528570+0.037237$
H $-1.093772-3.018975+0.132242$
$\mathrm{H}+0.606153-2.894623+0.232122$
12
S0/S1 CoIn (S1/S0 alpha, constrained)
$\mathrm{C}+0.819814+0.748009+0.028823$
C $-0.469709-1.117660+0.158940$
C $-1.418858+0.845663+0.411795$
N -0.282422 +1.463784-0.201019
$\mathrm{N}+0.826739-0.448870+0.499174$
N -0.184049-2.394045-0.196014
N -1. $547468-0.548136+0.054648$
$0+2.041383+1.482926-0.143426$
H $-2.323006+1.434335+0.361833$
H $-0.289012+2.268915-0.794959$
H -0.966316-2.974406-0.417493
$\mathrm{H}+0.596883-2.830119+0.245081$

12
S0/S1 CoIn (S1/S0 beta)
$\mathrm{C}+0.900545+0.915413+0.064447$
C -0. $282804-1.155864-0.021627$
C $-1.454827+0.837135-0.236618$
$\mathrm{N}-0.326306+1.543304+0.220173$
$\mathrm{N}+0.860289-0.507045+0.076258$
N -0.310431-2.512833-0.165470
$\mathrm{N}-1.407775-0.473385+0.297333$
$0+1.913163+1.497934-0.039179$
H $-1.716688+0.906247-1.292806$
H $-0.289273+2.535709+0.087884$
H $-1.145381-2.954873+0.163311$
$\mathrm{H}+0.534344-2.976129+0.105852$
12
S0/S1 CoIn (S1/S0 gamma)
$\mathrm{C}+0.919362+0.786405-0.092269$
C $-0.444676-1.126179+0.124366$
C $-1.364245+0.793618+0.390769$
$\mathrm{N}-0.244595+1.478185-0.160461$
$\mathrm{N}+0.592324-0.360209+0.698127$
N -0. $159891-2.385431-0.305237$
N -1. $603878-0.539399+0.073620$
$0+1.965776+1.028270-0.555680$
H $-2.193153+1.410465+0.707782$
H $-0.349093+2.216735-0.829783$
H $-0.958661-2.937492-0.546899$
$\mathrm{H}+0.557719-2.878071+0.186313$
12
S1/T2 MECP (1nNpi*/3pipi)
$\mathrm{C}+0.979224+0.968209+0.009833$
C -0. $357074-1.180962-0.029498$
C $-1.478427+0.822270-0.040564$
$\mathrm{N}-0.256088+1.534497+0.125427$
$\mathrm{N}+0.820913-0.453424-0.074748$
N -0. $263983-2.543850-0.117765$
N $-1.508411-0.541871+0.019100$
$0+2.003727+1.499552-0.007853$
H $-2.383365+1.378790+0.139615$
H $-0.266534+2.533528+0.095107$
H $-1.130889-3.009869+0.066076$
$\mathrm{H}+0.521595-2.957183+0.345752$

Optimized with MS-CASPT2

These CoIns were optimized at the MS-CASPT2 ${ }^{1}$ level of theory with numerical gradients, the algo-rithm of Levine et $\mathrm{al} .,^{2}$ and the OrCA optimizer. ${ }^{3}$ The calculations employed orbitals from an SA(4S)CASSCF $(14,10)$ /ANO-L-VDZP calculation with Cholesky decomposition and a non-relativistic Hamiltonian; in the MS-CASPT2 step, all four roots were included, the IPEA shift ${ }^{4}$ was set to zero, and an imaginary shift ${ }^{5}$ of 0.2 a.u. was applied. For $S_{1} / S_{0}(\alpha)$, the $\mathrm{C}_{2}=\mathrm{O}$ bond length was constrained to $1.44 \AA$ in order to avoid convergence to the $S_{1} / S_{0}(\gamma)$ CoIn. All geometries are given in .xyz format in \AA.

```
1 2
S0/S1 CoIn (S1/S0 alpha, constrained)
C +0.766409 +0.747264 +0.074537
C -0.410056 -1.116020 +0.143600
C -1.439537 +0.875230 +0.467270
N -0.291310 +1.449070 -0.307190
N +0.882807 -0.452253 +0.462587
N -0.176420 -2.429092 -0.233676
N -1.546309 -0.543555 +0.088506
0 +1.983034 +1.505158 -0.011629
H -2.345421 +1.454896 +0.254642
H -0.231722 +2.428132 -0.579970
H -1.049881 -2.961368-0.269825
H +0.546666 -2.875023 +0.334437
12
S0/S1 CoIn (S0/S1 beta)
C +0.913226 +0.921870 +0.139561
C -0.298461 -1.121526 +0.134020
C -1.468952 +0.807904 -0.185833
N -0.319441 +1.578493 +0.125768
N +0.880603 -0.502382 +0.257864
N -0.343936 -2.430941 -0.186336
N -1.421387-0.456619 +0.549557
0 +1.985092 +1.507978 +0.078956
H -1.726468 +0.690351 -1.251133
H -0.274255 +2.537666 -0.229991
H -1.197720 -2.945277 +0.027399
H +0.546552 -2.931905 -0.200272
1 2
S0/S1 CoIn (S0/S1 gamma)
C +0.903770 +0.744051 -0.122225
C -0.461030 -1.140762 +0.197079
C -1.359583 +0.837783 +0.514785
N -0.250975 +1.485721 -0.099121
N +0.625469 -0.349042 +0.793614
N -0.121901 -2.359588-0.334138
N -1.611289 -0.569215 +0.158352
0 +1.960637 +0.910303 -0.701197
H -2.255417 +1.460284 +0.475035
H -0.372098 +2.269522 -0.741247
H -0.924150 -2.917867 -0.634027
H +0.583556 -2.884294 +0.183738
```


Conical intersections

In Figure S1 we show the structures of the S_{1} / S_{0} conical intersections (CoIns) of 5AC. The CoIns in (a) (c) were optimized with the MS-CASPT2 method in order to improve upon the results from Giussani et al., ${ }^{6}$ which were optimized with the SS-CASPT2//CASSCF method. The reoptimizations at the MS-CASPT2 level was necessary, because SS-CASPT2 does not predict the correct topology of conical intersections. ${ }^{7}$ The CoIns in (d) - (f) were optimized with the MRCIS method specified in the main manuscript.

The MS-CASPT2 optimizations showed that $S_{1} / S_{0}(\alpha)$ is actually not a minimum on the S_{1} / S_{0} intersection seam, as previously reported by Giussani et al. ${ }^{6}$ Instead, on both MS-CASPT2 and MRCIS levels the optimization of $S_{1} / S_{0}(\alpha)$-characterized by a very long C ${ }_{2}$ =O bond—leads to $S_{1} / S_{0}(\gamma)$. Hence, the structures of $S_{1} / S_{0}(\alpha)$ shown in Figure S1 (a) and (d) could only be obtained with optimizations under a constrained $\mathrm{C}_{2}=\mathrm{O}$ bond length.
(a) $S_{1} / S_{0}(\alpha)$
(MS-CASPT2, constrained)

(d) $S_{1} / S_{0}(\alpha)$
(MRCIS, constrained)

(b) $S_{1} / S_{0}(\beta)$
(MS-CASPT2)

(e) $S_{1} / S_{0}(\beta)$ (MRCIS)

(c) $S_{1} / S_{0}(\gamma)$ (MS-CASPT2)

(f) $S_{1} / S_{0}(\gamma)$ (MRCIS)

Figure S1: Depictions of the conical intersection geometries of 5AC. The CoIns α, β, and γ in the top row were obtained with MS-CASPT2 optimizations, whereas the bottom row was optimized with MRCIS. Note that the α CoIns (panels (a) and (d)) are not real minima on the intersection seam, but were obtained by constraining the $\mathrm{C}=\mathrm{O}$ bond length.

Supplementary References

[1] J. Finley, P.-Å. Malmqvist, B. O. Roos and L. Serrano-Andrés, Chem. Phys. Lett., 1998, 288, 299.
[2] B. G. Levine, J. D. Coe and T. J. Martinez, J. Phys. Chem. B, 2008, 112, 405-413.
[3] F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
[4] G. Ghigo, B. O. Roos and P.-Å. Malmqvist, Chem. Phys. Lett., 2004, 396, 142 - 149.
[5] N. Forsberg and P.-Å. Malmqvist, Chem. Phys. Lett., 1997, 274, 196 - 204.
[6] A. Giussani, M. Merchán, J. P. Gobbo and A. C. Borin, J. Chem. Theory Comput., 2014, 10, 3915-3924.
[7] J.-P. Malrieu, J.-L. Heully and A. Zaitsevskii, Theor. Chim. Acta, 1995, 90, 167-187.

[^0]: *ancborin@iq.usp.br
 ${ }^{\dagger}$ sebastian.mai@univie.ac.at
 ${ }^{\ddagger}$ philipp.marquetand@univie.ac.at
 §leticia.gonzalez@univie.ac.at

