Mechanism of Coverage Dependent CO Adsorption and Dissociation on the Mo(100) Surface

Xinxin Tian, a Tao Wang, b Haijun Jiao c

a) Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, China; b) Univ Lyon, Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France; c) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany.

E-mail address: haijun.jiao@catalysis.de

Content

Fig. S1-S10 All calculated transition state structures for CO dissociation at all coverage
Fig. S1: Structures of 1CO dissociation on Mo(100) surface.

Fig. S2: Structures of 2CO dissociation on Mo(100) surface.

Fig. S3: Structures of 3CO dissociation on Mo(100) surface.
Figure S4: Structures of 4CO dissociation on Mo(100) surface.

Figure S5: Structures of 5CO dissociation on Mo(100) surface.
Figure S6: Structures of 6CO dissociation on Mo(100) surface.

6CO
TS1
5CO + 1C + 1O
TS2
4CO + 2C + 2O
TS3
3CO + 3C + 3O

Figure S7: Structures of 7CO dissociation on Mo(100) surface.

7CO
TS1
6CO + 1C + 1O
TS2
5CO + 2C + 2O
TS3
4CO + 3C + 3O

~ S 4 ~
Fig. S8: Structures of 8CO dissociation on Mo(100) surface.

Fig. S9: Structures of 9CO dissociation on Mo(100) surface.

Fig. S10: Structures of 10CO dissociation on Mo(100) surface.