ELECTRONIC SUPPLEMENTARY INFORMATION FOR

Mechanism of activated chemiluminescence of cyclic peroxides: 1,2-dioxetane and 1,2dioxetanone

Felipe A. Augusto^{1,2}, Antonio Francés-Monerris^{2,3}, Ignacio Fdez. Galván², Daniel Roca-Sanjuán³, Erick L. Bastos¹, Wilhelm J. Baader^{1,*} and Roland Lindh^{2,*}

¹Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil. Av. Prof. Lineu Prestes, 748, 05508-000, wjbaader@iq.usp.br

²Department of Chemistry-Ångström, Uppsala Center for Computational Chemistry, UC3, Uppsala University, Uppsala, Sweden. P.O. Box 518, SE-75120, roland.lindh@kemi.uu.se

³Instituto de Ciencia Molecular, Universitat de València, València, Spain.

Contents

Table S1	S1
Table S2	S6
Table S3	S6
Figure S1	S11

Table S1. Cartesian coordinates (Å) of the optimized ACT-peroxide molecular complexes (Table 1) at MP2/6-31++g(d,p).

С	-2.45795	-1.54215	-0.48188
С	-2.21994	-0.29609	-1.03221
С	-1.32322	0.61363	-0.40837
С	-0.70067	0.23580	0.82758
С	-0.95741	-1.05431	1.36377
С	-1.83368	-1.91775	0.73370
Н	-1.55898	2.20392	-1.86017
Н	-3.14198	-2.22673	-0.96953
Н	-2.70285	-0.00560	-1.95975
С	-1.07056	1.90817	-0.93716
С	0.21170	1.13273	1.44293
Н	-0.46201	-1.34592	2.28296
Н	-2.02628	-2.89654	1.15678
С	0.44336	2.38336	0.90136
С	-0.19668	2.77145	-0.30124
Н	0.71615	0.82500	2.35188
Н	1.13889	3.05985	1.38335
Н	-0.01061	3.75494	-0.71669
Н	2.01382	-2.35251	-1.48021
С	1.53000	-1.53620	-0.94149
0	2.97206	-0.39131	0.03884
0	1.99883	-1.49483	0.44514
Н	0.44535	-1.61541	-0.98449
С	2.16442	-0.18493	-1.16740
н	1.48293	0.65411	-1.03407
н	2.80226	-0.04830	-2.03942

Naphthalene–1,2-dioxetane

Naphthalene–1,2-dioxetanone

С	-2.49961	1.00848	0.87676
С	-1.50972	0.30005	1.53394
С	-0.69910	-0.63576	0.83524
С	-0.95949	-0.87797	-0.55451
С	-1.97553	-0.12736	-1.20497
С	-2.74281	0.78425	-0.50157
Н	0.49188	-1.22334	2.54501
Н	-3.10946	1.71898	1.42234
Н	-1.32108	0.47086	2.58874
С	0.30185	-1.40115	1.49198
С	-0.16205	-1.82461	-1.25021
Н	-2.16158	-0.30195	-2.25972
Н	-3.52460	1.33871	-1.00753
С	0.81593	-2.54154	-0.58892
С	1.05362	-2.32354	0.79011

Н	-0.34093	-1.98497	-2.30815
Н	1.41719	-3.26218	-1.13028
Н	1.82373	-2.89089	1.29908
Н	0.97233	3.13186	-0.89211
С	0.72325	2.09376	-0.67601
0	2.11790	0.53085	-0.60044
0	1.26296	1.18539	-1.68089
С	1.61234	1.42734	0.33680
Н	-0.34342	1.94102	-0.52023
0	1.91214	1.50503	1.49770

Naphthalene-tetramethyl-1,2-dioxetane

С	-2.58584	-2.27224	-0.65347
С	-2.76446	-1.01583	-1.20291
С	-2.35794	0.14971	-0.49773
С	-1.73140	0.00123	0.78406
С	-1.55391	-1.30274	1.31894
С	-1.97901	-2.41618	0.61865
Н	-3.02953	1.57042	-1.98889
Н	-2.91136	-3.15129	-1.19760
Н	-3.23604	-0.90463	-2.17428
С	-2.55483	1.45713	-1.01930
С	-1.32411	1.16240	1.49245
Н	-1.07080	-1.40840	2.28396
Н	-1.84843	-3.40495	1.04322
С	-1.54442	2.42171	0.96684
С	-2.16643	2.57065	-0.29691
Н	-0.82230	1.04382	2.44613
Н	-1.22875	3.29930	1.51855
Н	-2.33221	3.56220	-0.70205
С	2.07135	-0.84282	-0.10971
0	2.12332	0.87078	1.09410
0	1.36881	-0.45656	1.13209
С	2.34771	0.65024	-0.35003
С	3.73618	1.10372	-0.74041
Н	3.91971	0.87774	-1.79306
Н	3.81103	2.18473	-0.61105
Н	4.50315	0.62870	-0.13423
С	3.28920	-1.67143	0.25595
Н	2.95866	-2.63901	0.63548
Н	3.92252	-1.84150	-0.61768
Н	3.86882	-1.17607	1.03252
С	1.14424	-1.58174	-1.04851
Н	1.65562	-1.76885	-1.99628
Н	0.87406	-2.54521	-0.61404
Н	0.22967	-1.02528	-1.23803
С	1.26984	1.37072	-1.13716

Н	1.41396	2.44778	-1.03875
Н	1.32335	1.10839	-2.19660
Н	0.28494	1.12119	-0.75128

Naphthalene-dimethyl-1,2-dioxetanone

С	-1.45934	2.47840	0.91618
С	-1.43266	1.22477	1.50070
С	-1.59076	0.05302	0.71249
С	-1.69734	0.18321	-0.71262
С	-1.72739	1.48436	-1.28231
С	-1.60398	2.60940	-0.48674
Н	-1.52506	-1.34229	2.36609
Н	-1.35874	3.36461	1.53198
Н	-1.32636	1.12229	2.57579
С	-1.62887	-1.24381	1.29085
С	-1.87883	-0.98572	-1.49890
Н	-1.83631	1.58307	-2.35767
Н	-1.63539	3.59573	-0.93508
С	-1.92769	-2.23280	-0.90603
С	-1.81083	-2.36175	0.49900
Н	-1.96668	-0.88536	-2.57583
Н	-2.06428	-3.11694	-1.51755
Н	-1.84827	-3.34467	0.95393
С	2.42113	0.22352	-0.27782
0	1.08591	-1.41261	-0.24295
0	1.75141	-0.57048	-1.32732
С	1.69468	-0.62954	0.72912
0	1.58571	-0.73836	1.92366
С	3.91880	0.00049	-0.30721
Н	4.33705	0.46155	-1.20216
н	4.37458	0.45878	0.57140
Н	4.14515	-1.06447	-0.31470
С	1.99426	1.67195	-0.32767
Н	2.37656	2.19317	0.55158
Н	2.40646	2.14142	-1.22191
Н	0.90999	1.75176	-0.34734
Anthrac	ene–1,2-dioxetanone		
С	-0.24575	0.49726	3.20006
С	-0.65394	-0.95346	3.20024
0	1.10721	0.19653	3.19992
0	-0.73866	1.58101	3.20003
0	0.71049	-1.32967	3.20010
Н	-1.16611	-1.27803	2.30547
Н	-1.16589	-1.27788	4.09518
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783

С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
Н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601
Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
Н	-1.60973	-4.18078	-0.45503

2-Naphtholate-1,2-dioxetanone

С	-2.43888	1.28989	0.72899
С	-1.50743	0.53223	1.41674
С	-0.79255	-0.51271	0.79472
С	-1.02478	-0.81986	-0.59372
С	-1.98552	-0.00378	-1.28056
С	-2.67199	1.00361	-0.64322
Н	0.37538	-1.06987	2.53442
Н	-2.98244	2.08885	1.22442
Н	-1.30221	0.73952	2.46633
С	0.17308	-1.30480	1.48957
С	-0.33424	-1.86265	-1.21872
Н	-2.16756	-0.20809	-2.33367
Н	-3.39779	1.59517	-1.19747
С	0.62842	-2.67190	-0.54023
С	0.84314	-2.31514	0.86728
Н	-0.51662	-2.07457	-2.26999
0	1.26166	-3.62271	-1.06786
Н	1.58316	-2.90610	1.40258
С	1.60974	1.40942	0.34791
С	0.73543	2.08037	-0.68001
0	2.13497	0.51402	-0.57042
0	1.87080	1.48234	1.50723
0	1.23124	1.19634	-1.66787

Н	-0.32621	1.95705	-0.51881
н	0.99240	3.10939	-0.88822

Table S2. Details on the active s	pace used in the CASPT2//MP2	calculations of the VEAs (Table 2).
-----------------------------------	------------------------------	-------------------------------------

Systems				MOs				# e ⁻ (neutral)	# e ⁻ (anion)	TOTAL MOs
	σ_{co}	$\pi_{C=O}$	σ_{00}	n _o	$\sigma *_{co}$	π* _{C=O}	σ * ₀₀			
Tetramethyl- 1,2-dioxetane, 1,2-dioxetane	2	-	1	2	2	-	1	10	11	8
Dimethyl-1,2- dioxetanone, 1,2- dioxetanone	2	1	1	3	2	1	1	14	15	11

Table S3. Cartesian coordinates (Å) of highlighted structures for the dissociation of a CT complex formed between 1,2-dioxetanone and anthracene (Figure 3).

С	-0.24575	0.49726	3.20006
С	-0.65394	-0.95346	3.20024
0	1.10721	0.19653	3.19992
0	-0.73866	1.58101	3.20003
0	0.71049	-1.32967	3.20010
Н	-1.16611	-1.27803	2.30547
Н	-1.16589	-1.27788	4.09518
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
Н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601

Reactant – Reaction coordinate –0.7 a. u.

Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
Н	-1.60973	-4.18078	-0.45503

Transition state – Reaction coordinate 0.0 a. u.

С	-0.13888	0.45308	3.20283
С	-0.58298	-0.98629	3.18962
0	1.18408	0.62417	3.21814
0	-0.83009	1.45147	3.18309
0	0.57021	-1.75295	3.20422
Н	-1.19827	-1.16600	2.31566
Н	-1.15673	-1.18771	4.08745
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65136	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
Н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601
Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
Н	-1.60973	-4.18078	-0.45503

After the transition state – Reaction coordinate 0.1 a. u.

С	-0.02921	0.67305	3.19836
С	-0.52058	-1.10513	3.20183
0	1.17731	0.61724	3.17620
0	-0.99804	1.36674	3.21647
0	0.44108	-1.94690	3.21649
Н	-1.10263	-1.08927	2.28613

н	-1.12061	-1.07997	4.10551
C	-2.15475	-0.78542	-0.20788
C	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
Н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601
Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
н	-1.60973	-4.18078	-0.45503

Population of the excited state – Reaction coordinate 0.3 a. u.

С	0.03467	0.84144	3.19680
С	-0.57452	-1.27931	3.20302
0	1.17425	0.60251	3.17539
0	-1.02297	1.33811	3.21648
0	0.42765	-1.94773	3.21657
Н	-1.08554	-1.06238	2.26934
Н	-1.10620	-1.05687	4.12341
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727

С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601
Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
Н	-1.60973	-4.18078	-0.45503

Anthracene excited state populated – Reaction coordinate 0.4 a. u.

С	0.06937	0.93756	3.19589
С	-0.60731	-1.35083	3.20336
0	1.18636	0.61413	3.17482
0	-1.02763	1.33897	3.21654
0	0.42719	-1.96020	3.21677
Н	-1.08917	-1.07352	2.26922
Н	-1.11146	-1.07034	4.12440
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
Н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
Н	3.83371	0.41625	0.42601
Н	2.57562	2.56771	0.49841
Н	0.11933	2.58373	0.29077
Н	-4.12693	0.12033	-0.27834
Н	-5.32737	-2.01592	-0.54929
Н	-4.06777	-4.16716	-0.63826
Н	-1.60973	-4.18078	-0.45503

Products – Reaction coordinate 0.9 a. u.

С	0.19152	1.18880	3.19484

C	0 60926	1 53463	2 20402
	-0.69826	-1.52463	3.20403
0	1.30809	0.85560	3.1/2/1
0	-0.94033	1.48584	3.21661
0	0.39444	-2.02982	3.21818
Н	-1.19152	-1.26927	2.26857
Н	-1.21659	-1.27075	4.12606
С	-2.15475	-0.78542	-0.20788
С	-1.42859	-2.02559	-0.25783
С	-0.03521	-2.00632	-0.13514
С	0.66917	-0.80862	0.02551
С	-0.05573	0.43079	0.06759
С	-1.45047	0.41161	-0.04378
С	2.09436	-0.77802	0.16027
С	2.75385	0.40481	0.31853
С	2.03284	1.63825	0.35977
С	0.67450	1.65135	0.24016
С	-3.58302	-0.81962	-0.31689
С	-4.24529	-2.00315	-0.46654
С	-3.52330	-3.23609	-0.51727
С	-2.16262	-3.24600	-0.41605
Н	0.51431	-2.94497	-0.16069
н	-1.99849	1.35002	0.00687
Н	2.63621	-1.71950	0.14116
н	3.83371	0.41625	0.42601
н	2.57562	2.56771	0.49841
н	0.11933	2.58373	0.29077
н	-4.12693	0.12033	-0.27834
н	-5.32737	-2.01592	-0.54929
н	-4.06777	-4.16716	-0.63826
н	-1.60973	-4.18078	-0.45503

Figure S1. Nature of some molecular orbitals in the highlighted coordinates for the dissociation of a CT complex formed between 1,2-dioxetanone and anthracene (Figure 3).